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Abstract

This study examined the acute effect of cephalad fluid shift under simulated microgravity on heart rate variability (HRV) during both
daytime waking state and nocturnal sleep. Seven healthy male volunteers (21-31 years) underwent a series of experiments involving 6°
head-down bed rest (HD) for 3 days. A control experiment on the same subjects was conducted under horizontal bed rest (HZ) in the same
series. HRV from electrocardiogram signals was periodically calculated by the MemCale method during daytime on the first and second days
of both conditions. Nocturnal sleep on the first night of bed rest was monitored by polysomnography. HRV during siage 2 sleep and REM
sleep were assessed in the former and latter halves of the sleep period time. Nocturnal sleep architecture under both conditions was normal,
but a slight decrease in stage 4 sleep and an increase in the number of arousals occurred under HD. On both the first and second days, HRV
during the daytime did not differ between HZ and HD. In contrast, high frequency components in HRV during sleep stage 2 were significantly
higher in the latter half of sleep under HD than under HZ, although there were no differences in the ratio of low frequency to high frequency
components during both stage 2 and the REM stage between the conditions. These results suggest that the acute effect of the cephalad fluid
shift on cardiac autonomic nervous activity might be affected by the sleep/wake state modulating the dominance between sympathetic and
parasympathetic nervous activity.
© 2005 Elsevier {reland Ltd. All rights reserved.

Keywords: 6° Head-down bed rest; Autonomic nervous activity; Sleep; Awake

Change in autonomic nervous activity in space is a well-
known physiological process. This phenomenon is related to
orthostatic intolerance in a considerable number of astronauts
after they return to earth {3]. It is known to be mediated by the
acute cephalad fluid shift, which induces hypovolemia; this,
in turn, affects the reflex control of the cardiovascular system
[19,20]. Specific changes in basal autonomic nervous activity
have been reported under actual and simulated microgravity
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by direct measurements of muscle sympathetic nerve activity
[10,18] and by employing indirect indices derived from heart
rate and blood pressure [14,15,25].

The frequency domain analysis of heart rate variability
(HRV), which is a non-invasive measurement for estimating
cardiac autonomic tone with less distress to the subject [1,24],
has been applied to various experiments in the field of space
medicine. In these studies, decreased high frequency power
(HF) of HRV in subjects who are awake, which suggests de-
creased vagal tone, has been demonstrated during and after
actual [21] and simulated [6,14,15,25] microgravity expo-
sure. Although it has been reported that HRV during sleep
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dramatically varies according to the sleep stage [9,29] and
that it demonstrates clinical implications relevant to myocar-
dial infarction {30], panic disorder [31], and insomnia [2],
only one study has examined HRV in each stage of nocturnal
sleep under microgravity [13]. In that study, the changes in
HRV that occurred during sieep aboard the spaceship were
not conclusive because of the individual differences among
the subjects and, unfortunately, no result regarding autonomic
nervous activity during daytime was presented. Therefore, it
is unclear whether there are any differences in the responses in
cardiac autonomic nervous activity under microgravity dur-
ing the states of daytime waking and nocturnal sleep.

The purpose of the present study was to examine HRV un-
der acute simulated microgravity during both daytime wak-
ing and nocturnal sleep. In order to sort the values of HRV
according to sleep stage, polysomnographic sleep recording
was conducted. To determine the effect of the cephalad fluid
shift itself, two experimental runs with similar time schedules
were conducted to compare HRV; one experiment involved
6° head-down bed rest (HD) for simulated microgravity, and
the other experiment involved horizontal bed rest (HZ) as a
control.

The experimental protocol was approved by the ethics
committee of the National Space Development Agency of
Japan. Seven healthy male volunteers (age, 26 £ 4.5 years;
height, 173 4 6.9 cm; weight, 70+ 11.0kg) participated in
the study after receiving a thorough explanation of the pro-
tocol and providing written informed consent.

A series of experiments that involved 3 days of bed rest
were conducted twice on the same subjects; one experiment
involved an HD, and the other involved an HZ. A 5-day in-
terval was set between each experimental run, and the order
of HD or HZ was counterbalanced across the subjects. From
1 week before through to the end of the experiment, the sub-
jects maintained a similar sleep schedule without a daytime
nap; this schedule was confirmed by Actigraphic recordings
[7].

The subjects came to the bed rest laboratory 2 days prior
to the beginning of each bed rest experiment. The first 2 days
in the laboratory were used as an ambulatory control period,
wherein the subjects performed several familiarization ses-
sions for the planned measurements during bed rest. On the
third day, after breakfast and evacuation, the subjects started
HZ at around 09:30. During the HD session, 20 min after the
start of horizontal bed rest, the bed position was fixed at 6°
head-down position until 18:00 on the fifth day. With regard
to the HZ condition, the same cxperimental procedure was
conducted, maintaining the horizontal bed position until the
end of the bed rest period.

During the bed rest period, the subjects were requested to
lie down on the bed in the position specified, except during
evacuation, which they were requested to carry out within
15 min after breakfast. The scheduled time for sleep was
from 00:00 to 08:00, during which room illumination was
lowered to 10 1x. Napping was prohibited during the daytime
(from 08:00 to 24:00) and the illumination measured at the

level of the subjects’ face was controlled at 1000 Ix during
this period. However, during the bed rest period, the sub-
jects were allowed to read, talk, or watch television, which
was placed at their bedside, when they had no scheduled
experimental measurement. The subjects were continuously
observed, either directly or by video monitoring, throughout
the bed rest period to ensure that they did not take a nap or
sit up during daytime. Breakfast, lunch, and dinner without
spicy foodstuffs or caffeine were provided at 08:30, 13:00,
and 19:30, respectively, while daily water intake was con-
trolled at 20 ml/kg body weight per day. The subjects were
requested to drink an equal amount of water every 2 h from
10:30 to 22:30.

After complete voiding at 08:00 on the day before bed
rest, urine was collected until 24:00 on the second day of bed
rest. Urine volume during the daytime (from 08:00 to 24:00;
16h) and during the night (from 24:00 to 08:00; 8h) was
separately measured on each day.

Polysomnographic sleep monitoring was performed when
the subjects stayed in the bed rest laboratory. Digital sleep
recordings were performed with a Polymate system (TEAC,
Tokyo, Japan) with electrode placements at C3, F3, and O1,
left and right outer canthi, and submentally. The sleep record-
ings obtained on the first night under the bed rest condition
were scored in 20-s epochs according to standardized scoring
criteria {27].

Throughout the subjects’ stay, the R-R intervals of the
electrocardiogram were continuously monitored using an ac-
tivetracer, model AC-301 (GMS, Tokyo, Japan) with a sam-
pling rate of 1kHz. Power spectrum analysis of HRV was
performed by the MemCalc method [28] using a commercial
software (MemCalc/Win, Suwa Trust, Tokyo, Japan), devel-
oped for analyzing data files transferred from an activetracer.
Heart rate (HR) and the power spectrum bands consisting of
high frequency (HF: 0.15-0.40 Hz) and low frequency (LF:
0.04-0.15 Hz) components [1] were computed every minute.
HF, reflecting respiratory-induced cardiac sinus arrhythmias,
was identified as an index of cardiac vagal activity [1,24].
The ratio of low frequency to high frequency components
(LF/HF) was then calculated as an index of sympathovagal
balance [1,24]. The data sampled after 18:30 on the second
day of bed rest was rejected because measurements and treat-
ments for the other purpose were started from 19:00.

Regarding data analysis during daytime, the average val-
ues of HR, HF, and LF/HF for 30 min were periodically cal-
culated. The periods over which data was averaged, six times
each on both the first and second days, are shown in Fig. 1.
The 30-min period after meals was excluded from the data-
averaging period. Due to scheduling constraints, the data-
averaging period was reduced to 20 min after 08:05 on the
second day of bed rest. Subjects maintained a supine posi-
tion during these periods.

With regard to the data on the first night of bed rest, the
values were sorted according to sleep stage. Since it has been
reported that HF and LF/HF differ across sleep stages [9,29],
we chose the values only when three consecutive 20-s sleep
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Fig. 1. Time schedule and heart rate variability measurement period for the first and the second days under each bed rest condition.

epochs were included in stage 2 and the REM stage, which
commonly appears during both the early and the latter por-
tions of the sleep period time (SPT). Based on these val-
ues, average values of HF and LF/HF during each of sleep
stage 2 and the REM stage were calculated during the en-
tire SPT and in the former and latter halves of the SPT,
respectively.

Alj the values are expressed as mean =+ S.E. A two-tailed
paired t-test was used to compare urine volume and sleep
parameters between HD and HZ. Analysis for HF and LE/HF
during the daytime was separately conducted on both the first
and the second days of bed rest by employing a two-way
ANOVA (bed rest condition X time) for repeated measures,
Average values of HF and LF/HF during each of sleep stage 2

Table 1
Comparison of sleep parameters between horizontal and 6° head-down bed

rest

and the REM stage obtained during the entire SPT and in the
former and latter halves of the SPT were compared between
HD and HZ using the Wilcoxon matched-pairs signed-ranks
test. Statistical significance was defined as P <0.05.

Urine volume during daytime was observed to in-
crease on the first day under both bed rest conditions
(HZ: 2127 112ml; HD: 20394 125ml) as compared
to conditions prior to bed rest (HZ: 1111478 ml; HD:
1497 £ 195 ml) and on the second day of bed rest (HZ:
1331 £ 101 mi; HD: 1419 £ 149 mi). However, no signifi-
cant difference in urine volume was observed between HZ
and HD.

Sleep parameters measured on the first night of bed rest are
shown in Table 1. Sleep parameters calculated for the entire

Results over entire TIB

Former half of SPT

Latter half of SPT

HZ HD HZ HD HZ HD

TST (min) 4415 4+ 6.9 4441 £ 30 2237 + 42 225.1 4 3.0 2225 4 3.1 2222425
SEI (%) 9.0+ 14 92.6 &+ 0.6 - - - -

Sleep latency (min) 18.1 £ 6.5 114+£29 - - - -

Stage REM (%) 26.8 + 4.9 201 +£ 2.0 176+ 18 173 4+ 22 276+ 26 249 + 33
Stage [ (%) 140+ 22 153+ 1.6 114415 152 4 1.7 164 + 3.1 154 +£23
Stage 2 (%) 465 + 4.7 479 + 3.6 455 £ 49 448 +55 472 + 45 509 +22
Stage 3 (%) 94 + 1.1 87+ 09 145+ 1.5 146 + 1.8 41+ 14 2.8+ 1.1
Stage 4 (%) 3.6+ 1.1 20+ 0.7 7.0 4+ 2.1 37 4147 02+02 02 £ 0.1
WASO (%) 3.4 £09 45+ 04 324 1.0 39 +£08 3.6+ 1.2 5.1 -413
MT (%) 1.0 £ 0.3 0.6 + 0.2 09403 0502 09+ 04 0.6 +02
Number of arousals 217 £39 30.7 + 3.3 89415 144 £ 1.7 129 +29 163 + 3.0

Values are expressed as mean &= S.E. TIB: Time in bed; SPT: sleep period time; TST: total sleep time; SEI: sleep efficiency index: WASO: wake after sleep
onset; MT: movement time; HZ: horizontal bed rest; HD; 6° head-down bed rest.

* P<0.05.
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Fig. 2. Changes in HR, HF, and LF/HF during the initial 2 days under both
bed rest conditions, including values during stage 2 and REM stage in former
and latter halves of sleep period time. *: P <0.05 using Wilcoxon matched-
pairs signed-ranks test; 9 significant interaction of time x bed rest con-
dition (P <0.05) using repeated measure ANOVA; {: significant effect of
time (P <0.01) using repeated measure ANOVA; {: significant effect of time
(P <0.001) using repeated measure ANOVA.

night showed no significant difference between HZ and HD,
except for a slight but significant decrease in the percentage
of stage 4 sleep and an increase in the number of arousals
under HD. In each of the former half and latter halves of
SPT, although there was no significant difference in the sleep
parameters in the latter half, the percentage of stage 4 sleep
in the former half was significantly lower under HD than that
under HZ.

The values of HR, HF, and LF/HF throughout the initial
2 days of bed rest, including the data sampled during stage 2
sleep and the REM stage on the first night, are illustrated in
Fig. 2. Under both bed rest conditions, the values of HF were
apparently higher during nocturnal sleep, whereas the values
of HR and LF/HF were apparently higher during daytime
periods when subjects were awake. There was no significant
effect of time and bed rest condition on HF and LF/HF during
the daytime, except for HF on the first day, which revealed
a significant effect of time (F(1,5)=3.468, P<0.01), and an

interaction of time with bed rest condition (F(1,5)=3.088,
P <0.05). On the first day, the values of HR under HD showed
a larger fluctuation compared to those under HZ, and a signif-
icant interaction of time x bed rest condition (F(1,5)=2.529,
P <0.05) was detected. On the second day, the values of HR
under both bed rest conditions changed similarly through
the daytime. These HR values showed lower values at 08:05
and 18:00, and a significant effect of time (F(1,5)=11.498,
P<0.001) was detected.

During the entire SPT, although LF/HF did not show any
statistical differences during both stage 2 sleep and the REM
stage, HF during stage 2 sleep showed a tendency to increase
under HD than under HZ (P =0.063). In the former half of
SPT, HF and LF/HF during both stage 2 sleep and the REM
stage showed no difference between the bed rest conditions.
On the other hand, HF increased significantly (P < 0.05) in the
latter half of the SPT; LF/HF tended to decrease (P =0.091)
during stage 2 sleep under HD as compared to under HZ. No
difference in HF and LF/HF was observed during the REM
stage in the latter half of the SPT. There was no difference
in HR between the two conditions during both sleep stages
during any period of the night.

The present study is the first report to examine HRV dur-
ing both the daytime waking state and polysomnographically
determined nocturnal sleep under microgravity. The primary
findings of this study are that the difference in HRV between
HZ and HD, as a sole effect of the acute cephalad fluid shift,
was an increased HF during stage 2 NREM sleep under HD,
but not during REM sleep and the daytime waking state. Pre-
vious studies have demonstrated that HF during the daytime
waking state consistently decreased after long-term exposure
to simulated or actual microgravity in cases of 14 and 15 days
of 6° head-down bed rest [6,14,15] and 16 days of space flight
[21]. In contrast, the results of acute responses in HRV within
2 days under 6° head-down bed rest have been reported to
be inconsistent [14,15,17,25]. The present daytime findings
were in agreement with the reports demonstrating unchanged
HF under acute simulated microgravity [14,17]. As a larger
fluctuation in HR observed on the firstday under HD might re-
flect possible changes in cardiac autonomic activity induced
by cephalad fluid shift, HRV under acute microgravity does
not appear to be definitive.

As it has been shown that respiration has amajor influence
on HRV {16], Migeotte et al. [21] confirmed that the influence
of respiration on HRV under actual microgravity was similar
to that observed in a supine position on earth. In the present
study, we made no attempt to artificially control the subjects’
respiration when HRV was analyzed. However, Prisk et al.
[26] reported that the respiration rate in wake subjects in the
horizontal supine position and during 6° head-down bed rest
was similar. Regarding the respiration rate during nocturnal
sleep, although there has been no study to examine the effect
of positional difference, it has been reported that the varia-
tions in respiration rate during nocturnal sleep are within a
small range, which is unlikely to affect HRV [29]. Therefore,
we could not assume any specific influence of respiration
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on HRV values between HZ and HD during either daytime
waking or nocturnal sleep.

Previous reports examining sleep architecture during ac-
tual space missions [8,23] or during 6° head-down bed rest
[22] have demonstrated disturbed sleep characterized by poor
subjective sleep quality, decreased total sleep time, and an in-
crease in intermittent awakenings. As these studies examined
nocturnal sleep several days after the onset of microgravity
exposure, the present study is the first report to evaluate sleep
architecture on the first night of 6° head-down bed rest. In
contrast to previous reports, sleep architecture on the first
night under HD was identified as being normal [5], despite a
slight decrease in stage 4 sleep and an increase in the number
of arousals. Since we carefully controlled the experimental
environment (light/dark cycle, illumination, and food and wa-
ter intake) and the subjects’ behavior (no daytime nap under
bed rest conditions and stable sleep/wake schedule during
the experimental period), the present results suggest that 6°
head-down bed rest itself has only a little effect on nocturnal
sleep on the first night of bed rest.

The only comparable study evaluating HRV in each sleep
stage was conducted on four astronauts aboard the Russian
Mir space station [13]. In that study, although no significant
effect of space flight on HRV was observed, an increase in
HF during NREM sleep under microgravity was suggested
by the statistical analysis, which incorporated their pre-flight
resting HR as a covariate factor. The present study evaluated
HRV during both the daytime waking state and nocturnal
sleep under 6° head-down bed rest, and a significant increase
in HF during stage 2 sleep was observed in the latter half of
SPT, which was in line with the results described above [13].
The results suggest that changes in HRV under acute micro-
gravity might be affected by the sleep/wake state. As can
be seen in Fig. 2, which shows higher HR and LF/HF dur-
ing daytime and higher HF during nocturnal sleep, cardiac
autonomic nervous activity is sympathetic dominant during
the daytime and vagal dominant during nocturnal sleep [11].
During these characteristic changes in cardiac autonomic ner-
vous activity, the acute effects of the cephalad fluid shift might
appear as increased HF during stage 2 sleep when the basal
vagal tone is higher than that during daytime waking state and
REM sleep [9,11,29]. Interestingly, a significant increase in
HF under HD was observed only in the latter half of SPT.
The reason for no significant increase in HF under HD in the
former half of SPT was unclear. As acute responses in HRV
under 6° head-down bed rest have been reported to be incon-
sistent in wake subjects [14,15,17,25], a possible interaction
of elapsed time from the start of bed rest with the effect of
the sleep/wake state might have induced the present results.

In spite of a significant increase in HF during stage 2 sleep
under HD, HR showed no difference between HZ and HD.
As HR is recognized as the net results of opposing sym-
pathetic and vagal activities on the sinus node [12], these
two autonomic activities during sleep were suggested to vary
somewhat independently [4]. In fact, HR was reported to
significantly correlate with LF/HF, but not with HF, during

nocturnal sleep in healthy young subjects [4]. Therefore, al-
though increased vagal activity during stage 2 sleep under HD
could be suggested, the net results of sympathovagal balance,
which are shown by HR and LF/HF, did not differ between
HZ and HD.

In conclusion, nocturnal sleep architecture measured on
the first night of bed rest was within the normal range in the
6° head-down position. In response to acute simulated micro-
gravity exposure, the difference in HRV between HZ and HD
was observed as an increase in HF during stage 2 sleep under
HD, but not during REM sleep and the daytime waking state.
These results suggest that the acute effect of microgravity on
autonomic nervous activity might be influenced by its basal
activity level modulated according to the sleep/wake state.
In the case of actual space flight, other factors such as space
motion sickness, excitement, and/or disturbed sleep may pos-
sibly act on the basal alteration of autonomic nervous activity
induced by the cephalad fluid shift.
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Abstract The lateral prefrontal cortex (LPFC) is
important in cognitive control. During the delay period
of a working memory (WM) task, primate LPFC neu-
rons show sustained activity that is related to retaining
task-relevant cognitive information in WM. However, it
has not yet been determined whether LPFC delay
neurons are concerned exclusively with the cognitive
control of WM task performance. Recent studies have
indicated that LPFC neurons also show reward and/or
omission-of-reward expectancy-related delay activity,
while the functional relationship between WM-related
and reward/omission-of-reward expectancy-related de-
lay activity remains unclear. To clarify the functional
significance of LPFC delay-period activity for WM task
performance, and particularly the functional relation-
ship between these two types of activity, we examined
individual delay neurons in the primate LPFC during
spatial WM (delayed response) and non-WM (reward-
no-reward delayed reaction) tasks. We found significant
interactions between these two types of delay activity.
The majority of the reward expectancy-related neurons
and the minority of the omission-of-reward expectancy-
related neurons were involved in spatial WM processes.
Spatial WM-related neurons were more likely to be in-
volved in reward expectancy than in omission-of-reward
expectancy. In addition, LPFC delay neurons observed
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during the delayed response task were not concerned
exclusively with the cognitive control of task perfor-
mance; some were related to reward/omission-of-reward
expectancy but not to WM, and many showed more
memory-related activity for preferred rewards than for
less-desirable rewards. Since employing a more preferred
reward induced better task performance in the monkeys,
as well as enhanced WM-related neuronal activity in the
LPFC, the principal function of the LPFC appears to be
the integration of cognitive and motivational operations
in guiding the organism to obtain a reward more effec-
tively.

Keywords Delayed response - Monkey -
Prefrontal cortex - Reward - Working memory

Introduction

The lateral prefrontal cortex (LPFC) is thought to play its
most important role in cognitive control (Fuster 1997;
Miller and Cohen 2001), particularly in retaining and
manipulating information in working memory (WM)
(Goldman-Rakic 1996). LPFC-injured patients and
monkeys with LPFC ablation show severe deficits in the
learning and performance of WM tasks, including delayed
response, delayed alternation and delayed matching to
sample tasks (Jacobsen 1935; Mishkin 1957; Passingham
1975; Freedman and Oscar-Berman 1986). Human
neuroimaging studies have demonstrated activation of
the LPFC in association with WM task performance
(D‘Esposito et al. 1998; Owen et al. 1998). During the
delay period of a WM task, primate LPFC neurons show
sustained activity (Kubota and Niki 1971; Fuster 1973;
Niki 1974; Kojima and Goldman-Rakic 1982; Quintana
et al. 1988) and many show differential delay activity
depending on differences in the spatial or object cues (Niki
1974; Quintana et al. 1988; Funahashi et al. 1989). Delay
neurons with cue-related differential activity are thought
to be involved in, retaining task-relevant cognitive
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information in WM, although the functional significance
of delay neurons without cue-related differential activity
remains unclear. Furthermore, it has not yet been deter-
mined whether delay neurons observed during WM tasks
are concerned exclusively with the cognitive control of
task performance.

Recently, delay-period activity that is not associated
with WM has been reported in the monkey LPFC,
particularly in LPFC delay neurons that are related to
motivational operations, namely reward expectancy
(Watanabe 1996; Leon and Shadlen 1999; Roesch and
Olson 2003) and omission-of-reward expectancy (that is,
anticipation of no-reward as the trial outcome during
the reward-no-reward delayed reaction task) (Watanabe
et al. 2002). These neurons show a differential delay
activity between reward and no-reward trials, and/or
among trials in which different types of reward might or
might not be expected.

We reported previously that LPFC delay neurons
showed both spatial WM-related and reward expectancy-
related activities during a delayed response task using
several different types of reward (Watanabe 1996). In an
oculomotor delayed response task with both reward-
present and reward-absent conditions, Kobayashi et al.
(2002) reported both spatial WM-related and reward/
omission-of-reward expectancy-related LPFC neurons.
However, the functional relationship between the reward/
omission-of-reward expectancy-related and spatial WM-
related neuronal activities remains unclear. In order to
clarify the functional significance of delay-period activity
for WM task performance, and particularly the functional
relationship between these two types of delay-period
activity, we examined individual LPFC delay neurons
during both WM and non-WM tasks; that is, spatial-
memory (spatial delayed response) and outcome-expec-
tancy (reward-no-reward delayed reaction) tasks. In
addition, we examined whether neurons that showed de-
lay (either differential or non-differential) activity in one
type of task also showed delay (particularly differential
delay) activity in the other. Furthermore, we examined
individual LPFC delay neurons during both types of task
in relation to their spatial and reward discrimination.

We postulated that not all delay neurons observed
during the spatial-memory task would be concerned
with the cognitive control of WM task performance, as
delay-period activity was also observed during a non-
WM task in the monkey LPFC (Watanabe et al. 2002).
We further suggested that there would be some associ-
ations between WM-related and reward/omission-of-
reward expectancy-related activities, as monkeys per-
form the WM task to obtain a reward and are reluctant
to perform the task when no reward is expected. We
made the following specific predictions: first, that more
reward-expectancy than omission-of-reward expectancy
neurons would show delay-period activity and would be
concerned with retaining spatial information in WM
during the spatial-memory task; second, that the
majority of omission-of-reward expectancy neurons
would not be involved in retaining information in WM;

and third, that WM-related neurons would be more
concerned with reward expectancy than with omission-
of-reward expectancy.

We found that the majority of reward-expectancy
neurons and the minority of omission-of-reward expec-
tancy neurons were involved in spatial WM processes.
We also discovered that spatial WM neurons were more
likely to be involved in reward expectancy than in
omission-of-reward expectancy. In addition, the data
indicated that not all delay neurons observed during the
spatial-memory task were concerned directly with the
cognitive control of WM task performance.

Materials and methods
Subjects and behavioral training

Three male Japanese monkeys (Macaca fuscata) weighing
5.5-6.5 kg were used in this study. The monkeys were
trained on an outcome-expectancy (reward-no-reward
delayed reaction) task and a spatial-memory (spatial de-
layed response) task. Each monkey faced a panel that was
positioned 33 cm away at eye level. The panel displayed
three horizontally arranged rectangular windows
(6x7.5 cm), three horizontally arranged circular keys
(diameter=>5 cm) and a holding lever (width=5 cm,
protrusion=75 cm) (Fig. la). The distance between
adjacent rectangular windows, and between adjacent
circular keys, was 10 cm from center to center. The dis-
tance between each rectangular window and the circular
key immediately below it was § cm from center to center.
Each window contained one opaque screen and one
transparent screen with thin vertical lines. In the out-
come-expectancy task, only the center window, center
key and holding lever were used. In the spatial-memory
task, the two windows on the left and right, the two keys
on the left and right, and the holding lever were used.

outcome-expectancy task

There were three versions of this task: visible food, cued
food and cued liquid. In the visible-food version
(Fig. 1b), the monkey initially depressed the lever for
10-12 s (Pre-inst). The opaque screen of the window was
then raised to reveal a food tray, either with (reward
trial) or without (no-reward trial) a reward behind a
transparent screen, for a 1-s duration as an instruction
(Inst). After a delay of 5s (Delay), a white light ap-
peared on the key as a go signal (Go signal). When the
monkey released the hold lever and pressed the key
within 2 s after the go signal, both screens were raised
and the monkey either collected the food reward (reward
trials) or went unrewarded (no-reward trials), depending
on the trial type. Reward and no-reward trials were
alternated pseudo-randomly at a ratio of 3:2. Even in
no-reward trials, the monkey had to press the key in
order to advance to the next trial. In other versions of
the outcome-expectancy task, a 1-s long color instruc-
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Fig. 1 The experimental panel and sequence of events used in the
two types of task. a The experimental panel contained three
horizontally arranged windows, three horizontally arranged keys
and a holding lever. b The sequence of events in the visible-food
version of the outcome-expectancy task. For brevity, only the
center window, center key and holding lever are illustrated. The
upper panel represents the reward trials and the lower panel
represents the no-reward trials. /ns¢ Instruction, Resp Response.
¢ The sequence of events in the visible-food version of the spatial-
memory task. For brevity, only the two (Jeft and righr) windows,
two keys and holding lever are illustrated

tion (red or green) on the key indicated whether a re-
ward would be delivered: red indicated reward trials and
green indicated no-reward trials. In the cued-food ver-
sion, depending on the instruction, a food reward could
be collected (reward trials) or not collected (no-reward
trials) behind the screens at the end of the trial. In the
cued-liquid version, a drop of liquid was delivered (re-
ward trials) or not delivered (no-reward trials) through a
tube positioned close to the mouth of the monkey. Pieces
(about 0.5 g) of raisin, sweet potato, cabbage or apple
were used as food rewards. Drops (0.3 ml) of water,
sweet isotonic beverage, orange juice or grape juice were
used as liquid rewards. The same reward was used
continuously for a block of about 50 trials; it was as-
sumed that the animal knew, which reward was being
used in each block after two or three trials. Each
instruction stimulus was thus associated with the pres-
ence or absence of a particular kind of reward. The
monkeys were not required to perform any differential
operant action related to differences between the
rewards. In the food-reward tasks, both windows were
closed when the monkey returned its hand to the holding
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lever after the key press. The trial was aborted if the
monkey released the hold lever before the go signal.

spatial-memory task

There were three versions of this task: visible food, cued
food and cued liquid. In the visible-food version
(Fig. lc), the monkey initially depressed the lever for 10—
12's (Pre-inst). The opaque screen of the left or right
window was then raised to reveal a food tray behind a
transparent screen for a I-s duration as an instruction
(Inst). After a delay of 5 s (Delay), a white light ap-
peared on the left and right keys as a go signal (Go
signal). When the monkey released the hold lever and
correctly pressed the key on the indicated side within 2 s
after the go signal, the left and right screens were raised
and the monkey could collect the food reward. When the
monkey did not respond to the correct side, the trial
ended without the window opening. In the cued-food
and cued-liquid versions of the spatial-memory task, a
red light was presented on the left or right key for a 1-s
duration to indicate the correct side for the response.
After a delay of 55, a go signal of white light appeared
on both keys, and the monkey was required to touch the
key on the cued side within 2 s after the go signal.
Correct responses were rewarded with the food or liquid.
The rewards and methods of reward delivery used dur-
ing the spatial-memory task were the same as those used
in the outcome-expectancy task. The same reward was
used continuously for a block of about 50 trials.

The task was controlled using a personal computer
(NEC, PC9801FA, Tokyo). No attempt was made to re-
strict the eye movements of the animals, On weekdays, the
monkeys received their daily liquid requirement while
performing the task. Water was available ad libitum
during weekends. Monkey pellets were available ad libi-
tum in the home cage at all times, while more preferred
foods were used as rewards in the laboratory experiments.

Reward-preference tests

The reward preferences of each monkey were assessed in
separate blocks of choice trials before or after the
behavioral testing of each animal. Preferences for differ-
ent foods were assessed in free-choice tests by simulta-
neously presenting several items to the monkey.
Preferences for different reward liquids were assessed by
testing the willingness of each monkey to perform the task
with one liquid after it had refused to perform the task
with another.

Surgery and recording

Details of the procedure are described elsewhere
(Watanabe et al. 2002). Briefly, on completion of
training, each monkey was surgically prepared under
sodium pentobarbital anesthesia (Nembutal; 30 mg/kg).

— 216 —



