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Abstract Alterations in  the y-aminobutyric acid
(GABA) neurotransmitter and receptor systems may
contribute to vulnerability of hippocampal pyramidal
neurons in Alzheimer’s disease (AD). The present study
examined the immunohistochemical localization and
distribution of GABAjg receptor R1 protein (GBR1) in
the hippocampus of 16 aged subjects with a range of
neurofibrillary tangle (NFT) pathology as defined by
Braak staging (I-VI). GBRI immunoreactivity (IR)
was localized to the soma and processes of hippocam-
pal pyramidal cells and some non-pyramidal interneu-
rons. In control subjects (Braak I/II), the intensity of
neuronal GBR! immunostaining differed among hip-
pocampal fields, being most prominent in the CA4 and
CA3/2 fields, moderate in the CAl field, and very light
in the dentate gyrus. AD cases with moderate NFT
pathology (Braak III/IV) were characterized by in-
creased GBRI1-IR, particularly in the CA4 and CA3/2
fields. In the CA1l field of the majority of AD cascs, the
“numbers of GBRI-IR neurons were significantly re-
duced, despite the presence of Nissl-labeled neurons in
this region. These data indicate that GBR1 expression
changes with the progression of NFT in AD hippo-
campus. At the onset of hippocampal pathology, in-
creased or stable expression of GBR1 could contribute
to neuronal resistance to the disease process. Advanced
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hippocampal pathology appears to be associated with
decreased neuronal GBRI staining in the CA1l region,
which precedes neuronal cell death. Thus, changes in
hippocampal GBR1 may reflect alterations in the bal-
ance between excitatory and inhibitory neurotransmit-
ter systems, which likely contributes to dysfunction of
hippocampal circuitry in AD.
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introduction

Over-activation of excitatory amino acid (EAA) recep-
tors leads to excitotoxic neuronal changes that can
contribute to neuropathology in Alzheimer’s disease
(AD) [3, 4, 13, 30]. Excitotoxicity due to excessive EAA
receptor stimulation could be countered by compensa-
tory activation of inhibitory neurotransmission. y-Am-
inobutyric acid (GABA) is the major inhibitory
neurotransmitter in the central nervous system [29] and
GABA signaling occurs through two major classes of
receptors, the ionotropic GABAA type, and the metab-
otropic GABAg type [20]. Our previous studies dem-
onstrated the relative stability of GABA. receptor
subunits in AD hippocampus [24, 25, 26]. The status of
GABA receptors, however, remains to be examined.
GABAy receptor activation increases K~ conduc-
tance, hyperpolarizing postsynaptic sites [19, 32] and
inhibiting presynaptic Ca>" conductance, thus sup-
pressing neurotransmitter release and postsynaptic
excitatory transmission [31, 37]. GABAg receptors are
composed of at lJeast two heteromers, GABAgRI
(GBR1) and GABAgR2 (GBR2) [17, 18, 36]. Compared
to the GBR2, GBRI1 immunoreactivity (IR) is more
prominent in neuronal soma and proximal dendrites [5],
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where pathological material is known to accumulate
during the formation of neurofibrillary tangles (NFT) in
AD. Therefore, immunohistochemical examination of
the GBR1 protein in AD brain allows for the assessment
of potential neuronal GABAjg receptor changes relative
to the development of NFT pathology. The present
study employed immunohistochemical techniques to
examine the cellular localization and density of the
GBR1 receptor subunit in the hippocampus of 16 elderly
subjects at different stages of NFT pathology progres-
sion.

Materials and methods
Subjects

Postmortem brain tissue was obtained from 16 elderly
subjects: 12 with a clinical diagnosis of AD (mean age
+ SD 77.8+13.9 years) and 4 age-matched cognitively
normal  (CN)  control  subjects (mean  age
73.34£16.5 years). The mean postmortem interval and
brain weight of the cases were 53+1.9h and
1,154+ 138 g, respectively, with no significant differ-
ence between AD and CN groups (Table 1). Clinical
diagnosis of CN subjects was based on the absence of
dementia, determined through retrospective analysis of
medical records as well as interviews with family
physicians and immediate family members.  All AD
subjects were participants in a longitudinal research
program maintained by the University of Pittsburgh’s
Alzheimer’s Disease Research Center (ADRC). As
participants in this program, patients underwent peri-
odic neuropsychological and neurological evaluation.
Clinical diagnosis of AD was based on a standardized
ADRC evaluation at a Consensus Conference, utiliz-
ing DSM-IV [2] and NINCDS/ADRDA [21] criteria.
Neuropathological diagnosis was determined by a
certified neuropathologist, and was based in part on

stained with hematoxylin and eosin, thioflavin-S, and
Bielschowsky silver stains. All AD subjects fulfilled
CERAD criteria for the diagnosis of ‘“‘definite” AD
[22]. All brains {CN and AD) showed NFT, and
dependent on the extent of NFT progression through
the entorhinal, hippocampal, and neocortical areas,
they were assigned a Braak score, according to neu-
ropathological staging by Braak and Braak [7]. Of the
16 subjects, 4 CN controls were Braak stage 1/II with
only “mild” hippocampal pathology. Four of the AD
patients were in Braak stage HI/IV with “moderate”
hippocampal pathology, and the remaining eight AD
cases were Braak stage V/VI with “‘severe” hippo-
campal NFT pathology. Lewy bodies were detected in
the cerebral cortex of one moderate case and three
severe AD cases, but no Lewy bodies or neurites were
detected in the hippocampus of any case. None of the
patients included in this study had any confounding
neurological or neuropathological disorder, except for
isolated old infarcts in the cortex and thalamus of two
severe cases (Table 1).

Tissue preparation

Brain tissue was processed according to previously
described procedures [24, 26, 27]. The material for this
study was obtained from a block of hippocampal tis-
sue cut in the coronal plane at the level of the lateral
geniculate body. Tissue was placed in 0.1 M phos-
phate buffer (PB, pH 7.4) containing 4% paraformal-
dehyde for 48h at 4°C, and subsequently
cryoprotected in 30% sucrose in PB for several days.
Tissue sections for immunohistochemistry were cut at
40 pm on a shding, freezing microtome. For each case,
adjacent sections were stained for Nissl substance to
delineate the cytoarchitectural boundaries of hippo-
campal fields as defined by Duvernoy [10] and Amaral

histological examination of brain tissue sections and Insausti [1].

Table 1 Case demographics

[AD Alzheimer’s disease, CN Case Dx Age (years) Gender BW (g) PMI (h) Braak

cognitively normal controls;

Braak Braak score (0-VI), BW | CN 61 F 1,360 8 1l

brain weight, PAMI post mortem 2 CN 57 F 1,400 8 19

interval, Dx diagnosis] 3 CN 87 F 1,120 8 /11
4 CN 88 F 990 5.5 /11
5 AD 91 F 1,260 3 nymv
6 AD 75 M 1,300 7 /v
7 AD 81 M 1,150 4 v
8 AD 72 M 1,160 4 v
9 AD 100 F 970 5 V/VI
10 AD 48 M 1,100 8 V/V1
11 AD 86 M 1,330 2 V/VI
12 AD 72 M 1,080 4 V/VI
13 AD 74 M 960 4 V/VI
14 AD 62 M 1,150 4 V/VI
15 AD 84 F 1,070 5 V/VI
16 AD 89 F 1,070 S V/VI




Immunohistochemistry

Tissue sections were processed free-floating for immu-
nohistochemistry of human GABA receptor subunits as
described previously {27, 28], using a polyclonal anti-
body against the receptor subunit GABAgR1 (GBRI,
ABI1531; Chemicon, Temecula, CA). The amino acid
sequence is common to both the GABAgRla and GA-
BAgRIb receptor isoforms, but this antibody primarily
recognizes the GABAgR1a [38]. The primary antibody
was diluted 1:5,000 in TRIS-saline containing 3% goat
serum and 0.25% Triton X-100. At least three sections
from each case were immunostained for this study.
Sections from all cases were processed together to con-
trol for variability in the immunohistochemical proce-
dure. As a control for nonspecific staining, sections were
incubated with initial incubation media with the primary
antibody omitted, and otherwise processed as described.
No positive staining was detectable in these control
sections. Control sections for each case were used for
background correction in optical density (OD) analyses
(described below). Double immunolabeling was per-
formed on each case using GBR1 and MC1 antibodies
to investigate alterations of GBR1 in neurons undergo-
ing early NFT changes. MC1 (generously provided by
Dr. Peter Davies; used at 1:1,000) is a monoclonal
antibody that detects early cytoskeletal alterations
involving changes in the conformation of the tau mole-
cule [16]. The sequential double-immunolabeling proce-
dure used diaminobenzidine (DAB) as a chromogen to
visualize MC1 immunohistochemistry, with subsequent
GBR1 immunohistochemistry using DAB and 2.5%
nickel ammonium sulfate, yielding homogeneous light
brown (DAB) and granular black reaction products
(nickel-conjugated DAB). Additional tissue sections
were stained using monoclonal 10D35 (1:3,000; Athena
Neurosciences, San Francisco, CA) or polyclonal paired
helical filament (PHF) tau (1:10,000; DAKO, Carpin-
teria, CA) antibodies, to visualize amyloid § (Af) pla-
ques and NFT, respectively.

OD measurements of neuronal GBRI1-IR

Quantitative evaluation of the intensity of immuno-
histochemical reaction in individual pyramidal neurons
was performed by OD measurements using an Olympus
AHBT-3 light microscope equipped with a SPOT-2
digital video camera (Diagnostic Instruments, San Jose,
CA) and public domain image analysis software (INIH
Image, Scion, Frederick, MD). All images were ob-
tained at x40 magnification under constant illumination
and exposure conditions. Densitometric analysis was
performed as described previously [23, 34]. Briefly,
profiles of individual GBRI1-immunoreactive neurons
with visible nuclei were outlined with a free-hand
marquee to obtain a morphometric mask. In three
separate non-adjacent sections from each case, ten
neurons were randomly selected for measurements in
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the pyramidal layer of four hippocampal regions
(CA1-4) and the subiculum (Sub). The dentate gyrus
(DG) granule cell layer was evaluated by randomly
choosing three microscopic fields as regions of interests
(ROI), in which all neurons were measured collectively,
due to their high packing density. The measurement of
the relative concentration of GBRI-immunoreactive
material in each ROI was obtained as the gray level
(GL), related to the OD for the specimen using the
following equation:

OD = GLspecimen - GLbackground

where GLgpecimen 1 the gray level of the image delineated
by the morphometric mask (individual neurons) and
GLpackeround 15 the gray level of the background refer-
ence image (obtained by outlining neuronal layers in
sections processed in the absence of primary antibody
for each case). Specific staining was defined as the dif-
ference in immunostaining intensity between sections
incubated with and without the primary antisera.
Values presented are means =+ standard deviation
(SD). Where appropriate, analysis of variance (ANO-
VA) was used to make comparisons. If differences were
detected by ANOVA, individual groups were compared
using the Student-Newman-Keuls test. P<0.05 was ac-
cepted as statistically significant for all comparisons.

Cell counts

To compare the relative loss of GBRI-immunoreactive
compared to Nissl-labeled pyramidal neurons in CAl
hippocampus, cell counts were performed by randomly
selecting ten x40 microscopic fields on three non-adja-
cent sections in all cases from each Braak group. All
neurons on which the entire soma and initial primary
dendrite could be identified were counted within each
microscopic field, irrespective of neuronal size (i.e., all
pyramidal neurons were counted). The total number of
neurons within the entire CA1l field was not calculated;
instead, numerical densities of GBRI-immunoreactive
and Nissl-labeled neurons were obtained in each case
and then calculated as means + SD for cach Braak
diagnostic group. Correction for laminar shrinkage was
not performed, as shrinkage would affect equally GBR1-
IR and Nissl-stained cells counted in adjacent tissue
sections. However, it is possible that due to laminar
shrinkage the reductions in both GBR-1 and Nissl-po-
sitive neurons were underestimated in the Braak stage V/
VI group (see discussion). Comparisons across Braak
groups were made using ANOVA.

Results

GBRI1-IR was detected as black, punctate chromogen
precipitate that labeled the soma and proximal dendrites
of hippocampal neurons and interneurons. GBRI-IR
interneurons were infrequently observed, but were
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present in every case; they were either bipolar or multi-
polar, with fusiform or round cell bodies and thin den-
drites (not shown). Unlike pyramidal neurons, GBR1-
IR interneurons were located primarily within the strata
radiatum and oriens. Neuropil GBR1 immunostaining
was not above background levels.

Fig. 1 Photomicrographs showing GBRI immunohistochemistry
in dentate granule cell layer (GL) and in CA4 (A-C), CA3 (D-F),
CA2 (G-I) and CAl (J-L) subfields of controls that are
pathologically “mild” (Braak I/II; A, D, G and J), © moderate™
AD (Braak ITI/1V; B, E, H. K), and “'severe™ AD (Braak V/VI; C,
F. I, L) cases. Compared to mild and severe groups, the overall
intensity of neuronal GBRI immunoreactivity is increased in the
moderate cases. In the CAl subfield of moderate and severe cases,
loss of pyramidal cell GBRI staining is evident (K. L). This
illustrates differences in neuronal GBR1 immunostaining intensity,
and is not shown as a representative of differences in numbers of
GBRI-immunoreactive neurons across Braak stage groups. The
latter numbers are displayed in Table 2 (GBR! GABAjy receptor
R1 protein, 4D Alzheimer’s disease, mod moderate, sev severe). Bar
100 pm

CN subjects with mild (Braak stage I/IT) NFT pathology

In CN subjects, neuronal GBRI-IR was detected in all
hippocampal fields, although the intensity of immuno-
staining differed between fields (Figs. 1A, D, G, J; 2).
Within the DG, light GBRI-IR was observed in granule
cells (Figs. 1A, 2). In the CA4 field, moderate GBR1-IR
was observed in the soma and proximal dendrites of
mossy cells (Fig. 1A). In CA3 and CA2, pyramidal cells
showed more intense GBRI-IR, particularly in com-
parison to CAl field and DG (Figs. 1, 2). In contrast,
GBRI-IR of CA1 and Sub pyramidal cells was consid-
erably less intense (Figs. 1J, 2).

AD subjects with moderate (Braak stage II/IV)
and severe (Braak stage V-VI) NFT pathology

In hippocampus of moderate AD cases, GBRI-IR
increased markedly (Figs. 1, 2) in DG granule cells and
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Fig. 2 Bar graph showing R.O.D. measurements of neuronal
GBRI1 immunostaining intensity in five hippocampal fields in
control cases with Braak [/11 (mild), and AD patients with Braak
IH/1V (moderate) or Braak V/VI (severe) pathology. Different
patterns can be observed in regions more resistant (DG, CA4,
CA3/2) versus those more vulnerable (CAL, Sub) to AD. In cases
with an onset of hippocampal NFT pathology (Braak III/1V),
significant increases of GBRI staining intensity are observed in
CA4 and CA3/2 regions, while a trend for an increase is seen in
DG. Asterisks:P<0.01; dagger: P<0.05 (R.O.D. relative optical
density, DG dentate gyrus, CA4, CA43/2, CAI hippocampal CA
fields, Sub subiculum, NFT neurofibrillary tangles)

in CA4 and CA3/2 pyramidal cells (Figs. 1B, E, H: 2). In
contrast, severe AD cases showed a comparable to de-
creased cellular GBRI-IR in all hippocampal fields
when compared to the mild CN group (Figs. 1C, F, L, L;
2). We next used relative OD (R.O.D.) measurements of
neuronal GBRI1 immunostaining in individual hippo-
campal fields to compare GBRI1 immunostaining
intensity in the three NFT severity groups, and detected
significant differences in the CA4 and CA3/2 regions.
Moderate AD cases had higher R.O.D. values (Fig. 2)
than either mild CN or severe AD groups in CA4 (both
P<0.01) orin CA3/2 (P<0.05and P<0.01). There was
a considerable variability in numbers of GBRI-IR and
Nissl-stained neurons in the CAl field of AD cases.
Moderate and severe AD cases showed marked loss of
GBRI1-IR CA1 pyramidal cells compared to the mild
CN group (Table 2). Nissl staining of adjacent tissue
sections revealed only moderate CA1 pyramidal cell loss
across both AD groups, but this is likely an underesti-
mate due to hippocampal atrophy and laminar shrink-
age (Table 2; see discussion).

Table 2 Cell counts in the CAl region (GBRI GABAg receptor R1
protein)

Braak stage GBRI1 positive Nissl positive

/1 375+ 145 55.848.7
/v 13.649.0% 49.7+12
V/VI 11.3£9.2% 342+£17.6

*P<0.05 (compared to I/1T)
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In addition to cellular IR, plaque-like clusters of
GBRI-immunoreactive dystrophic neurites were de-
tected in the CA1/Sub (Fig. 3B) and DG molecular layer
(not shown) in both moderate and severe AD cases.
These clusters were entirely composed of neuritic ele-
ments, with no associated neuropil-IR (Fig. 4).

GBRI1 and MC1 co-localization in AD hippocampus

Immunostaining with MCI1, a marker of early neurofi-
brillary changes, revealed a differential distribution of
MCl-positive neurons in various hippocampal fields of
the three groups of cases, consistent with their
pathological classification by Braak stages. CN cases
showed infrequent MCI-IR cells in the CA1 region, and
no labeled neurons in DG, CA3/2 and CA4 (not shown).
These CAT MCI-IR cells did not co-localize GBRI.

In moderate AD cases, MCl-positive neurons were of
substantial numbers in CA1/Sub (Fig. 3C), and only
infrequent in other fields. In severe AD cases, there was
an abundance of MCl-positive cells in CA1/Sub, and
substantial numbers in other hippocampal fields. In both
AD groups, only a small percentage of CAl/Sub neu-
rons showed co-localization of MC1 and GBRI. In
contrast, the CA4 and CA3/2 regions in these cases
showed numerous GBRI/MCI1 dual-labeled neurons
(Fig. 5).

GBRI-positive neuritic plaque-like deposits in AD
cases also contained MCI-IR neurites (Fig. 3C). There
were no correlations between intensity of neuronal
GBR1 immunostaining and distribution of Af plaques
in hippocampal fields.

Discussion

The present study demonstrates alterations in GBR1-IR
during the progression of NFT pathology in the hip-
pocampus of AD subjects. Detection of neuronal
GBRI-IR in all hippocampal fields in non-demented
cases with only mild neurodegenerative changes is con-
sistent with the results of previous immunohistochemical
studies of GABApg receptors in hippocampus of aged
humans [5, 27]. We detected GABAg-IR exclusively in
neuronal soma and proximal dendrites. In contrast,
Billinton et al. [5] reported that GBR1-IR is also present
in the neuropil of the dentate molecular layer and stra-
tum lacunosum-moleculare of the CA fields. Differences
in specificity of the antibodies employed in the two
studies could account for the discrepancies between the
two studies.

Our results indicate that changes in the expression of
hippocampal GBR1 subunit correlate with the progres-
sion of neuronal degeneration defined by a general
assessment of NFT pathology by Braak and Braak [7],
as well as by a marker of early NFT changes (MC1). The
GBRI1 immunostaining was most robust in CA3/2 re-
gions, where it increased markedly in moderate AD



472

Fig. 3 Photomicrographs of the CAl field in serial tissue sections,
processed for Nissl staining (A), GBR1 immunohistochemistry (B)
and MC1 immunohistochemistry (C), from an AD case with
moderate (Braak I1I/IV) NFT pathology. Despite unremarkable
neuronal loss (A), there is a loss of GBRI immunoreactivity on
pyramidal neurons (B) that coincides with appearance of NFTs (C,
arrowheads). Neuritic plaques (arrowheads) are both GBRI positive
(B) and MC1 positive (C). Bar 100 um

(Braak III/TIV) cases. In contrast, numbers of GBRI-
immunoreactive neurons decreased in the CAl region in
both moderate and severe AD, and no GBRI up-regu-
lation was observed in these cells. The more pronounced
loss of GBRI-immunoreactive compared to Nissl-la-
beled pyramidal neurons in the CA1 region suggests that
GBRI-expressing neurons may be more sensitive to
degeneration than CAl neurons collectively. Notably,
the lack of significant loss of Nissl-labeled pyramidal
neurons in CAl in the severe (Braak V/VI) group in the
present study differs from that shown in studies
employing unbiased stereological techniques [33, 35]. We
recognize potential limitations of our non-stereological
cell counting method; the latter inconsistency could be
due to laminar shrinkage that likely occurs in end-stage
AD hippocampus. However, correcting for laminar
shrinkage would further reduce the numbers of both
GBRI1-IR and Nissl-positive CAl neurons in severe AD

Fig. 4 High-power photomicrograph of three GBRI1-immunoreac-
tive plaque-like structures in the CA4. GBR1 immunostaining is
present in numerous dystrophic neurites, many of which appear as
large bulbous swellings (large arrows). Note the punctate GBR1-
immunoreactive labeling in nearby neurons (small arrows), con-
trasting the dark uniform labeling seen in neuritic processes. Bar
75 um

¥

cases. While such correction would bring our Niss! cell
counting data in closer agreement with previous stere-
ological investigations, we would still observe relatively
lower numerical density of GBRI1-immunoreactive neu-
rons compared to Nissl-labeled neurons in AD. The
CA1 region is particularly vulnerable to AD pathology,
while CA3/2 is relatively resistant {11, 12]; thus, eleva-
tions in GBRI1-IR in CA3/2 pyramidal neurons could
reflect a compensatory response to increased excitatory
neurotransmission, and render these cells more resistant
to excitoxic insults. The GABAg receptor is known to
modulate postsynaptic excitatory transmission [31, 37},
and when excitation increases, GABAg-mediated slow
inhibition is recruited to offset excessive neuronal exci-
tation [6]. Thus, up-regulation of GBRI in pyramidal
cells could serve to reduce excessive (toxic) stimulation
of these cells by increasing inhibitory tone. Thus, tran-
sient up-regulation of the GBRI in pyramidal cells,
which occurs at the onset of hippocampal NFT
pathology (i.e., Braak stage III/1V), could function to
reduce excitotoxic neuronal damage in this region. Pre-
vious studies reported that excitotoxicity mediated via
calcium-permeable o-amino-3 hydroxy-S-methyl-4-iso-
azolepropionate (AMPA) and N-methyl-p-aspartate
(NMDA) types of glutamate receptors may contribute,
at least in part, to the development of neurodegenerative
changes in the hippocampus [13, 14] as well as in other
vulnerable regions [3, 15] of AD brains. In accordance
with these studies, we have shown previously that loss of
the GluR2 AMPA receptor subunit precedes hippo-
campal NFT formation [13]. However, it is possible that
not only increased excitatory signal, but also reduced
GABA compensatory (inhibitory) mechanisms contrib-
ute to NFT formation and cell death during the pro-
gression of AD. Alternatively, metabolic alterations due
to neurofibrillary tangle pathology may impede synthe-
sis of the receptor. Previous studies suggest that GABA
receptor subunits can be substantially and selectively
affected in AD. For example, radiolabeled ligand bind-
ing experiments in the hippocampus [8] and frontal
cortex [9] from AD subjects have demonstrated signifi-
cant reductions in GABAg receptors, while GABA,
receptors were relatively preserved. Furthermore, GA-
BA receptor density was reduced only in stratum py-
ramidale of CAl subfield, while reductions in GABAg
receptor density were more extensive [8]. In agreement
with these studies, our previous work demonstrated that
GABA, receptor alpha and beta 2/3 protein and beta 2
mRNA signals were well preserved in the DG, even in
cases with severe AD pathology, [24, 25, 26]. Collec-
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Fig. 5 Photomicrographs showing neuronal double immunolabel-
ing with MC1 (homogeneous brown) and GBRI (granular purple) in
CA4 (A) and CA3 (B) subfields of a severe AD case. Co-
localization of MC1 and GBRI1 is observed in several pyramidal
cells (arrows). In contrast, MCl-stained neuronal processes and
threads (@rrowheads) are GBR1 negative. Bar 20 um

tively, these results suggest that pathological processes
might differentially affect the stability of GABA receptor
subunits, with GABAjg being more vulnerable to AD.

We observed that in CAl, an area particularly af-
fected by the development of mature NFT and cell death
in AD, neurons expressing an early marker of neurofi-
brillary changes (MC1) did not co-localize GBRI. In
contrast, in the CA3/2 and CA4 regions many of the
MCI1-immunoreactive neurons also expressed GBRI.
Because neurons in the CAl/Sub region are known to
develop NFT sooner in the progression of AD than
those in any other field in the hippocampus, loss of
GBRI1 subunits from this cell population might con-
tribute to their propensity to transform into NFT. In
contrast, pyramidal neurons from CA3/2 and CA4 re-
gions are resistant to the conversion into NFT, and this
might be due to their ability to up-regulate, or sustain,
functional GBR1. Thus, early in the course of neurofi-
brillary change, up-regulation of GBR1 in the CA2/3-4
regions may render these neurons more resistant to the
progression of neurofibrillary pathology, whereas in
CAl,this compensatory change is either not occurring,
or is ineffective. Alternatively, neurons in CA2/3-4 may
be more resistant than those in CAl to the effects of
NFT formation, and thereby retain a greater level of
GBRI1-IR synthesis.

In conclusion, our results indicate that there is a
transient increase in GBRI-IR in the hippocampus
during the progression of neurofibrillary pathology in
the course AD. This potentially compensatory change is
not sustainable, as GBRI-IR in severe AD cases is
comparable to subjects with only mild NFT pathology.
Additionally, there is considerable intersubject variabil-
ity in AD, with loss of CA1 GBRI-IR in several cases of
moderate and severe AD. Thus, changes in GABAp
receptor subunit expression in AD hippocampus could
mark a compensatory response to the onset of regional
neurodegenerative changes, while loss of such a response
might facilitate or be due to further progression of NFT
pathology.
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Abstract

Objective: Development of an EEG preprocessing technique for improvement of detection of Alzheimer’s disease (AD). The technique is
based on filtering of EEG data using blind source separation (BSS) and projection of components which are possibly sensitive to cortical

neuronal impairment found in early stages of AD.

Methods: Artifact-free 20 s intervals of raw resting EEG recordings from 22 patients with Mild Cognitive Impairment (MCI) who later
proceeded to AD and 38 age-matched normal controls were decomposed into spatio-temporally decorrelated components using BSS
algorithm "AMUSE’. Filtered EEG was obtained by back projection of components with the highest linear predictability. Relative power of
filtered data in delta, theta, alpha 1, alpha 2, beta 1, and beta 2 bands were processed with Linear Discriminant Analysis (LDA).

Results: Preprocessing improved the percentage of correctly classified patients and controls computed with jack-knifing cross-validation

from 59 to 73% and from 76 to 84%, correspondingly.

Conclusions: The proposed approach can significantly improve the sensitivity and specificity of EEG based diagnosis.

Significance: Filtering based on BSS can improve the performance of the existing EEG approaches to early diagnosis of Alzheimer’s
disease. It may also have potential for improvement of EEG classification in other clinical areas or fundamental research. The developed
method is quite general and flexible, allowing for various extensions and improvements.
© 2004 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.

Keywords: Alzheimer’s disease; Diagnosis; EEG; Blind Source Separation; AMUSE; Filtering

1. Introduction

Alzheimer’s disease (AD) is one of the most frequent
disorders among the elderly population (Jeong, 2004;
Petersen, 2003). Recent studies have demonstrated that
AD has a presymptomatic phase, likely lasting years, during
which neuronal degeneration is occurring but clinical
symptoms do not yet appear. This makes preclinical
discrimination between people who will and will not

* Corresponding author. Tel.: +81 48 467 9668; fax: +81 48 467 968%6.
E-mail address: cia@brain.riken.jp (A. Cichocki).

ultimately develop AD critical for early treatment of the
disease which could prevent or at least slow down the onset
of clinical manifestations of disease (Blennow and Hampel,
2003; DeKosky and Marek, 2003; Rapoport, 2000; Wagner,
2000). Moreover, early diagnostic tools could significantly
facilitate the development of drugs for the treatment at the
early stage of AD: without preclinical diagnosis, many
times more subjects (potential patients with huge percentage
of those who actually would never develop AD) should be
involved for testing of these drugs (DeKosky and Marek,
2003). A diagnostic method should be relatively
inexpensive to make possible screening of many individuals
who are at risk of developing this dangerous disease

1388-2457/$30.00 © 2004 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.
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(DeKosky and Marek, 2003). The electroencephalogram
(EEG) is one of the most promising candidates to become
such a method.

To date, many signal processing techniques were applied
for revealing pathological changes in EEG associated with
AD (see Jeong, 2004, for review). For example, combi-
nation of linear and nonlinear measures improved the
classification accuracy of AD versus normal subjects up to
92% (Pritchard et al., 1994). Using principal component
analysis (PCA) as a postprocessing tool for compressing
linear and nonlinear EEG features over channels and age as
a moderator variable in a study with rigorous validation
procedure (jack-knifing), Besthorn et al. (1997) obtained
89% correct classification. However, high classification
accuracy was obtained for patients who already developed
serious cognitive impairment (e.g. Mini Mental State
Examination (MMSE) score was 11.5+7.9 in the study of
Besthorn et al. (1997)).

Finding a method for identification of patients who have
no clinical signs of AD at the moment of EEG registration
but later progress to AD is the main challenge in this field.
The studies of this kind are very rare. Huang et al. (2000)
obtained 87% classification accuracy for discrimination
between patients with mild cognitive impairment (MCI)
who later progressed and not progressed to AD, however,
without reporting the use of cross-validation. Musha and co-
authors demonstrated, in a computer simulation, that local
cortical neuronal impairment should lead to lower dipolarity
(goodness-of-fit for dipole localizations) of alpha EEG
frequency components (Hara et al., 1999), and then, based
on these results, developed a technique for estimation of
cortical impairment in AD using a single index of dipolarity
(Musha et al., 2002). Alpha dipolarity was able to
differentiate MCI patients who showed no clinical signs of
AD at the time when EEG was recorded but developed
AD later, as diagnosed in the follow-up, from normal
controls with high probability; it also correlated with the
degree of cortical neuronal impairment, estimated by
SPECT (Musha et al., 2002).

However, in spite of all of the achievements made in the
above cited studies, the problem of preclinical diagnosis of
AD using EEG is not yet solved and further improvement of
the methodology is necessary.

The main idea of this paper can be formulated as
‘filtering based on Blind Source Separation (BSS)’, that is,
filtering of EEG by selection of most relevant components
followed by reconstruction of the relevant part (subspace) of
EEG signal using back projection of only these components.
We propose a preprocessing technique based on this idea for
improving EEG-based AD diagnosis (possibly useful also in
other fields of EEG analysis). Its usefulness was evaluated
in combination with standard procedures, namely the linear
discriminant analysis (LLDA) applied to spectral power in
several frequency bands. To make comparison clear and
fair, we used only most reliable but simple procedures.
However, more sophisticated analysis based on recent

advances in techniques for EEG processing and data
classification may provide, in combination with proposed
preprocessing, further significant improvement of early AD
diagnosis, and some relevant emerging techniques will be
mentioned in Discussion.

2. Methods
2.1. Blind source separation filtering for EEG classification

Intuitively, one can expect that some hidden components
of such a complex signal like EEG can be more sensitive to
Alzheimer’s disease and the related disorders than others.
These more sensitive components can be considered as
useful ‘signal’, and the other components of EEG as ‘noise’
or ‘unwanted signals’. Improving the ‘signal-to-noise ratio’
by filtering off the ‘noise’ could enhance the performance of
subsequent feature extraction and data classification. Blind
Source Separation (BSS) algorithms (see Cichocki and
Amari, 2003, for extensive review) can be used for the
purpose of such filtering.

BSS, inits application to EEG analysis, assume that EEG
signal is composed of a finite number of components
(signals from the brain and other sources), s(r)=
[51()s....52(D]7. Here ¢ is a discrete time index, n is the
number of components and [...]” means transpose of row
vector. Components are mixed through unknown linear
mixing process (described by n X n mixing matrix A), and n
sensors (EEG electrodes) record the mixed signals x(f)=
As(r). Each of the components changes in time, but has a
fixed weight. for each channel. BSS algorithm finds an
unmixing (separating) nXn matrix W consisting of
coefficients with which the electrode signals should be
taken to form, by summation, the estimated components:
y(O=Wx(). (In more general case, the number of
components can be not equal to the number of sensors.)
The entries of the estimated mixing matrix A=W™! are
components’ weights in the mixing process; in other words,
they indicate how strongly each electrode picks up each of
individual components. Back projection of some selected
components x,(f)=W ~ly(f) (where x.(t) is a vector of
reconstructed sensor signals and y(7) is the vector obtained
from the vector y(r) after removal of all the undesirable
components (i.e. by replacing them with zeros)) allows us to
filter the EEG data.

In strict sense, BSS means estimation of true (original)
sources, though exactly the same procedure can be used for
separation of two or more subspaces of the signal without
estimation of frue sources. One procedure currently
becoming popular in EEG analysis is removing artifact-
related BSS components and back projection of components
originating from brain (e.g. Jung et al., 2000; Joyce et al.,
2004; Vorobyov and Cichocki, 2002). In this procedure,
components of brain origin are not required to be separated
from each other exactly, because they are mixed again by
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back projection after removing artifact-related components.
But by the same procedure we can filter off the ‘noise” also
in wider sense, improving the relative amount of any types
of useful information in the signal. Specifically, we can try
to increase the relative amount of signal content related to
AD (i.e. to improve signal to noise ratio — SNR).

Finding the rules or fundamental principles for identifi-
cation of relevant and irrelevant components is critical for
the proposed approach and, in general, may require
extensive studies. In the case of removing artifact-related
components, such components typically can be easily
identified by visual inspection, but in more general case
exact discrimination of relevant and non-relevant com-
ponents is more difficult. In this paper we attempt to
differentiate clusters or subspaces of components with
similar properties or features. For the purposes of EEG
classification the estimation of individual components
corresponding to separate and meaningful brain sources is
not required, unlike in other applications of BSS to EEG
processing (including its most popular variant, Independent
Component Analysis (ICA)). The use of clusters of
components is especially beneficial when the data from
different subjects are compared: similarity between indi-
vidual components in different subjects is usually low, while
subspaces formed by similar components are more likely to
be sufficiently overlapped. Differentiation of subspaces with
high and low amount of diagnostically useful information
can be made easier if components are separated and sorted
according to some criteria which, at least to some extent,
correlate with the diagnostic value of components.
BSS algorithm ‘AMUSE’, in our opinion, can be relevant
for this task.

2.2. AMUSE algorithm and its properties

AMUSE (Cichocki and Amari, 2003; Szupiluk and
Cichocki, 2001; Tong et al., 1991, 1993)) is a BSS algorithm
which arranges components not only in the order of
decreasing variance (that is typical for the use of singular
value decomposition (SVD) which is implemented within
the algorithm), but also in the order of their decreased linear
predictability. Low values for both characteristics can be
specific for many of EEG components related to high
frequency artifacts, especially electromyographic signal
(which cannot be sufficiently removed by usual filtering in
frequency domain, see Goncharova et al., 2003). Thus, a
first attempt of selection of diagnostically important
components can be made by removing a range of
components separated with AMUSE (below referred to as
‘AMUSE components’) with the lowest linear predictabil-
ity. Automatic sorting of components by this algorithm
makes it possible to do this simply by removing components
with indices higher than some chosen value.

AMUSE algorithm belongs to the group of second-order-
statistics spatio-temporal decorrelation (SOS-STD) BSS
algorithms. It provides similar decomposition as the well

known and popular SOBI algorithms (Belouchrani et al.,
1997; Tang et al., 2002). AMUSE algorithm uses simple
principles that the estimated components should be spatio-
temporally decorrelated and be less complex (ie. have
better linear predictability) than any mixture of those
sources. The components are ordered according to decreas-
ing values of singular values of a time-delayed covariance
matrix. As in Principal Component Analysis (PCA) and
unlike in many ICA algorithms, all components estimated
by AMUSE are uniquely defined (i.e. any run of algorithms
on the same data will always produce the same components)
and consistently ranked. Fig. | illustrates typical com-
ponents obtained by decomposing EEG using AMUSE
algorithm.

AMUSE algorithm can be considered as two consecutive
PCAs: first, PCA is applied to input data; second, PCA
(SVD) is applied to the time-delayed covariance matrix of
the output of previous stage. In the first step standard or
robust prewhitening (sphering) is applied as a linear
transformation 2(£) =Qx(7), where Q = R:* of the standard
covariance matrix R,=F [x(t)xT(t)) and x(¢) is a vector of
observed data for time instant 7. Next, SVD is applied to a
time-delayed covariance matrix of pre-whitened data:
R, = E{z(z’ (t — 1)} = USV7, where S is a diagonal matrix
with decreasing singular values and U, V are matrices of
eigenvectors. Then, an unmixing mafrix is estimated as
W=A"'=0"Q or A=Q"U.

AMUSE algorithm is much faster than the vast majority
of BSS algorithms (its processing speed is mainly defined by
the PCA processing within it) and is very easy to use,
because no parameters are required. It is implemented as a
part of package ‘ICALAB for signal processing’ (Cichocki
et al., online) freely available online and can be called also
from the current version of EEGLAB toolbox (Delorme and
Makeig, 2004) (which is freely available online at http://
www.scen.ucsd.edu/eeglab/) if both toolboxes are installed.

2.3. Subjects and EEG recording

We used EEG recordings collected in the previous study
(Musha et al., 2002). In that study, patients who complained
only for memory impairment, but had no apparent loss in
general cognitive, behavioral, or functional status, were
recruited. Fifty-three patients of this group met the
following criteria for Mild Cognitive Impairment (MCI):
MMSE score 24 or higher, Clinical Dementia Rating (CDR)
scale score of (.5 with memory performance less than one
standard deviation below the normal reference (Wechsler
Logical Memory Scale and Paired Associates Learning
subtests, IV and VII, <9 (Wechsler, 1987), and/or <5 on
the 30 min delayed recail of the Rey-Osterreith figure test
(Hodges, 1993)). These patients were followed clinically
for 12-18 months. Twenty-five of them developed
probable or possible AD according to NINDS-ADRDA
criteria (McKhann et al, 1984). Normal age-matched
controls were recruited from family members of the patients



732

(a)
AR A
73 M o\ AT A
Fa P it P Y e N ot e g o A
€8 b A e Y AT AN A e A\ N
©4 P L WA A AN VSN i Aot S
3 b LA A A A S e pmn ]
P4 N\;MWV\W\/\/WW\/M
o1 wf\/\«/\/\/\ﬂ\/\/wwdw’ww\/ww\«/\m
02 «M\/\/\/W\/«WWMM
(23 PRI
77 VﬁMM“\W\/mJ\WWWMWW
T8 [P N A S A AN A IS TN N, o Pt g prosrtrtos
PT AW\ P\ A o S v s i [
P8 It N A Aty P 4 it e o
Fz VWMNW/\!\WAAWW
cz W\M’MW\N\/\/\“/LW\/VM“‘WM
2 AN NP AL AN fovominm vy
FREMAI Y P ™™ VA st s PN
02 (e AN\ P\ VA At A A\

0 1 2

+

I

30 pv

A. Cichocki et al. / Clinical Neurophysiology 116 (2005) 729~737

(b)

@ m N o s WON -
;

WA A Mo
21 b sl et S Aol

0 1 2

Fig. 1. Example of raw EEG (a) and its components separated with AMUSE algorithm (b) for a patient with MCI who later progressed to AD (MildAD002).
AMUSE was applied to 20 s artifact-free interval of EEG, but only 2 s are shown. The scale for the components is arbitrary but linear. Note that the components
are automatically ordered according to decreasing linear predictability (increasing complexity).

(mainly spouses) participated in the study as control group.
Both patients and controls underwent general medical,
neurological, psychiatric, and neuroimaging (SPECT, CT
and MRI) investigation for making the diagnosis more
precise.

EEG was recorded within 1 month after entering the
study from all patients and controls, but only EEG recorded
from the patients who progressed to AD (n=25; below:
MCI group) and age-matched controls (n=56) was used for
the analysis. No patient or control subject received
psychotropic medication at the period when EEG was
recorded. Mean MMSE score was 26+ 1.8 in MCI group
and 28.5+ 1.6 in control group; age 71.9+10.2 and 71.7+
8.3, respectively. EEG recording was done in an awake
resting state with eyes closed, under vigilance control.
Ag/AgCl electrodes (disks of diameter 8 mm) were placed
on 21 sites according to 10-20 international system, with the
reference electrode on the right ear-lobe. EEG was recorded
with Biotop 6R12 (NEC San-ei, Tokyo, Japan) using analog
filtering bandpass 0.5-250 Hz and sampling rate 200 Hz.

2.4. EEG data analysis

All computations were done using MATLAB (The
MathWorks, Inc.). EEGLAB (Delorme and Makeig, 2004)
was used for visual analysis of EEG recordings, and
AMUSE algorithm implemented in ICALAB (Cichocki
et al., online) was used for BSS processing.

Out of the EEG database described above (from the study
of Musha et al,, 2002), we selected 25 MCI patients (later
progressed to AD) and 47 age-matched controls who had
relatively little artifacts. Their EEGs were visually
inspected by an experienced EEG researcher and the first
continuous artifact-free 20 s interval of each recording was
chosen for the analysis. Due to the lack of such interval in
some recordings, the number of patients and controls were
reduced to 22 and 38, correspondingly. The reason for
selecting artifact-free intervals was that most of the artifacts
produced amplifier blocking (saturation) due to its low
amplitude range, which lead to strongly nonlinear distortion
of the signal. AMUSE, as most of BSS methods, assumes a
linear model of summation of source signals, and amplifier
blocking should be excluded from the data.

Each EEG was decomposed into 21 decorrelated
components by BSS algorithm AMUSE (see above).
Some of the components (see Results) were selected for
back projection, which formed preprocessed (‘AMUSE
filtered’) EEG data. Spectral analysis based on Fast Fourier
Transform (Welch method, Hanning 1 s window, 2 s epochs
overlapped by 0.5s) was applied to raw data, to the
components and to the projections of selected components.
Relative spectral powers were computed by dividing the
power in delta (1.5-3.5 Hz), theta (3.5-7.5 Hz), alpha 1
(7.5-9.5 Hz), alpha 2 (9.5-12.5 Hz), beta 1 (12.5-17.5 Hz)
and beta 2 (17.5-25 Hz) bands by the power in 1.5-25 Hz
band. These values were normalized for better fitting
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the normal distribution using the transformation
In(x/(1 — x)), where x is the relative spectral power (Gasser
et al., 1982). To reduce the number of variables used for
classification, we averaged band power values over all 21
channels.

Linear discriminant analysis (LDA) (using publicly
available software for both linear classical and robust
discriminant analysis, by Croux and Dehon, 2001) was used
for discriminating MCI and control groups on the basis of
log-transformed relative spectral power in the six frequency
bands, averaged over channels. To improve validation of the
classification results, discriminant analysis was applied in
combination with jack-knifing, a procedure which typically
produces lower discrimination rate than, e.g. cross-vali-
dation based on using part of a sample for learning and other
part for classification, but is statistically more correct
and enables increased reproducibility in other samples
(Besthorn et al., 1997). Jack-knifing means that each case is
classified using individual discriminant function trained
with all cases except this one. Results of this procedure was
used for computing sensitivity (the number of MCI subjects
who were classified as MCI divided by the number of all
subjects in MCI group) and specificity (the number of
normal subjects who were classified as normal divided by
number of all normal subjects).

3. Results

Averaged power spectra of each AMUSE component for
patients and control subjects are presented in Fig. 2. As
expected, components with lower indices (corresponding to
higher linear predictability) had higher relative power at
lower frequencies, while components with higher indices
had higher relative power at highest frequencies. What is
especially important is that the difference between patients
and control subjects was clearer in the components with
lower indices (i.e. components with highest linear predict-
ability and highest variance of their projections). Thus, in
further analysis we used combination of components with
lowest indices.

To estimate how many components with highest linear
predictability provides optimal classification rate, we
applied LDA without jack-knifing (the latter requires
much more computation time) to all projected components
with indices from 1 to 2, from 1 to 3 and so on. Overall
misclassification rate was computed each time by applying
obtained discriminant function to the same 60 subjects (22
patients+ 38 controls). Results are presented in Fig. 3. The
best classification was obtained for projection of the first
five components (with indices from 1 to 5); however,
performance was also high when the number of components
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Fig. 2. Averaged power spectra of AMUSE components 1~21. x-axis: frequency, Hz. y-axis: transformed relative spectral power. Relative spectral power was
obtained by dividing the absolute values in each frequency bin by total power in the range 1.5-25 Hz. Before averaging, the power values were normalized
using transformation log(x/(1 — x)) (negative values appear because of this transformation). Red: MCI patients later progressed to AD (n==22). Black: control

subjects (n=38).
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was in a rather wide range between 3 and 9. Thus, the
method appeared to be robust in respect to the number of
selected components.

Classification with jack-knifing procedure was applied to
projections of several combinations of components, includ-
ing 1-5 which appeared to be optimal according to Fig. 3. As
follows from Table |, results of classification were better if
preprocessing included selection of AMUSE components
with lower indices (1-5, 1-7, 1-10), comparing to raw data.
When components with higher indices (621, 8-21, 11-21)
were selected in preprocessing, the results were worse than in
the case of raw data. Best results were obtained with
components 1-5 and 1-7 (improvement by 14% over the raw

Table |

Number of subjects who were cormrectly and incorrectly classified by
discriminant analysis applied to relative power in six frequency bands after
selection and back projection of certain AMUSE components (AMUSE
filtering). Results were obtained using jack-knifing

AMUSE com-
ponents selected
in preprocessing

Misclassitied Correctly classified %

MCI Controls MCI Controls Al
n=22 n==38 n=22 n=38 n=60

No preprocessing 9 9 59 76 70
Components 6 6 73 84 80
1-5

Components 6 6 73 84 80
1-7

Components 6 9 73 76 75
1-10

Components 9 11 59 71 67
6-21

Components 9 11 59 71 67
8-21

Components 12 12 45 68 60
11-21

data for classification of MCI and by 8% for control subjects),
while components 11-21 gave the worst results. More
detailed classification results for two combinations of
components (1-5 and 1-10) and for the raw data, presented
as Relative Operating Characteristic (ROC) curves in Fig. 4,
confirm that use of components 110 only slightly improved
the classification (Fig. 4(a)), while improvement of classi-
fication with components 1-5 over raw data was substantial
(Fig. 4(b)). Best classification performance after preproces-
sing using 1-5 components was obtained in the range of
approximately 0.6-0.8 for sensitivity and 0.7-0.9
for specificity. Selection of components with high indices

~was clearly not good for classification: for components

11-21 classification performance was almost at random level
(Fig. 4(a)).

4, Discussion

With EEG preprocessing proposed in this paper, we
obtained 80% rate of correct classification (Table 1) for MCI
using only 20 s artifact-free interval of EEG recording from
each patient or control subject. While groups of patients and
controls were relatively small (22 and 38, correspondingly),
it should be noted that the classification performance was
estimated using the rigorous jack-knifing cross-validation
procedure, which reduce the risk of overstating the results.
The jack-knifing procedure was applied only to LDA but not
to approximate optimization of the choice of components for
back projection. Optimization of the choice of components
was made for the whole dataset on the basis of components’
spectra and preliminary run of LDA. Nevertheless, Figs. 2
and 3 suggest that the dependence of the difference between
patients’ and controls’ spectra on component index and
dependence of LDA results on the number of selected
components were systematic; thus, it is unlikely that we
simply picked up some random variations in LDA perform-
ance dependent on details of preprocessing and that
improvement of LDA performance by preprocessing with
the same parameters will be not reproducible in other groups
of patients and controls.

The procedure of selection of artifact-free EEG intervals
used in this study could introduce some bias in absolute
values of discrimination results, because it was done by only
one expert, and this expert did know to which group each
EEG belongs. In fact, the proportion of the EEG recordings
which were not analyzed due to the lack of a sufficiently
long artifact-free interval was different in the groups of
patients (12%) and controls (19%), and this difference was
in the direction which can be expected if the criteria for
selecting the analyzed interval were more strict for control
group. This difference could be a result of random
variations, and it should be noted that most of artifacts
were easily identifiable (due to low amplifier range, any
high amplitude artifact led to amplifier saturation), so it was
rather unlikely that the subjective bias could strongly
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Fig. 4. Relative Operating Characteristic (ROC) curves obtained using jack-knifing for classification of MCI patients later progressed to AD (n=22) versus
normal controls (n=38). LDA was applied to relative power in six EEG frequency bands. Comparison between data without preprocessing and data after
selection and back projection of certain AMUSE components (AMUSE filtering). (a) Selection of first 10 components, compared to the rest of components and
no preprocessing. (b) Selection of first five components, compared to the rest of components and no preprocessing.

influence the results. However, we cannot guarantee that the
use of subjective criteria for selection of artifact free
intervals did not affect classification results at all, and it is
difficult to predict whether the obtained high values of
specificity and sensitivity can be reproduced in other
studies. We would like to emphasize, nevertheless, that
our main claim is that the proposed preprocessing method
increases the performance relatively to the level obtained
without its use. This tendency could not be altered by
subjective bias in search for artifact-free intervals.

We do not discuss here to which physiologically
meaningful brain sources AMUSE components can corre-
spond, because they can be a mixture of activity from many
physical sources in the brain. This is clearly not critical for
improving of EEG classification. The improvement of
classification after AMUSE filtering comparing to non-
preprocessed EEG data was probably caused by higher
difference between patients’ and controls’ spectra in the
selected components than in the non-used (filtered off)
components. Spectra computed for AMUSE components
separated by BSS algorithm AMUSE (Fig. 2) demonstrate
that the difference between patients and controls decreased
with the index of component. Interestingly, this effect is
visible at the same time in several frequency ranges: in theta
range, where patients had an increase of relative power; in
alpha range, where shift of the peak to slower frequencies
was observed in patients; and in beta range, where relative
power was lower for patients. All these differences in
spectral power are typically found between AD patients and
normal subjects. Spectra of components with the highest
indices showed almost no difference between patients and
controls, and it was not surprising that the performance of
classification based on back projection of only these
components was close to random level (Fig. 4(a), com-
ponents 11-21). Thus, AMUSE components with higher

indices can be considered as mainly representing ‘noise’
which makes difficult, in processing of raw EEG, to detect
diagnostically important changes in characteristics of
‘signal’. Note that ‘signal’ and ‘noise’ here are not labels
for signal from brain sources and for artifacts: we refer to
the ‘signal’ only as to diagnostically important (significant)
part (subspace) of raw EEG signal, and to ‘noise’ as to the
diagnostically not important part (non-significant subspace).
AMUSE filtering, i.e. extraction of part of EEG reach with
‘signal’ by using only ‘best’ (here, most useful for
diagnosis) components for back projection, naturally leads
to the improvement of ‘signal-to-noise ratio’ and, as a result,
to the improvement of EEG classification.

A BSS-based approach to improvement of signal-to-
noise ratio in MEG signal by defining and removing noise
subspace was already developed (Kawakatsu, 2003). More
simple and already rather widely used technique is
removing EEG and MEG artifact-related components with
BSS wusing visnal or automatic identification of such
components one by one after decomposition (e.g. Jung
et al., 2000). However, since in many kinds of EEG and
MEG studies the goal is to extract the brain signal in
possibly less distorted form, the existing techniques are
limited to remove only such part of raw signal, which
contain no or almost no components of brain origin but
rather external artifacts and noise. In EEG classification
tasks, such as diagnosis or Brain-Computer Interface (BCI),
preserving the original signal is less important, noise can be
defined not only as artifacts but also as any part of the signal
which do not contribute to the difference between the
classes of EEG which should be differentiated, and larger
subspace with high percentage of such ‘noise’ can be
removed. The existing techniques can only identify, by
some a priori known characteristics, noise components
(Barbati et al., 2004; Jung et al., 2000; Kawakatsu, 2003)
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and some very specific diagnostically important com-
ponents (epileptic spike separation: e.g. Kobayashi et al.,
2002). Xu et al. (2004) recently suggested using a subspace
approach for differentiating between task-related EEG
patterns in BCI. They selected several ICA components
related to P300 according to the a priori knowledge of P300
spatio-temporal pattern and reconstructed a clear P300 peak
using back projection of these components. Like in the case
of epileptic spikes, the components in this case were easily
identifiable.

In a general case, however, significant and non-
significant components are not easily identifiable. The task
becomes especially challenging if EEG components from
different subjects should be compared, because the sets of
components produced by BSS in different subjects usually
differ dramatically. In our approach, we rank components
using some empirical rule, such as their linear predictability,
and select those where difference between the pathological
and normal EEG is most differentiated. This made possible
to achieve substantial improvement in the discrimination
between MCI patients who later progressed to AD and
normal age-matched controls. To our best knowledge, no
study till now investigated the application of BSS/ICA
methods as preprocessing tools with possible application for
AD diagnosis.

Dividing of components into two groups (or subspaces)
as below or above some component’s index (in the case of
ranking) or using a threshold for some index computed for
each component is not the only way. One may try to divide
the sets of components at more than one level and, e.g.
remove not only components with highest indices but also
with the lowest indices. As one may suppose from Fig. 1(b)
(example of individual data), the first two compenents could
represent, to rather high extent, artifacts (roving eye
movements). Fig. 2, however, shows that components #1
and #2 substantially differed between groups. We made an
attempt to exclude 1 or 2 first components from the analysis
and this, in fact, led to slightly lower discrimination results.
However, it is possible that for other data (for example,
including high amplitude low frequency artifacts) or other
processing techniques dividing the set of components on
more than one level could be beneficial.

Not only spectral but also other EEG features, such as
measures of synchronization between channels, can be
investigated for the possibility of improving contrast
between pathological and normal data using the presented
approach. Several studies indicated that synchronization
between different brain areas is sensitive to AD. Such results
were obtained for quite different techniques, including
coherence (e.g. Adler et al, 2003; Jelic et al., 1996;
Locatelli et al.,, 1998; Wada et al., 1998), mutual
information (Jeong et al, 2001) and synchronization
likelihood (a new measure combining estimation of linear
and nonlinear coupling) (Stam et al., 2003). One may
hypothesize that EEG components can be divided into two
parts, one of which represents signal subspace with lower

(or stronger) synchronization among some cortical areas in
AD relative to normal EEG, and another one represents
signal subspace which synchronization characteristics are
not related to the disease. In this case, the general approach
described in this paper also could appear to be useful. One
may probably try to apply it also in the case of using
nonlinear measures (see review in Jeong, 2004) or in
combination with other advanced approaches.

There is obviously room for improvement and extension

.of the proposed method both in ranking and selection of

optimal (significant) components, apparatus and post-
processing to perform classification task. Especially, we
can apply a wide variety of BSS methods, i.e. instead of the
applied and investigated second order statistics spatio-
temporal decorrelation, we can exploit other new types of
BSS algorithms, such as higher order statistic ICA, sparse
component analysis or smooth component analysis with a
suitably ordered and ranked components. Furthermore,
instead of standard LDA we can use more sensitive and
robust methods, such as neural networks or support vector
machine (SVM) classifiers. Classification can be probably
strongly improved by supplementing the set of spectral
power values which we used with much different indices,
such as alpha dipolarity, a new index depending on
prevalence local vs. distributed sources of EEG alpha
activity, which was shown to be very sensitive to AD-
related cortical impairment (Musha et al., 2002). Additional
attractive but still open issue is that using the proposed
approach, we can not only detect but also measure in
consistent way the progression of AD and influence of
medications. The proposed method can also be potentially
useful and effective tool for differential diagnosis of AD
from other types of dementia, and possibly for diagnosis of
other diseases. Other areas of EEG analysis can be also
possible field for the application of our preprocessing
technique. For these purposes, more studies would be
needed to asses of the impact of the proposed enhancement/
filtering procedures on the EEG signal of interest.
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Abstract

Inflammation is profoundly involved in the development of Alzheimer’s disease (AD) and other neurodegenerative diseases. Chemokine,
CXC motif, ligand 1 (CXCL1; or GROI) is an inflammatory cytokine and appears to be implicated in the pathogenesis of AD. It is of
interest and importance to see if the CXCLI gene, mapped on chromosome 4q12-q13, has potential for conferring the predisposition to
AD. Here we report on an association study of the CXCL! gene with sporadic AD patients in a Japanese population; three single nucleotide
polymorphisms (SNPs) in the CXCL/ locus were investigated in 103 AD patients and 130 healthy individuals. The results indicate that neither
genotype frequencies nor allele frequencies of the examined SNPs attained statistical significance even after being stratified by the presence
or absence of the Apolipoprotein E 4 allele. Therefore, the data presented here suggests that the CXCL! gene could not be associated with

the susceptibility to AD in a Japanese population.
© 2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: Alzheimer’ disease; Chemokine; CXC motif, ligand 1 (CXCL1); Single nucleotide polymorphisms (SNPs); Association study

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder of the elderly, and characterized by accumulation
of neurofibrillary tangles and amyloid deposition resulting
in the formation of senile plaques in the brain. Sporadic AD
other than familial AD appears to be a multifactorial disorder
in which both genetic and environmental factors are involved
[2]. A genetic factor strongly associated with sporadic AD has
been found in the Apolipoprotein E (APOE) gene: the APOE
¢4 allele increases the predisposition to AD [10,12,13]. It
is likely that other genetic factors besides APOE ¢4 could
participate in developing AD, and it is of importance and
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necessary to determine such genetic factors conferring the
predisposition to AD.

Chemokines are inflammatory cytokines which have mul-
tiple functions in the immune system, and also have effects
on cells of the central nervous system [1,3,4,7-9,15-17]. It
appears that mflammation is implicated in the pathogene-
ses of various neurodegenerative disorders including AD
[9,14-17]. Previous study suggested that chemokine, CXC
motif, ligand 1 (CXCL1; or GROI) could work as a potent
trigger for the ERK1/2 and PI-3 kinase pathway and induce
hypermethylation of the tau protein in mouse primary corti-
cal neurons, and also that the immunoreactivity for CXCLI
increased in a subpopulation of neurons in some AD brains
[14]. It was further suggested that a chemokine receptor for
CXCL1,CXCR2, was expressed on neurons and was strongly
upregulatedin a subpopulation of senile plaques in AD [9, 1 51
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Table 1
Genotype and allele frequencies of the SNPs in the CXCL/ locus
SNP name (position™) Patients (n=103) Controls (n=130) P OR (95% CI)
rs3117602 Genotype frequency
(75,199,137) c/ic 90 (87.4%) 107 (82.3%) 0.43 1.0
C/A 13 (12.6%) 22 (16.9%) 0.7 (0.3-1.5)
A/A 0 (0%) 1(0.8%) -
Allele frequency
Callele 93.7% 90.7% 0.25
A allele 6.3% 9.3%
rs4074 Genotype frequency
(75,202,395) G/G 26 (25.2%) 31(23.8%) 0.95 1.0
G/A 55 (53.4%) 72 (55.4%) 0.9 (0.45-1.7)
A/A 22 (21.4%) 27 (20.8%) 1.0 (0.4-2.0)
Allele frequency
G allele 51.9% 51.6% 0.93
A allele 48.1% 48.4%
151429638 Genotype frequency
(75,204,181) c/C 46 (44.7%) 59 (45.4%) 0.92 1.0
C/A 51 (49.5%) 65 (50.0%) 1.0 (0.6~1.7)
A/A 6 (5.8%) 6 (4.6%) 1.3 (0.4-4.2)
Allele frequency
C allele 69.4% 70.2% 0.82
A allele 30.6% 29.8%

? The nucleotide positions are based on the numbering used in the NCBI public location.

These observations lead to the possibility that the CXCLI
gene could confer the predisposition to sporadic AD, i.c., it
may be a genetic risk factor for AD, and stimulate our inter-
est in studying if there is any association between the CXCL ]
gene and AD.

In this study, we investigated three single nucleotide poly-
morphisms (SNPs) around the CXCL! locus mapped on
4q12-ql3 in sporadic AD patients and healthy individuals.
The subjects were all Japanese: 103 patients with AD (47
men and 56 women; mean age of onset, 70.7 years old)
were diagnosed by meeting the National Institute of Neu-
rological and communicative Disorders and Stroke and The
Alzheimer’s Disease and Related Dementias Association cri-
teria (NINCDS-ADRDA) [11], and 130 unrelated healthy in-
dividuals (57 men and 73 women; mean age, 70.9 years old)
were examined as controls. Peripheral blood samples were
obtained and subjected to isolation of genomic DNA with
standard protocols. For a high-throughput analysis, allelic
discrimination assay with commercially available Assays-
on-Demand SNP Genotyping products (Applied Biosystems)
was carried out in 25 pl of 1 x TagMan Universal PCR Mas-
ter Mix (Applied Biosystems) containing ~ 10 ng of genomic
DNA and 1.25 pl of an Assays-on-Demand SNP Genotyping
product (Applied Biosystems) by using the Applied Biosys-
tems 7300 Real Time PCR System (Applied Biosystems)
according the manufacture’s instructions. The Assays-on-
Demand SNP Genotyping products used (the Assay ID num-
bers; public ID numbers) were as follows: C_9761059_10;
rs3117602 (intergenic SNP), C_11820472_1; rs4074 (in-
tron3 SNP), C_2042711_10; rs1429638 (intergenic SNP).

The SNPs cover the CXCLI gene and the physical distances
between rs3117602 and rs4074 SNPs and between rs4074
and rs1429638 SNPs are approximately 3.3 and 1.8 kb long,
respectively. After SNP typing, statistical analyses of the data
were carried out using SNPAlyse (DYNACOM, Yokohama,
Japan). The presence of Hardy-Weinberg equilibrium was ex-
amined by x2-test for goodness of fit. Allele distributions be-
tween the patients and controls were examined by y2-test for
independence. As for haplotype analysis, haplotype frequen-
cies and linkage disequilibrium parameters were estimated
on the basis of an expectation-maximization algorithm [5].
Case—control haplotype analyses were carried out by using
the permutation method to obtain the empirical significance
[6]. Each haplotype was tested for association by grouping
all other haplotypes together and applying x2-test with 1 d.f,
P values were estimated on the basis of 10,000 replications.

Table 1 shows the results of the SNP typing in the AD
patients and healthy controls. The SNPs examined in this
study revealed no significant differences in their genotype
frequencies, allele frequencies and allele carrier frequencies
between the patients and healthy controls. In addition, none
of the polymorphisms in each group deviated from expecta-
tions based on Hardy-Weinberg equilibrium at a significance
level of 0.01. Accordingly, although there was a limitation in
the number of the subjects used in this study, i.e., the num-
bers of the patients and controls used were small; the typing
data suggested that the CXCLI gene could not be a major
risk factor conferring the susceptibility to AD at least. We
further examined allelic associations (haplotypes) among the
1s3117602, rs4074 and rs1429638 SNPs. As a result, strong
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Table 2

Estimated haplotypes and their frequencies

Haplotypes® Patients (n=103), Controls (n=130), P
HF (%) HF (%)

C-G-C 51.9 50.5 0.75

C-A-A 29.4 28.9 0.66

C-A-C 12.3 11.4 0.75

A-A-C 5.2 7.5 0.32

HF: haplotype frequency.

* Estimated haplotypes with the rs3117602, rs4074 and rs1429638 SNPs
are indicated and the haplotypes with 5% or more of their frequencies are
shown.

allelic associations (haplotypes) among the SNPs were de-
tectable in either the healthy controls or AD patients (Table 2);
but, the estimated haplotype frequencies resulted in no signif-
icant difference between the patients and controls. We must
add that further analyses stratified by either the presence or
absence of the APOE e4 allele resulted in no statistical signif-
icance, although the difference in the frequency of the APOE
&4 allele alone between the patients and controls attained sta-
tistical significance (P = 0.0079). Taking all the data together,
it is suggested that the CXCLI gene is not associated with the
susceptibility to sporadic AD. Since inflammation appears to
be implicated in the development of AD, it is conceivable
that the CXCL/ gene could contribute to only inflammatory
response in the course of the development of AD, but not
participate in the pathogenesis of AD as a genetic factor con-
ferring the predisposition to AD.
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