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Summary

Objective: Survivin has been identified as a protein expressed in cancer cells and a member of the inhibitor-of-
apoptosis protein family. Recent studies suggest that the expression of survivin increases during the G2/M phase
of the cell cycle, and may be used in clinical prognosis. We examined whether survivin expression in human
gliomas would be a correlative of prognosis.

Methods: We prepared polyclonal anti-survivin serum to establish a survivin index for stained sections, using
an immunohistochemical procedure, according to the method used for scoring MIB-1 index, and then stained 29
paraffin-embedded sections from surgical specimens of 29 patients who were classified into three grades of World
Health Organization with the mean age of low grade astocytoma (grade II1) being 34.7; anaplastic astrocytoma
(grade I11), 48.8; and glioblastoma multiform (grade IV), 58.4.

Results: On staining with the anti-survivin antiserum, all specimens contained positive cells, but the survivin
index was heterogeneous among grades. The mean percentage of immunoreactive cells in each specimen was
70.0% (SD 18.2%) in grade 11, 81.3% (16.5%) in grade III, and 85.0% (13.6%) in grade IV. Then we compared
the survivin index to the MIB-1 index and found that in low-grade gliomas (grade II and III), the difference in
survival times between the high and low survivin indexes was significant (£ = 0.007), whereas that between the
high and low MIB-1 indexes was not significant (P == 0.092).

Conclusion: Survivin is more sensitive marker than MIB-1 for the evaluation of low-grade gliomas in that it
helps to predict patient survival. Much larger glioma patient series are needed to validate the findings of our

limited study.

Introduction

Glioma, the most common neoplasm in the human
brain, includes tumors derived from astrocytes, oligo-
dendrocytes, ependyma, and choroid plexus epithelium.
Gliomas are histologically divided into four grades
according to World Health Organization (WHO)
guidelines. High grade glioma, GBM (glioblastoma
multiform; grade IV), has the worst prognosis with a
median survival time of about 12 months, even after
surgical resection, radiation therapy, and chemotherapy.
Of lower grade gliomas, patients with anaplastic astro-
cytoma (grade III) have an average survival of 3 years,
whereas patients with low grade astrocytoma (grade II)
have a better prognosis, with at least 5 years median
survival [1]. However, the outcome for patients with
anaplastic and low grade astrocytoma is highly variable
[2,3]. A significant number of patients rapidly develop
malignant glioma [4,5]. It has been reported that the
proportion of tumor cells with abnormal p53 immuno-
reactivity increases in astrocytomas as they undergo
malignant progression [6,7]. Thus, an accurate diagnosis
is important from both clinical and experimental per-
spectives.

To date a number of methods for predicting the
prognostic subgroups of glioma patients have been de-
scribed [2,3]. One of the methods, the immunohisto-
chemical determination of proliferative activity with the
monoclonal antibody MIB-1 against Ki-67, which is a
nuclear antigen, has been widely demonstrated to be
clinically useful in distinguishing the biologic behavior
of many tumors [5,8]. However, conflicting results from
the utilization of Ki-67 as a prognostic marker for gli-
oma especially for low grade glioma, have been reported
[9-11].

Survivin is a member of the inhibitor-of-apoptosis
protein (IAP) family and has been implicated in both the
inhibition of apoptosis and regulation of mitosis [12,13].
IAPs are characterized by the presence of one to three
baculovirus inhibitor apoptotic protein repeat domains,
which often function as an inhibitor of the cell death
process. The survivin gene is of the telomeric position on
chromosome 17, to band 25 and its expression is
determined in the developing embryo and in rapidly
dividing cells including many human cancers [14,15].
Previous studies demonstrated that survivin is expressed
at G2/M in a cell-cycle dependent manner and associ-
ated with kinetochores of metaphase chromosomes and
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the central spindle midzone at anaphase, suggesting that
survivin participates as a chromosomal passenger pro-
tein in cleavage furrow formation [13,16]. In vitro, it
bound polymerized microtubles and a putative tubulin-
binding domain was identified by mutational analysis.
Forced expression of survivin counteracted cell death
induced by various apoptotic stimuli, whereas interfer-
ence with the expression or function of survivin by a
dominant negative form or antisense of survivin caused
spontaneous apoptosis and multiple cell division defects,
suggesting that survivin acts both as a mitotic regulator
and as a cytoprotective factor at cell division [16,17].

Overexpression of survivin has been observed in most
human cancers including glioma by analysis of its
mRNA and/or protein, whereas a low level of survivin
expression is detected in normal tissues [18,19]. Re-
cently, Chakravarti et al. has reported that the quanti-
tative determination of survivin by Western blot analysis
is useful for prognosis in human glioma [20]. However,
in their study, survivin was not detected in 36% of gli-
omas. Thus, the aim of this study was to evaluate the
histological determination of survivin with a sensitive
anti-survivin anti-serum in a consecutive series of low-
and high-grade gliomas to assess the prognostic signifi-
cance of survivin expression. We here demonstrated that
all gliomas expressed survivin and that the percentage of
immunoreactive celis (survivin index) had a strong
reverse association with survival time of patients. In
particular, the survivin index correlated with patient
survival in low grade gliomas.

Materials and methods
Cell culture

Human fibroblast, SK-N-SH (human neuroblastoma),
HeLa (human uterin cervix epitheloid carcinoma),
SNB-19 (human glioblastoma), FDCP-1 (mouse
bonemarrow), and CHO K-1 (Chinese hamster ovary)
were cultured in Dulbecco’s modified Eagle medium/
Ham’s F12 (Life Technologies, Rockville, MD, USA)
containing 10% fetal bovine serum with penicillin-
streptomycin. Jurkat (human T cell leukemia) cells
were cultured in RPMI1640 (Life Technologies) con-
taining 10% fetal bovine serum with penicillin-strep-
tomycin. Free from microbiological contamination was
confirmed with PCR procedure (Takara, Tokyo,
Japan).

Antiserum preparation

Survivin ¢cDNA was obtained from SK-N-SH by the
reverse transcription-PCR method with a pair of prim-
ers, 5'-NNGAATTCAATCCATGGCA GCCAGCTG
and 5-NNGAATTCAATGGGTG CCCCGACGTTG
(N means any of the four nucleotides). On digestion
with EcoRI, the resultant fragment was inserted into
pProEx3 GST (Life Technologies) and sequenced to
confirm accurate the full-length survivin cDNA. Over-
expression and purification of a fusion protein of

survivin with glutathione S-transferase (GST) in Esc-
herichia coli were performed by a method described
previously [21]. Rabbits were immunized with the puri-
fied protein with Freund’s adjuvant of a mixture of 1:1
(Life Technologies).

Western blot analysis

Total cell lysates were separated on a 12.5% SDS-
polyacrylamide gel electrophoresis and transferred onto
poly-vinyl difluoride membrane (NEN, Boston, MA,
USA). The membrane was blocked with 10% fetal
bovine serum in Tris buffered saline (TBS) for | h, and
then incubated with diluted anti-survivin antiserum in
TBS with 0.2% Tween-20 (TBS-T) at 4 °C overnight.
After a wash with TBS-T, the membrane was incubated
with alkaline phosphatase-conjugated anti-rabbit IgG
(Cappel, Aurora, OH, USA) and specific bands were
visualized with AttoPhos substrate (Roche, Mannheim,
Germany).

Immunocytochemistry

HeLa and human fibroblast cells were cultured on 4-
well plastic dishes (SonicSeal slide, Nalge Nunc,
Rochester, NY, USA). The cells were rinsed with
phosphate buffered saline (PBS) and fixed in 4%
paraformaldehyde in PBS. After a wash with PBS, the
cells were incubated 30 min in 0.2% Triton X-100,
30 min in a blocking buffer (3% bovine serum albumin
and 3% goat serum in PBS), and overnight at 4 °Cin a
blocking buffer containing anti-survivin antiserum
(1:250). After another wash with PBS, the cells were
incubated in a blocking buffer containing BODIPY FL
goat anti-mouse IgG (1:500, Molecular Probes, Eu-
gene, OR, USA) for | h and imaged with a confocal
scanning microscope, the FLUOROVIEW FV/300
(Olympus, Tokyo, Japan).

Tissue processing and clinical data

There were 37 gliomas from 1994 to 2001 and 29 of these
were suitable for this analysis. We prepared glioma
samples from 29 patients [17 males and 12 females, age
from 6 to 80 (mean 45.4) at the time of diagnosis;
Table 1] who were operated with craniotomy, excepted
biopsy, with informed consent. The samples were
selectively collected from center zone of the tumor,
quickly frozen, kept at —80 °C until used, fixed with
formalin, and embedded in paraffin. Sections (4 um)
were used for immunohistochemistry and the classifi-
cation of grades according to WHO guidelines diag-
nosed by two or more pathologists and neurosurgeons.
Clinical data were obtained from the hospital records
including age, sex, and survival time from the initial
operation. Follow-up was available for all patients.

Immunohistochemistry

For immunostaining with anti-survivin antiserum, the 4-
um sections were stained using the Ventana NexES



Table 1. Characteristics in glioma patients®

No. Age Sex WHO MIB-1 Survivin Resection Location Depth Survival Out-come
grade  index (%) index (%) days®
1 30 male 2 5 85 subtotal Temporal sup? 2618 alive
2 40 female 2 5 75 total Frontal sup 2280 alive
3 10 male 2 n.d. 65 total Cerebellum sup 2268 alive
4 26 female 2 5 65 total Frontal deep 2025 alive
5 27 female 2 25 80 subtotal Pons deep 246 dead
6 45 male 2 0 45 total Frontal deep 1550 alive
7 35 male 2 10 95 total Frontal deep 777 dead
8 29 male 2 n.d. 40 total Pariental sup 212 dead
9 50 male 2 5 80 subtotal Frontal deep 62 dead
10 46 male 3 5 65 subtotal Frontal deep 1505 alive
11 12 female 3 15 90 total Frontal deep 825 dead
12 6 female 3 35 90 subtotal Pons deep 150 dead
13 64 male 3 n.d. 85 subtotal Frontal sup 636 dead
14 64 male 3 0 85 subtotal Frontal deep 438 dead
15 21 male 3 5 35 total Pons deep 1173 dead
16 58 male 3 n.d. 95 subtotal Frontal deep 220 dead
17 23 male 3 5 85 total Frontal deep 425 alive
18 69 male 3 20 95 subtotal Temporal deep 336 dead
19 74 female 3 S 80 subtotal Pariental sup 102 alive
20 54 female 3 5 85 subtotal Pariental deep 180 dead
21 46 male 3 5 85 total Frontal deep 415 dead
22 54 male 4 n.d. 55 subtotal Frontal deep 374 dead
23 31 male 4 n.d. 80 subtotal Frontal deep 118 dead
24 78 male 4 n.d. 95 subtotal Frontal sup 47 dead
25 54 female 4 20 100 total Occipital sup 247 dead
26 80 female 4 55 90 subtotal Frontal deep 48 dead
27 79 female 4 55 90 subtotal Frontal deep 422 dead
28 11 female 4 n.d. 85 total Cerebellum sup 115 dead
29 80 female 4 55 85 subtotal Frontal sup 127 dead

2All samples were resected with craniotomy, excepted biopsy samples. "Survivial days are from the first operation. “Not determined. “Superficial.

Staining System (Ventana, Tucson, AZ, USA) and all
products without the anti-survivin antiserum needed for
subsequent steps were supplied by the manufacture
(Ventana). Sections were deparaffinized and heated with
CC1 solution (denature buffer; Ventana) for 1 h. After
32-min incubation at 37 °C with the anti-survivin
antiserum (1:250), sections were further incubated
for another 10 min at 37 °C with a secondary biotiny-
lated antibody and then with avidin-peroxidase for
another 10 min; 3', 3-diaminobenzidine was used as the
chromogen. Slides were counterstained in Mayer
hematoxylin, dehydrated, and mounted. Immuno-
staining with MIB-1 (1:50 dilution, Immunotech,
Westbrook, ME, USA) for detection of Ki-67 antigen
was performed as described previously [4,22]. Stained
sections were observed under the microscope. Survivin
and MIB-1 indexes were determined as the percentage of
immunostained cells per 200 cells x S fields per section.

Statistical analysis

Statistical analyses were performed using Stat View for
Macintosh Version 5.0 (SAS Institute Inc., Cary, NC,
USA). The survivin index, the MIB-1 index, and sur-
vival times were subjected to linear regression analysis.
Survival was plotted, and survival time was estimated
by the Kaplan-Meier method. The survival times and
the strength of associations between categories were

compared with the log-rank test (Mantel-Cox) for uni-
variate analysis. For multivariate analysis, tumor loca-
tion (temporal, frontal, pariental, occipital, pons or
cerebellum), depth (deep or superficial), age (young < 20
year-old, 20< middle<65, or 65 <old), survivin
index (higher 17 samples, or lower 12 samples), and
MIB-1 index (higher 10 samples or lower 11 samples)
were compared with survival times. A P < 0.05 was
considered significant.

Results
Antisera specific to the survivin protein

To examine the expression of survivin in patients
immunohistochemically, rabbit antisera were raised
against GST-survivin fusion protein. The diluted sera
(1:10000) specifically stained only major 16.5-kDa and
minor [4-kDa bands in Western blots of 3 ug total cell
lysate from cultured GBM, SNB-19 (Figure 1a, Lane 1—
2). A 16.5-kDa specific band of survivin was also
detected in Western blots of 1 pg lysate from other
cultured cells (Figure la, Lane 3-5). Immunocyto-
chemical staining of HeLa cells with the obtained anti-
serum revealed that survivin immunoreactivity was
associated with the centrosome, mitotic spindle and
midbody (Figure 1b), as previously described [13,16,17].
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Figure 1. Characterization of anti-survivin antiserum. (a) Western blotting analysis for survivin in each cell lysate from SNB-19 (glioma, Lane 1
and 2), FDCP-1 (mouse bone marrow, Lane 3), Jurkat (Lane 4), and CHO K-1 (Chinese hamster ovary, Lane 5). Three pg per lane (Lane 1 and 2)
or | pg per lane (Lane 3-5) of lysate was subjected and stained with 1:5000 diluted sera (Lane 1, 3-5) or with 1:10000 diluted sera (Lane 2). (b)
HelLa cells in mitosis were immunohistochemically stained with 1:1000 diluted sera. Original magnification, x 600. (c) Human primary fibroblasts
were immunohistochemically stained with 1:1000 diluted sera. Left panel; stained with anti-survivin serum, middle; with propidium iodine, and

right panel; merge. Original magnification, X600.

Furthermore, survivin localized in the midbody of pri-
mary cultured fibroblast was also detected as shown in
Figure Ic, suggesting that the antiserum preparation
immunodetects survivin in not only malignant tumors
but also normal replicating cells, and is strong enough in
immuno-reactivity and purity for further experiments.

Distribution patterns of survivin in glioma

Automated immunohistochemistry was performed on
paraffin-embedded sections prepared from surgical
specimens with anti-survivin antiserum (1:250) using the
Ventana THC staining system. Stained sections from
glioma patients in various histological grades are shown
in Figure 2A, C, and E. No positive immunoreactivity
was detected without antiserum, and survivin expression
was undetectable around gliosis (Figure 2G) and in
normal tissues (Figure 2H). All specimens (n = 29) from
glioma patients contained positive cells, but the per-
centage of positive cells (designated as the survivin index)
was heterogeneous among grades, which were deter-
mined with histopathological diagnosis (Figure 3a). The
mean percentage of immunoreactive cells in each speci-
men was 70.0% in low grade astrocytoma (grade II, 9
specimens), 81.3% in anaplastic astrocytoma (grade III,
12 specimens), and 85.0% in GBM (grade IV, 8 speci-
mens). Thus, the immunoreactivity of survivin is a highly
sensitive marker for glioma.

Progonostic value of survivin index for glioma

To evaluate the prognostic value of the survivin index,
the correlation of survival time of patients with the
survivin index for all grades of glioma was investigated
using a scatter plot diagram (Figure 4a). An increasing
percentage of survivin-positive cells was reversely asso-
ciated with the survival time (P = 0.049). The patients
were further divided in two groups, high (index > 80)
and low (80 > index), and then the survival curve of the
groups was calculated by the Kaplan-Meier method
(Figure Sa). Survival times were significantly shortened
(P = 0.003) for patients whose survivin index was high

(mean survival time = 349 days) compared with those
whose index was low (mean survival time = 953 days).

Lower correlation between survivin and MIB-1 indexes in
low-grade gliomas

Ki-67 antigen, which is detected by MIB-1 antibody, is
a nuclear protein complex and the percentage of MIB-
1- positive cells (MIB-1 index) is widely used for the
diagnosis of many malignant tumors including glioma
[5,8,23]. Then, we investigated the correlation between
survivin and MIB-1 indexes in consecutive sections
(Figure 2). A linear positive correlation between them
was not significant, but weak correlation was noted
essentially (Figure 6, P = 0.065), whereas an increasing
percentage of MIB-1-positive cells was still associated
with worse survival (Figure 4b, P = 0.037). However,
as shown in Figure 3b, MIB-1 indexes in anaplastic
astrocytoma were shown to be as low as those in low
grade astrocytoma, whereas survivin indexes in ana-
plastic astrocytoma were similar to those in GBM,
indicating that the survivin index would be a more
sensitive marker for low-grade gliomas than the MIB-1
index. Then, patients were divided into two groups
based on the MIB-1 index, high (index > 10) and low
(10 > index), and then the survival curve of each
group was obtained by the Kaplan-Meier method. In
total, survival times were significantly shortened
(Figure 5b, P = 0.033) for patients whose MIB-1 index
was high (mean survival time = 398 days) compared
with those whose index was low (mean survival
time = 821 days). However, in low-grade gliomas, the
difference in survival times between the high and low
MIB-1 indexes was not significant (Figure 5d,
P =0.092). At that time, in low-grade gliomas, the
difference in survival times between the high and low
survivin indexes was still significant (Figure Sc,
P =10.007).

Finally, we compared the difference in survival times
among age of patients, tumor location, depth, the sur-
vivin index, and the MIB-1 index by a multivariate
analysis. The suvivin index was significantly associated
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Figure 2. Immunostaining of gliomas. Immunohistochemical staining for surgical sections staining with 1:250 diluted anti-survivin serum (A, C,
E, G and H), using the Ventana NexES Staining System (Ventana, Tucson, AZ). Immunohistochemical staining for surgical sections with 1:50
diluted anti-Ki-67 serum (B, D and F). A and B; low grade astrocytoma. C and D; anaplastic astrocytoma. E, F and G; GBM. G; local invasion
of GBM and around gliosis. H; normal brain tissue. Original magnification, X200 and x400 (insets). Bars are 100 pm.

with the survival times (P = 0.036), while other char-
acteristics were not (location: P =0.922, depth:
P =0.402, age: P = 0.866 and MIB-1 index: P = 0.404).
Taken together, these findings strongly suggest that the
survivin index is a useful tool for the prognosis of
histologically low-grade gliomas.

Discussion

In this study, we demonstrated that gliomas highly
expressed survivin  and that the percentage of

immunoreactive cells (survivin index) had a strong in-
verse association with the survival of patients. In par-
ticular, the survivin index correlated with the survival
of low grade gliomas, suggesting that the index would
be useful for a clinical prognosis.

Our antiserum raised against the GST-survivin fusion
protein was highly specific and sensitive to the survivin
protein (Figure 1). Western blotting of cell lysates re-
vealed that both the 16.5-kDa full- length and 14-kDa
alternatively spliced products were expressed in cultured
GBM SNB-19 (Figure la, Lane 1-2). We used a survi-
vin-specific RT-PCR and identified that a 14-kDa band
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Figure 3. Correlation of histological grade with indexes. Correlations
of survivin (a) and MIB-1 (b) indexes vs. histological grade are dem-
onstrated. The difference between grade II and grade III is more
obvious in the survivin index than MIB-1 index. Data are presented as
the median (solid line), 25th and 75th percentiles (vertical boxes) and
10th and 90th percentiles (error bars).

was survivin-AEx3 and 10-40 % of survivin mRNA was
survivin-AEx3 (unpublished results). However, func-
tions of the regulatory balance between them are un-
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Figure 4. Correlation of survivin and MIB-1 indexes with survival
times of patients. Survival time is the period until patients died from
the first operation, the index is the percentage of immunoreactive cells
in tumor cells in each surgical specimen. Survivin (a) and MIB-1 in-
dexes (b) vs. survival time in each patient (each dot) are demonstrated.

known [21,24]. Immunocytochemistry with anti-survivin
antiserum clearly demonstrated that both the immortal
cell line and primary cultured fibroblasts expressed
survivin in a cell-cycle dependent fashion (Figure 1b and
¢). However, immunological signals in highly prolifera-
tive cells, such as HeLa cells, were stronger than those in
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Figure 5. Kaplan-Meier plots in survivin and MIB-1 indexes. (a and ¢) Comulative survival rate for survivin index. Patients were separated into
two groups, high (index > 80) and low (80 > index). a; patients with all grade gliomas. c; all patients except those with GBM (grade IV). (b and
d) Comulative survival rate for the MIB-1 index. Patients were separated into two groups, high (index 2 10) and low (10 > index). b; patients
with all grade glioma. d; all patients except those with GBM (grade IV). Note that the survivin index is significant for survival times in glioma

patients except those with GBM, but the MIB-1 index is not.



o 0 ¢]

0 O

000
7

“"30 40 50 60 70 80 90 100
Survivin index
Figure 6. Correlation between the survivin index and MIB-1 index.

primary cells. Then, the anti-survivin antiserum was
confirmed for sensitivity and purity in immunohisto-
chemical studies.

Large numbers of cells in gliomas of all grades were
survivin- positive by the immunohistochemical staining
(Figure 2). Positive cells having weak survivin immu-
noreactivity in cytosol, but not in the nucleus, were
observed. Recent findings of Fortugno et al. have indi-
cated that endogenous survivin exists in strikingly dif-
ferent subcellular pools, comprising a predominant
cytosolic fraction and a smaller nuclear pool [13].
Therefore, an immunohistochemically detectable
amount of survivin was accumulated not only in the
nucleus, but also in cytosol of gliomas. In addition, the
immunoreactivity of survivin is a highly sensitive marker
for glioma, providing the narrow window of the survivin
index compared with the MIB-1. We found that the
proportion of gliomas with a high survivin index was
greatest in GBM (85.0% (SD 13.6%)) and lowest in
low-grade astrocytomas (70.0% (18.2%)). The survivin
index in anaplastic astrocytoma (81.3% (16.5%)) was
not significantly different from that in GBM. On the
other hand, the MIB-1 index in anaplastic astrocytoma
(11.0%) was not significantly different from that in low-
grade astrocytomas (7.9%), indicating that the survivin
index is a more sensitive marker than the MIB-1 index
for all grades of gliomas.

It was reported that the survivin expression in neuro-
blastoma cell lines was strongly down-regulated during
the induction of apoptosis and the expression of exog-
enous survivin prevented cell death. Survivin is thought
to inhibit apoptosis by directly inhibiting terminal
effectors caspase-3 and -7, and to maintain the normal
function of the mitotic apparatus [12,15]. Thus, in gli-
oma, survivin may enhance cell survival and prolifera-
tion, and then, its expression is associated reversely with
prognostic factors.

Significant numbers of patients with anaplastic
astrocytoma and low grade astrocytoma rapidly devel-
oped more malignant tumors. Since standard histologi-
cal techniques do not precisely predict which tumors will
undergo rapid malignant progression, it is difficult to
give accurate prognostic information to patients. As
shown in Figure 4a, the survivin index was associated
with a significant decrease in the survival of patients
nevertheless the high SD values. When gliomas were
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analyzed separately from GBM, the increased survivin
index remained an important prognostic variable
(Figure 5¢). These results suggest that the survivin index
is more significant than the histological grading to the
prognosis for gliomas. Furthermore, the MIB-1 index
has been reported to be clinically useful in the prognosis.
However, the MIB-1 index did not predict prognostic
reliability in gliomas separated from GBM (Figure 5d).
Indeed, in several studies, the MIB-1 index did not
correlate with survival in the low grade gliomas
[9,10,23]. Finally, the survival index was confirmed to be
significantly associated with the survival times by the
multivariate analysis. Thus, this study proposed a pos-
sibility that the survivin index, which is correlated with
the survival of low grade gliomas, will be a powerful tool
for a clinical prognosis. It will be required to analyze
more samples to reveal its usefulness.
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Summary

To investigate the regulatory system in mitochondrial
biogenesis involving crosstalk between the mitochondria
and nucleus, we found a factor named MIDAS
(mitochondrial DNA absence sensitive factor) whose
expression was enhanced by the absence of mitochondrial
DNA (mtDNA). In patients with mitochondrial diseases,
MIDAS expression was increased only in dysfunctional
muscle fibers. A majority of MIDAS localized to
mitochondria with a small fraction in the Golgi apparatus
in HeLa cells. To investigate the function of MIDAS, we
stably transfected HeLa cells with an expression vector
carrying MIDAS cDNA or siRNA. Cells expressing the
MIDAS protein and the siRNA constitutively showed an
increase and decrease in the total mass of mitochondria,

respectively, accompanying the regulation of a
mitochondria-specific ~ phospholipid, cardiolipin. In
contrast, amounts of the mitochondrial DNA, RNA and
proteins did not depend upon MIDAS. Thus, MIDAS is
involved in the regulation of mitochondrial lipids, leading
to increases of total mitochondrial mass in response to
mitochondrial dysfunction.

Supplementary material available online at
http://jcs.biologists.org/cgi/content/full/118/22/5357/DC1

Key words: Mitochondria, Mitochondrial mass, Cardiolipin,
Mitochondrial DNA, Mitochondrial disease, Golgi apparatus

Introduction

The mitochondrion is the center of energy metabolism in
eukaryotes and has recently been recognized as a
multifunctional organelle (Ohta, 2003). It is involved in the
regulation of apoptosis as a reservoir of signals, regulators and
executioners (Kroemer and Reed, 2000; Green and Kroemer,
2004). In addition, it functions as a source of reactive oxygen
species, which are believed to cause many lifestyle-related
diseases, neurodegenerative diseases, cancer and aging
(Kowaltowski and Vercesi, 1999; Cortopassi and Wong, 1999;
Melov, 2000). Thus, mitochondria are essential in many
aspects of medicine as well as cell biology.

Depending on cell type, energy demands and physiological
conditions, mitochondria vary in number, mass and
morphology (Attardi and Schatz, 1988; Yaffe, 1999; Collins
et al., 2002; Nisoli et al., 2003). The proliferation of cells
usually accompanies an increase in mitochondria. However,
an increase in number of mitochondria is not distinctly
coordinated with the cell cycle. For example, muscle
mitochondria increase in response to exercise, independently
of cell division (Brunk, 1981; Moyes et al., 1997). Exposure
to a low-temperature environment or cultivation in glucose-
deprived medium induces a marked increase in mitochondrial

mass (Klaus et al., 1991; Weber et al., 2002). In addition,
mitochondria increase in response to external stimuli with a
wide range of substances including benzodiazepine, phorbol
esters, calcium fluxes (Bereiter-Hahn and Voth, 1994;
Vorobjev and Zorov, 1983; Muller-Hocker et al., 1986;
Kawahara et al., 1991), thyroid hormones (Goglia et al.,
1999) and nitric oxide (NO) (Nisoli et al., 2004).
Mitochondrial numbers also increase in response to internal
stimuli, such as the mitochondrial dysfunction caused by
pathogenic mtDNA mutations (Schon, 2000; Wallace, 1999;
Moraes et al., 1992). An increase in mitochondrial mass was
observed in mitochondrial transcription factor A (Tfam)
knockout mice, which have depleted mtDNA (Hansson et al.,
2004).

As nuclear genes encode most mitochondrial proteins,
including the enzymes and cofactors required for the
transcription and replication of mtDNA, mitochondrial
biogenesis depends on a distinct crosstalk between two
physically separated genetic systems (Garesse and Vallejo,
2001). Recently, the pathway that links external physiological
stimuli to the regulation of mitochondrial biogenesis and
function has been studied. Several transcription/replication
factors directly regulate mitochondrial genes and the
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coordination of these factors into a programmed response to
the environment was reported (Scarpulla, 2002).

However, the nature of mitochondrial biogenesis in response
to internal stimuli is poorly understood. Mitochondrial stress
results in enhanced expression of sarcoplasmic reticular
ryanodine receptor-1 and some Ca’*-responsive transcription
factors (Biswas et al., 1999). Several tumor-specific markers
are overexpressed in cells subjected to mitochondrial genetic
as well as metabolic stress (Amuthan et al., 2001). Moreover,
we have reported that expression of the apoptosis-mediator Fas
is enhanced by dysfunctional mitochondria (Asoh et al., 1996).
However, no one has reported on the mammalian factors, in
response to a signal from mitochondria to the nucleus, which
are involved in the stimulation of mitochondrial growth.
Notably, the molecular mechanism regulating the biogenesis of
mitochondrial lipids is poorly understood.

In this study, we identified factors whose expression was
enhanced by depletion of mtDNA. One of them was found to
increase total mitochondrial mass without a pathogenic
swelling, when overexpressed. Thus, the factor is involved in
the accumulation of mitochondria in response to mitochondrial
dysfunction.

Materials and Methods
Cells and culture

EB8 and Ft2-11 were described previously (Hayashi et al., 1991;
Hayashi et al., 1994). EB8 is a clone, derived from HeLa cells,
completely lacking mtDNA, whereas Ft2-11 was constructed by
transferring wild-type mtDNA into EB8 so that Ft-2-11 has the same
nucleus as EB8. Stable transfectants expressing MIDAS constitutively
were constructed from HeLa cells by transfection with MIDAS cDNA
under the control of the CMV promoter or its empty vector (pCMV-
SPORT; Life Technologies).

Stable transfectants expressing siRNA of MIDAS were constructed
from Hela cells by transfection with the pSilencer vector (Ambion)
with inserts targeting MIDAS (5'-AAGCTTTTCCAAAAAAGTGG-
AATGTCTGAAGGCCATCTCTTGAATGGCCTTCAGACATTCC-
ACGGGATCC-3") or a random sequence.

HeLa cells and stable transfectants were cultured in DMEM/F-12
(1:1) (Gibco-BRL) supplemented with 10% FBS and 1%
penicillin/streptomycin (Gibco-BRL).

Construction of Myc-tagged MIDAS

To insert the Myc tag at the N-terminus of MIDAS, an EcoRI site was
generated at the 5" end of the MIDAS coding sequence by PCR and
was cloned into the pCMV-SPORT vector. An oligonucleotide
encoding MEQKLISEEDLNS (Myc tag sequence underlined) was
inserted at the newly generated EcoRI site of MIDAS. To construct
the Myc tag at the C-terminus of MIDAS, a BamHI site was generated
at the 3’ end of the coding sequence and an oligonucleotide encoding
DPEQKLISEEDL was inserted.

Differential display

Poly(A)* RNA was purified from Ft2-11 and EBS8 and reverse
transcribed. Resultant cDNAs were amplified using arbitrary primer
sets, followed by 5% PAGE. The gel was stained with Vistra Green
(Amersham Biosciences) and visualized with a Fluoro Imager
(Molecular Dynamics) (Liang and Pardee, 1992).

Antibodies
Anti-MIDAS polyclonal rabbit antiserum was raised against His-

tagged MIDAS expressed in Escherichia coli. Anti-MIDAS antibody
was affinity purified by binding to the MIDAS protein isolated by
SDS-PAGE, followed by transfer onto a PVDF membrane. Anti-
Tom20 and anti-Tom40 were gifts from K. Mihara, Kyushu
University, Japan. Other antibodies were purchased as follows: anti-
actin (clone AC-40) and anti-B-tubulin from Sigma; anti-p230
antibody and anti-Syntaxin6 from BD Biosciences; anti-Hsc70
antibody from Santa Cruz; anti-Hsp60 from MBL; anti-cytochrome ¢
antibody and anti-Cox4 from Clontech; and anti-SDH70, anti-SDH30,
anti-COX I and anti-COX II antibodies from Molecular Probes.

Immunohistochemical staining of muscle sections

Biopsy samples were obtained from the biceps brachii muscle with
informed consent and then frozen in isopentane and liquid nitrogen.
Frozen sections 6 pm thick were stained histochemically and
immunologically. Activities of SDH and COX were visualized as
described previously (Hasegawa et al., 1991; Dubowitz, 1985). The
expression of MIDAS was detected with anti-MIDAS antibody. The
polyclonal antibody against MIDAS was diluted 500-fold with 10%
BSA in PBS and incubated with sections for 5 hours at 37°C and
then MIDAS was detected with DAB using an indirect streptavidin-
biotin  immunohistochemical —method, according to the
manufacturer’s protocol (Histofine, Nichirei, Co. Ltd., Tokyo,
Japan). The MIDAS protein expressed was semi-quantified by the
density of staining.

Immunocytostaining of cultured cells

Cultured cells were fixed with 4% paraformaldehyde in PBS for 20
minutes at room temperature. After a wash with PBS, they were
treated with 5% acetic acid in ethanol for 10 minutes at —20°C to
permeabilize membranes, then incubated in a blocking buffer (3%
BSA and 3% goat serum in PBS) and overnight at 4°C in the blocking
buffer containing primary antibody. After another wash with PBS, the
cells were incubated in the blocking buffer containing labeled
secondary antibody and visualized with a confocal laser-scanning
microscope (Fluoview FV300, Olympus, Tokyo, Japan). As an
alternative, we used another method described (Bell et al., 2001). In
brief, cells were fixed for 10 minutes with 4% paraformaldehyde and
4% sucrose without treatment for permeabilization and incubated with
primary antibody, followed by secondary antibody.

Subfractionation of HelLa cells

Cells were homogenized as described (Trounce et al., 1996). The
homogenate was applied to a 7-35% (w/v) Nycodenz preformed
continuous density gradient and centrifuged in a swinging-bucket
rotor at 77,000 g av for 4 hours. The fractions were collected from the
top of the gradient. The MIDAS protein was semi-quantified by the
density of total bands in western blots. The sub-organellar
fractionation of mitochondria (fraction number 15) was performed as
described (Kanamori et al., 2003).

Electron microscopy

Cells were cultured on plastic dishes and fixed with 2%
glutaraldehyde in PBS. Ultra-thin sections were stained with uranyl
acetate and lead nitrate and examined with an H-7000 electron
microscope (Hitachi, Tokyo, Japan).

Flow cytometry

Living transfectants were stained with 20 nM MitoTracker Red
CMXRos (Molecular Probes) or 100 nM MitoTracker Green
(Molecular Probes) for 30 minutes at 37°C, treated with trypsin and
subjected to a flow cytometric analysis with an Epics Elite ESP
(Coulter).



