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e.g. [Leu] enkephalin enhances and impairs the acquisition of
a one-way step-through active avoidance response in a dose-
dependent manner [24,25)]. To exclude a possible involvement
of enkephalins, of which metabolism may be affected by the
inhibition of neprilysin, in memory learning tasks in the rat, we
administered naloxone (1 mg/kg, i.p.) to thiorphan-treated rats
before each experiment. However, naloxone treatment had no
effect on cognitive performance in the thiorphan-infused rats.
The genetic approach supports our finding, because neprilysin
deficiency does not significantly elevate enkephalin levels in
the brain [47]. Thus, the cognitive impairment in the thiorphan-
infused rats is not due to the presence of redundant enkephalin.

Previous reports have shown that continuous infusion of
AR40 into the rat cerebral ventricle impairs several learning and
memory tasks [33,34,49,52,53] and nicotine-stimulated extra-
cellular ACh release [17,50]. In the present study, however,
the rats continuously infused with thiorphan showed only an
impairment of novelty discrimination in a configural version
of object recognition behavior, and spatial memory in a probe
trial of the water maze task, but no difference in the nicotine-
stimulated ACh release, compared to the vehicle-treated rats.
Such an inconsistency in the results obtained from between
AB40- and thiorphan infusion model may be due to differences
in the regions, where AB40 is accumulated and involved in cog-
nitive functions; a significant accumulation of A is observed
in the cerebral cortex and hippocampus of AB40-infused rats,
whereas only in the cerebral cortex of the thiorphan-infused
rats. Regarding a region-specific accumulation of AR, Newell
et al. [32] also reported that the intracerebroventricular infu-
sion of thiorphan elevates only cerebral AB40 level in the
rabbits, consistent with our observation. Therefore, this incon-
sistency may be explained by a region-specific AB40 accumu-
lation derived from the distribution of thiorphan infused into
the cerebral ventricle and different neuronal sensibility for the
accumulation between the cerebral cortex and hippocampus.
Furthermore, for AB40 infusion experiments human-type A
is generally used, whereas in the thiorphan infusion experi-
ments accumulation of endogenous rodent-type A is expected.
As another possibility, it may be pointed out a difference of
AP sequence between human and rodents. Because human-type
AP shows higher self-assembly than rodent-type AR [4,38],
AR accumulated by the AB40 infusion and thiorphan infusion
may present different status for oligomerization and fibrilization
each other.

Some cortex regions are necessary for the acquisition and
retention of hippocampus-dependent memory such as the per-
formance of object recognition task and Morris water maze task,
and such cognition is disrupted by cortical lesions {3,12,57]. Our
results suggest that the cortex played a critical role in novelty
discrimination in configural version of object recognition behav-
ior and spatial memory in a probe trial of water maze tasks.
However, we need to further investigate neurochemically and
neuropharmacologically whether the cerebral accumulation of
AP induces dysfunctions of the cortex in the thiorphan-infused
rats. In addition, Iwata et al. [21} have reported that direct infu-
sion of thiorphan into the hippocampus of rats elevates the
hippocampal AR levels. To investigate a role of neprilysin in

the metabolism of AR and cognitive function in the hippocam-
pus, we need to employ this model.

In conclusion, we demonstrated that the inhibition of endoge-
nous neprilysin activity in vivo by intracerebroventricular infu-
sion of thiorphan increases concentration of AR in the cortex and
impairs some cognitive functions. Recently, some gene analyses
have disclosed that single nucleotide or dinucleotide-repeated
polymorphisms on the neprilysin gene increase susceptibility
to AD [2,16,46]. These studies suggest not only that the poly-
morphisms of neprilysin gene could be a risk factor for the
development of AD, and but also that the loss of brain neprilysin
activity could be a pathogenic mechanism leading to the age-
related deposition of AB and development of AD.
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Abstract

We investigated the effects of memantine and donepezil on amyloid B (AB)-induced memory impairment in rats, which was assessed
by a delayed-matching to position (DMPT) paradigm in three-lever operant chambers. Aggregated AB1-40 was microinjected bilaterally
(1 nmol/side) into both CA1 and CA3 subfields of the hippocampus in rats that had previously performed the DMTP task. Memantine
(20 mg/(kg day), s.c.) was continuously infused by an osmotic minipump for 4 weeks from 3 days before the microinjection of Af. Donepezil
(2.5mg/kg, p.0.) was administered 60 min before the DMTP test session. Bilateral microinjections of AB1-40 into the hippocampus resulted
in a delayed, but persistent impairment of DMTP performance, which appeared more than 50 days after the injection. Memantine prevented
the development of AB-induced memory impairment, while donepezil symptomatically alleviated the deficits. Because of a ceiling effect, the
combination of donepezil with memantine failed to produce any additive or synergic effects. These results support the clinical data showing
that memantine and donepezil are effective for the treatment of Alzheimer’s disease. Moreover, it is suggested that memantine is effective for

preventing AB-induced short-term memory impairment.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of the
progressive decline of cognitive function in aged humans, and
is characterized by the presence of numerous senile plaques
and neurofibrillary tangles accompanied by neuronal loss.
Although the exact pathogenesis of neuronal degeneration
and cognitive impairment in AD remains to be fully defined,
several pharmacological strategies have been proposed for
the treatment of the disease [39].
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Because a remarkable dysfunction of the cholinergic
system is present in the brains of AD patients, and has been
shown to be correlated with the severity of the cognitive
impairment [28], it has been proposed that enhancement
of cholinergic neurotransmission may ameliorate cognitive
impairment in AD [3]. In fact, cholinesterase inhibitors,
including tacrine, donepezil, rivastigmine and galantamine,
have been successfully developed and approved for the
treatment of moderate to severe AD {16]. Donepezil, a potent
and selective inhibitor of brain cholinesterase [15], showed
encouraging results in palliative therapy for AD |32].

The other hypothesis regarding the mechanism of
neurodegeneration in AD is that excessive activation of
glutamate receptors might be responsible for part of the
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neuronal damage observed in AD [9.27,38]. Although it
is unlikely that glutamate-mediated exicitotoxicity is the
primary etiopathological factor in AD, it may significantly
contribute to the development of neurodegeneration in AD
and it also has been suggested that impaired glutamatergic
neurotransmission (overactivation of N-methyl-D-aspartate
(NMDA) receptors) plays a role in the cognitive deficit
|4,25]. In fact, recent clinical studies have demonstrated that
memantine, a moderate affinity and uncompetitive NMDA
receptor antagonist |23}, is effective for the treatment of AD
130,35]. In preclinical studies, apart from experiments show-
ing improvement of learning, it has been demonstrated that
memantine protects against neuronal and behavioral deficits
in rats treated with quinolinic acid {21,44] or ibotenic acid
[1]. At present, memantine has been approved in Europe and
USA for the treatment of moderate to severe AD. According
to the excitotoxic hypothesis in chronic neurodegenerative
diseases including AD, it should be emphasized that me-
mantine as a preventive therapy may be more effective in
early stage AD. Therefore, the neuroprotective effects of me-
mantine should be investigated in an animal model of early
stage AD.

The senile plaques are composed of amyloid B (AB), a
39-43 amino acid peptide fragment of the amyloid  precur-
sor protein [33]. AB is cytotoxic to neurons [43] and renders
neurons vulnerable to various insults including excitotoxicity
[18,39]. The amyloid cascade hypothesis has been proposed
in the etiopathology of AD [10], and accumulating evidence
supports the hypothesis {33,39]. We have previously demon-
strated that a continuous intracerebroventricular infusion of
AB1-40 or AB1-42, but not AB40-1, causes learning and
memory impairment, which was accompanied by choliner-
gic dysfunction [12,23,40], overproduction of nitric oxide
36,37} and oxidative stress | 14,41}. The AB-induced mem-
ory impairment was exaggerated by ovariectomy [42], but
ameliorated by antioxidants such as a-tocopherol [41] and
inducible NO synthase inhibitors [36,37). Acute injections of
AB into the cortex or hippocampus also produce neurodegen-
eration and memory impairment in rodents [2,8,20,24,31],
although the results are somewhat controversial. The
AB-induced learning and memory impairment is a valuable
model to assess the effects of novel antidementia drugs [39].

In the present study, we examined the effects of memantine
on AB-induced memory impairment in rats and compared
them with those of donepezil. We used a delayed-matching
to position (DMPT) paradigm in three-lever operant cham-
bers to investigate short-term memory [3,6,22], the cognitive
domain being impaired in early stage AD [11,17].

2. Materials and methods
2.1. Animals

Male Fischer344 rats, 1 1-12 weeks old and weighing 230-260 g
at the start of experiment, were obtained from Charles River Japan

(Yokohama, Japan). The animals were housed in plastic cages and
keptinaregulated environment (23 & 1 °C, 50 & 5% humidity), with
a 12-h light: 12-h dark cycle (lights on at 9:00 a.m.). All animal care
and use was in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and was approved
by the Institutional Animal Care and Use Committee of Kanazawa
University.

2.2. DMTP task

The animals were subjected to a food deprivation regime that
reduces body weight to 75-80% of the initial weight for 7 days
before the start of training. The operant chambers used and the
training and test procedures for the DMTP task in the present study
were the same as previously described by Miyamoto et al. {20].
Two operant chambers (San Diego Instruments, San Diego, CA,
USA) were used, and each chamber had three retractable levers and
three panel lights (4 cm x 4 cm) for sample stimulation above the
retractable levers. The feeder connected to the food dispenser was
located below the center lever, and a house light was located above
the center panel light.

In the DMTP task, one of the three panel lights was illuminated
for 55, and then the three levers were presented into the box, one of
four delays (0, 8, 16, 32 or 64s) being randomly enforced between
the time the panel light was turned off and the presentation of
the three levels. The sequence of the position of the panel light
illuminated was randomly selected. If the rat pressed the correct
lever, which was located just below the lit panel light, the rat
was rewarded with a food pellet (45mg) and all the levers were
retracted. The next trial started 30 after food reinforcement. If the
rat failed to press the correct lever within 10's or pressed one of the
wrong levers, the levers were withdrawn with no reinforcement,
and there was an intertrial interval of 30s before the onset of the
next trial. Each daily session consisted of 54 trials with four delays:
18 trials for 0-s delay, 12 trials for 8-s delay, 9 trials for 16-s delay, 9
trials for 32-s delay and 6 trials for 64-s delay presented randomly.
The position of the correct lever for each delay was balanced
within each session and presented in a different random order
each day. The correct response percentage [(correct responses/total
responses) x 100] on each delay was calculated. The number of
trials completed (lever pressing within 10s of the presentation of
the three levers) was also recorded, and the percentage of trials
completed [(trials completed/total trials) x 100} was calculated.
Eleven rats whose correct response rate was more than 80% at the
0-s delay for 2 consecutive days were used for the microinjection
of AB1-40.

2.3. Microinjection of AB1-40 into the hippocampus

AB1-40 (Bachem, Feinchemikalien AG, Switzerland) was dis-
solved in distilled water at a concentration of 1 nmol/pl, and incu-
bated at 37 °C for 7 days to promote the aggregation {29]. The rats
were anesthetized with pentobarbital (50 mg/kg, i.p.), and restrained
in a stereotaxis apparatus. Eight rats received bilateral microinjec-
tions of aggregated AR1-40 (injection volume: 1 pl/site) into both
CAl (A: —43, L: £2.0, V: 2.6) and CA3 (A: 3.3, L: £2.6, V:
3.5) subfields of the hippocampus, according to the atlas of Pax-
inos and Watson [26]. The vehicle (distilled water) was microin-
jected bilaterally into the hippocampal CA1 and CA3 in control rats
(n=3).
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2.4. Measurement of locomotor activity

Each rat was placed in a standard transparent rectangular cage
(50 cm x 50 cm x 50 cm high), and the locomotor activity was mea-
sured for a period of 30 or 60 min using an infrared detector (Neu-
roscience, Tokyo, Japan) placed over the cage.

2.5. Drug treatment and experimental design

Memantine HCL (Batch: R8825) and donepezil (Lot: 13031705)
were kindly donated by Merz Pharmaceuticals (Frankfurt, Ger-
many) and Eisai Co. Ltd. (Tsukuba, Japan), respectively. Memantine
was dissolved in saline, and was continuously infused s.c. at a dose
of 20 mg/(kg day) with an Alzet osmotic pump (model 2ML2, Alza,
Palo Alto, CA) for 4 weeks from 3 days before to 25 days after the
intrahippocampal injections of AB1-40 (n=4). The dose of meman-
tine (20 mg/(kg day)) used in the present study has been reported
to yield pseudo steady-state serum levels close to the therapeutic
range (1.2 uM) [21]. Some AB-treated rats (n=4) and control rats
(n=3) received implantations of water-filled osmotic pumps. The
osmotic pumps were renewed on day 11 to maintain the infusion of
memantine or the vehicle until day 25. Accordingly, three groups
with different treatments were prepared: control (n=3), AB-vehicle
(n=4) and AB-memantine groups (n=4).

Donepezil was dissolved in distilled water and administered p.o.
atadose of 2.5 mg/kg. The dose of donepezil in the present study was
selected based on our preliminary studies: donepezil at 2.5 mg/kg
significantly ameliorated scopolamine (0.1 mg/kg)-induced impair-
ment of DMTP performance, but had no effect on the performance
in control animals (unpublished observations).

The experimental schedule is shown in Fig. 1. On days —1,7, 9,
16, 23, 30, 37, 44, 51, 58, 65 and 72 after AB infusion, all animals
in three groups were administered distilled water 1 h before the test
session of the DMTP task. On the next day (days 10, 17, 24,31, 38,
45, 52, 59, 66 and 73), they were administered donepezil 1 h before
the test session. Locomotor activity of animals was measured on
day 79 or 80 after AR infusion.

2.6. Histology

On day 82, the rats were anesthetized with pentobarbital and
transcardially perfused with 250 ml of heparinized (0.1%, v/v)
saline followed by 250ml of phosphate-buffered saline (pH 7.4)
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Fig. 1. Experimental schedule.

containing 4% paraformaldehyde. Brains were removed and
post-fixed in the same fixative overnight. After being cryoprotected
with 30% sucrose, brains were cut into 40-pm-thick coronal
sections. The sections throughout the hippocampus were mounted
on gelatin-coated slides and stained with cresyl violet.

2.7. Statistical analysis

All data were expressed as the meanS.E. Statistical sig-
nificance was determined with a one-way or two-way analysis
of variance (ANOVA, repetitive measures), followed by the
Student-Newman-Keuls test for multi-group comparisons when
F-ratios were significant (P <0.05).

3. Results

Bilateral injections of AB1-40 into both CA1 and CA3
subfields of the hippocampus in rats that had previously
performed the DMTP task had little acute effect on DMTP
performance. Moreover, continuous infusion of memantine
had no effect on DMTP performance in AB-treated rats.
Fig. 2 illustrates the changes in DMTP performance at the 0-s
(A and B) and 8-s delay (C and D) in AB-injected rats with
or without memantine treatment. AB1-40 and memantine
had little effect on either the percentage of correct responses
(Fig. 2A for 0-s delay: F(2,8)=0.187, P>0.05; Fig. 2C
for 8-s delay: F(2,8)=0.424, P>0.05) or response time
(Fig. 2B for 0-s delay: F(2,8)=0.486, P>0.05; Fig. 2D for
8-s delay: F(2,8)=0.646, P>0.05) by day 44 after AB1-40
injections. As shown in Fig. 3, AB1-40 had no effects on
average DMTP performance from days 7 to 44. Moreover,
continuous infusion of memantine for 4 weeks (from 3 days
before to 25 days after the ARB1-40 injections) did not affect
the DMTP performance of AB1-40-treated rats. A two-way
ANOVA revealed a significant effect of delay (Fig. 3A for
choice accuracy: F(4,296) =97.667, P<0.0001; Fig. 3B for
response time: F(4,296)=5.348, P <0.001), but not group
(Fig. 3A for choice accuracy: F(2,74)=1.854, P>0.05;
Fig. 3B for response time: F(2,74)=2.878, P>0.05).

On day 51 and thereafter, significant changes in DMTP
performance were observed. A one-way ANOVA with re-
peated measures revealed a significant effect of group at the
0-s (Fig. 2A for choice accuracy: F(2,8)=0.082, P>0.05;
Fig. 2B for response time: F(2,8)=6.817, P<0.05) and 8-s
delay (Fig. 2C for choice accuracy: F(2,8) = 14.180, P<0.01;
Fig. 2D for response time: F(2,8) =10.345, P<0.01). Fig. 4
shows the average DMTP performance from days 51 to 72
following AB1-40 injections into the hippocampus. A two-
way ANOVA revealed significant effects of delay (Fig. 4A
for choice accuracy: F(4,164)=36.750, P<0.0001; Fig. 4B
for response time: F(4,164)=4.737, P<0.01) and group
(Fig. 4A for choice accuracy: F(2,41)=9.448, P<0.001;
Fig. 4B for response time: F(4,41)=9.012, P<0.001), but
not delay x group interaction (Fig. 4A for choice accuracy:
F(8,164)=1.225, P>0.05; Fig. 4B for response time:
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Fig. 2. Changes in DMTP performance at the O-s (A and B) and 8-s delay (C and D) following bilateral microinjections of AB1-40 into the hippocampus in
control, AB-vehicle and AB-memantine groups. Memantine (20 mg/(kg day)) was continuously infused with the Alzet osmotic pump for 4 weeks from 3 days
before to 25 days after AB1-40 infusion. All animals were administered distilled water 1h before the test sessions. (A and C) Percent correct response and (B
and D) response time. Values indicate the mean == S.E. (#=3 for control group, 7 =4 for AB-vehicle and AB-memantine groups).

F(8,164)=1.443, P>0.05). A post hoc analysis with the
Student-Newman—Keuls test revealed that AB-vehicle group
showed a significant decrease in choice accuracy (P<0.05)
and an increase in response time (P <0.05) compared with
the control group. Memantine significantly prevented the
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Fig. 3. Average DMTP performance from days 7 to 44 after bilateral mi-
croinjections of AB1-40 into the hippocampus in control, AB-vehicle and
ApB-memantine groups. (A) Percent correct response and (B) response time.
Memantine (20 mg/(kg day)) was continuously infused with the Alzet os-
motic pump for 4 weeks from 3 days before to 25 days after AB1-40 in-
fusion. Values indicate the mean % S.E. (n=3 for control group, n=4 for
AB-vehicle and AB-memantine groups). A two-way ANOVA revealed no
significant effect of group on the percent correct response [F(2,74) = 1.854,
P=>0.05] or response time [F(2,74)=2.878, P>0.05].

ApB-induced decrease in choice accuracy (P<0.05) and
increase in response time (P <0.05).

Fig. 5 shows the DMTP performance when the animals
in the control, AB-vehicle and Af-memantine groups
were administered donepezil (2.5 mg/kg, p.o.) 1h before

(A) % Correct response
B -~—O— Control (n=3)

@ 100 —a— AB-vehicle (n=4)
§_ 80 [ —g— AB-memantine (n=4)
Sl
8
© 40
E ., S
Q
: 2 [ Chance level (33%)
0 0 8 16 32 6
Delay (sec)

T 14

(B) Response time
@

212

£210

“‘%‘J‘ 08
£ 06

o

204

£o2
0

16 6

Delay (sec)

Fig. 4. Effect of memantine on AB-induced impairment of DMTP perfor-
mance from days 51 to 72 following bilateral microinjections of AB1-40
into the hippocampus. (A) Percent correct response and (B) response time.
Memantine was continuously infused at a dose of 20 mg/(kg day) with the
Alzet osmotic pump for 4 weeks from 3 days before to 25 days after ABIL-
40 infusion. Values indicate the mean &= S.E. (n=3 for control group, n=4
for AB-vehicle and AB-memantine groups). A two-way ANOVA revealed a
significant effect of group on the percent correct response [F(2,41)=9.448,
P<0.001] and response time [F(4,41)=9.012, P<0.001].
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Fig. 5. Effect of donepezil on DMTP performance at the 0-s (A and B) and 8-s delay (C and D) following bilateral microinjections of AR1-40 into the
hippocampus in control, AB-vehicle and AB-memantine groups. (A and C) Percent correct response and (B and D) response time. Donepezil (2.5mg/kg, p.o.)
was administered to all animals in the control, AB-vehicle and AB-memantine groups 1 h before the test sessions. Values indicate the mean +S.E. (n=3 for

control group, #=4 for AB-vehicle and AB-memantine groups).

the test session. It appears that donepezil ameliorated
the AP-induced impairment of DMTP performance on
days 51-72. A one-way ANOVA with repeated measures
revealed that there were no significant effects of group on
DMTP performance from days 52 to 73 at the 0-s (Fig. 5A
for choice accuracy: F(2,8)=2.996, P>0.05; Fig. 5B for
response time: F(2,8)=3.427, P>0.05) and 8-s delay
(Fig. 5C for choice accuracy: F(2,8)=1.304, P>0.05;
Fig. 5D for response time: F(2,8)=0.218, P>0.05). The
effect of donepezil on the AB-induced impairment of DMTP
performance was analyzed by comparing the average DMTP
performance in the AB-vehicle group from days 51 to 72
when distilled water but not donepezil was administered 1 h
before test sessions (Fig. 6). A two-way ANOVA revealed
significant effects of delay (Fig. 6A for choice accuracy:
F(4,164)=36.860, P<0.0001; Fig. 6B for response time:
F(4,163)=4.170, P <0.01) and group (Fig. 6A for choice ac-
curacy: F(2,41)=7.598, P<0.01; Fig. 6B for response time:
F(2,41)=6.547, P <0.01), but not delay x group interaction
(Fig. 6A for choice accuracy: F(8,164)=1.630, P>0.05;
Fig. 6B forresponse time: F(8,164) = 1.201, P>0.05). A post
hoc analysis with the Student-Newman—Keuls test revealed
that the AB-vehicle group showed a significant decrease
in choice accuracy (P<0.05) and an increase in response
time (P <0.05) compared with the control group. Donepezil
significantly ameliorated the Af-induced decrease in
choice accuracy (P<0.05) and increase in response time
(P<0.05).

Fig. 7 shows the effects of memantine, donepezil and
their combination on the AB-induced impairment of DMTP
performance at the 0- or 8-s delay from days 51 to 73
following bilateral microinjections of AB1-40 into the
hippocampus. Bilateral microinjections of AB1-40 into the

hippocampus in rats caused a significant decrease in choice
accuracy (Fig. 7A, F(5,82)=11.355, P<0.05 by post hoc
comparison) and a significant increase in response time
(Fig. 7B, F(5,82)=7.915, P<0.05 by post hoc comparison)
in the DMTP task at the 0-s delay. The AB-induced impair-
ment of choice accuracy and response time was ameliorated
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Fig. 6. Effect of donepezil on AB-induced impairment of DMTP perfor-
mance from days 51 to 73 following bilateral microinjections of AB1-
40 into the hippocampus. (A) Percent correct response and (B) response
time. Donepezil (2.5mg/kg) or the vehicle was administered p.o. 1 h be-
fore the DMTP test sessions. Values indicate the mean+S.E. (n=3 for
control group, n=4 for AB-vehicle and AB-donepezil groups). A two-way
ANOVA revealed a significant effect of group on percent correct response
[F(2,41)=7.598, P <0.01] and response time [F(2,41)=6.547, P<0.01].
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by memantine (P<0.05) and donepezil (P<0.05). Almost
the same results were observed at the 8-s delay (Fig. 7C
for choice accuracy: F(5,82)=4.155, P<0.01; Fig. 7D
for response time: F(5,82)=5.007, P<0.001). However,
donepezil significantly decreased choice accuracy (P<0.05
by post hoc comparison) without affecting the response
time at the O-s delay in control animals although the same
treatment in AB-injected rats resulted in an improvement of
DMTP performance. The combination of memantine and
donepezil failed to produce any additive or synergic effects.

On days 79 and 80 (7 days after the last test session
of the DMTP task) after the bilateral microinjections of
AB1-40 into the hippocampus, the locomotor activity of the
animals was measured. Locomotor activity in the control,
AB-vehicle and Af-memantine groups was 687£33,
616 & 58 and 732 4 38 counts/(60 min), respectively. There
was no difference in locomotor activity among the three
groups of animals (F(2,19)=1.394, P>0.05).

Histological examination by Nissl staining indicated Ap-
induced neurodegeneration in the CA1 and CA3 subfields
of the hippocampus. Moreover, it appeared that memantine
treatment provided neuroprotection against Ap-induced neu-
rodegeneration in the hippocampus (Fig. 8).

4. Discussion

In the present study, we have demonstrated that memantine
prevented the development of, while donepezil symptomati-
cally alleviated, A 1-40-induced short-term memory deficits
in rats that received bilateral microinjections of aggregated
AB1-40into the CA1 and CA3 subfields of the hippocampus.

Although we did not examine the mechanisms underlying
AB-induced short-term memory deficits, it has been shown
that water-reconstituted A 1-40, but not water alone or AB1-
28, injected into the hippocampus is associated with marked
neurodegeneration that exhibits the characteristics of apop-
tosis [20]. Furthermore, it has been reported that memantine
protects against neuronal degeneration induced by AB1-40
[19]. Accordingly, it is plausible that prevention by meman-
tine of AB-induced short-term memory impairment may be
associated with its protection against AB-induced neurode-
generation in the hippocampus.

Miguel-Hidalgo et al. [19] have reported that neither the
acquisition nor retention of the spatial discriminative learn-
inginaT-maze is impaired in AR 1-40-treated animals despite
the neurodegeneration of the CA1 subfield of the hippocam-
pus. The discrepancy may be due to the differences in the
amount of AB1-40 injected into the hippocampus, injection
site or especially the timing and difficulty of the behavioral
task. While Miguel-Hidalgoetal. [19] examined learning and
memory on day 8after the AR injection when we failed to find
any impairments of DMTP performance, an impairment of
short-term memory was evident in AB1-40-treated animals
more than 50 days after AR injections.

Consistent with the present findings, previous studies have
demonstrated that injection of aggregated A into the hip-
pocampus results in a delayed (approximately 30 days after
the treatment) memory impairment [2,24,31], whereas AR
injection into the nucleus basalis impaired cognitive func-
tion at 60 days post-injection [8]. Richardson et al. [31] have
suggested that delayed behavioral effects are due to damage
to neurons following AB-induced activation of glial cells.
They showed that aggregated Ap was present in the brain
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Fig. 8. Micrographs of Nissl-stained sections on day 82 following bilateral microinjections of aggregated AB1-40 into the CAl and CA3 subfields of the

hippocampus. (A) CA1 and (B) CA3. Scale bar, 200 p.m.

of AB-injected rats 80 days post-injection, and substantial
astrogliosis was evident in rats with aggregated AB. In this
regard, memantine has been reported to suppress the gliosis
in the brain of rats treated with ibotenic acid [1] or AB1-40
[19].

Under the experimental conditions in the present study,
acute oral administration of donepezil almost completely
ameliorated the short-term memory deficit on the test day
in AB-injected rats, but no ameliorating effects were evident
in the next DMTP test session when the animals were
administered distilled water but not donepezil, indicating
that donepezil produced a symptomatic alleviation of
AB-induced short-term memory impairment. Furthermore,
it is suggested that cholinergic activation by cholinesterase
inhibitors can restore the AB-induced memory dysfunction.
This assumption may be consistent with the fact that acute or
chronic AB infusion into the brain results in an impairment
of the cholinergic neuronal system |8,12,36). However, it has
been reported that donepezil shows high affinity for sigma
receptors [ 13]. Furthermore, an interaction of donepezil with
NMDA receptors could be supposed due to the similarities
of the chemical structure with ifenprodil. Thus, further
investigation with other selective cholinesterase inhibitors

such as rivastigmine [7] is necessary to conclude the
effectiveness of cholinesterase inhibitors on AB-induced
memory dysfunction.

A recent study has indicated that donepezil protects
cortical neurons against glutamate neurotoxicity via adp2-
and o7-nicotinic acetylcholine receptors [34]. Accordingly,
we cannot exclude the possibility that donepezil may have
neuroprotective effects on AB-induced memory impairment
under different experimental conditions. Continuous infusion
of denepezil could lead to neuroprotective effects through
the activation of nicotinic and/or muscarinic acetylcholine
receptors.

The combination of memantine and donepezil failed to
produce any additive or synergic effects on AB-induced
short-term memory impairment although a clinical study
has demonstrated that memantine treatment resulted in
significantly better outcomes than placebo in patients with
moderate to severe AD already receiving donepezil {35].
This is probably due to the ceiling effect because each drug
showed almost complete amelioration of memory deficits
in AB-treated animals. Thus, further studies are required
to investigate the effect of co-treatment of memantine with
donepezil on AB-induced memory impairment.
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