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the expression of a series of IFN-responsive genes were observed at the later
stages (48 hr) of differentiation. We speculate that the feedback loop may regu-
late the early phase of differentiation and that, once the cells pass through that
phase, they may become resistant to IFN in terms of the osteoclastogenesis. In
support, fos has been shown to be replaced by known downstream effectors, in-
cluding Fral and Fra2 (Table 2) in the later phase of osteoclast differentiation
(40). The regulation and relationship between IFN and fos family proteins are
interesting issues worth further study.

In addition, several genes for lysosomal enzymes and the lysosomal marker,
LAMP2, were shown to be down-regulated. Active osteoclasts are highly polar-
ized and possess bone-resorbing activity by providing acidified compartments
and hydrolyzing enzymes, including MMP9 and cathepsin K, between the apical
surface and sealing zones of osteoclasts and the bone surface. It has been re-
ported that the resorption compartment is similar to early endosomes and lyso-
somes (41,42). The decrease in the expression of the lysosomal genes throughout
osteoclast differentiation that were shown in our study may support the idea
that the ruffled border membrane and the acidified extracellular compartment
are specialized for bone matrix resorption and different from the lysosomes
observed in other cell types.

We also identify a gene encoding ZNF216 as up-regulated by RANKL-
induced osteoclast differentiation. Furthermore, ectopic expression of full-
length ZNF216 inhibited but the zinc finger-truncated mutants accelerated
osteoclast differentiation. Because the gene was also up-regulated by TNF«,
RANKL may share common machinery with TNFe in induction of ZNF216
expression. Factors known to activate NF-«B, such as LPS and TPA, also up-
regulated the expression of ZNF216. It is of interest that the promoter region
of human ZNF216 gene contains a possible NF-«B response element (data not
shown). These results suggested that a probable factor involved in the induc-
tion of ZNF216 is the NF-« B transcription factor, although further experiments
are required. In support, IFNB is a strong negative regulator of osteoclastoge-
nesis (43,44), and expression of ZNF216 suppressed osteoclast differentiation
in our study. Therefore, ZNF216 may take part in the IFN-mediated regulatory
mechanism NF-«B.

The precise molecular function of ZNF216 is still unclear. It has been re-
ported that ZNF216 may inhibit the NF-«B pathway (29). Although we have
examined the influence of ZNF216 on NF-«B activation, neither inhibition of
nuclear translocation nor DNA-binding ability of NF-«B was reproduced by ec-
topic expression of full-length or truncated mutants of ZNF216 (not shown).
Furthermore, we have tested the NF-«B inhibitory activity of ZNF216, as well
as A20 protein, using reporter gene constructs. Ectopic expression of A20, but
not full-length ZNF216, strongly inhibited NF-«B activation (data not shown).
In addition, no endogenous NEMO or RIP protein was detected in a proteome
analysis of the ZNF216 complex (unpublished observation). Therefore, ZNF216
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does not seem to be a direct regulator of the NF-« B signaling pathway, although
its involvement is still under investigation. It was recently described that one
of the seven A20-type zinc finger domains in A20 protein possesses E3 ubiqui-
tin ligase activity (45). Thus, ZNF216 also may be involved in ubiquitin-related
systems. It is of interest that our expression studies resulted in opposing pheno-
types in osteoclastogenesis that were largely dependent on the mutation. Thus,
the truncated mutants may act in a dominant negative manner compared with
the endogenous or wild-type ZNF216. How does ZNF216 inhibit osteoclastoge-
nesis without affecting NF-« B pathway? Future studies will be aimed at eluci-
dation of the molecular mechanisms involved in ZNF216-mediated osteoclast
differentiation.
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The ubiquitin-proteasome system (UPS) is critical for
specific degradation of cellular proteins and plays a pivotal
role on protein breakdown in muscle atrophy. Here, we
show that ZNF216 directly binds polyubiquitin chains
through its N-terminal A20-type zinc-finger domain and
associates with the 26S proteasome. ZNF216 was coloca-
lized with the aggresome, which contains ubiquitinylated
proteins and other UPS components. Expression of Znf216
was increased in both denervation- and fasting-induced
muscle atrophy and upregulated by expression of consti-
tutively active FOXO, a master regulator of muscle atrophy.
Mice deficient in Znf216 exhibited resistance to denerva-
tion-induced atrophy, and ubiquitinylated proteins mark-
edly accumulated in neurectomized muscle compared to
wild-type mice. These data suggest that ZNF216 functions
in protein degradation via the UPS and plays a crucial role
in muscle atrophy.

The EMBQ Journal (2006) 25, 554-564. doi:10.1038/
sj.emboj.7600945; Published online 19 January 2006
Subject Categories: proteins; molecular biology of disease
Keywords: aggresome; muscular atrophy; proteasome;
ubiquitin; zinc-finger protein

Introduction

The ubiquitin-proteasome system (UPS) is one of the major
protein degradation pathways in eukaryotic cells. The UPS
plays key regulatory roles in many cellular processes, includ-
ing cell cycle control, the regulation of transcription and
protein quality control (Hershko and Ciechanover, 1998;
Pickart and Cohen, 2004). Aberrations of this system lead
to many forms of pathogenesis, such as malignancies,
neurodegenerative disease and inflammatory response
(Glickman and Ciechanover, 2002). The UPS includes
sequential, multistep reactions: ubiquitin-conjugation of
target proteins by El, E2 and E3 enzymes, recognition of
ubiquitinylated proteins by ubiquitin-binding proteins
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or 195 subunits of proteasome and proteolysis in the
proteasome.

Many catabolic conditions, such as low-insulin state, hy-
perthyroidism, sepsis and cancer cachexia lead to enhance-
ment of protein breakdown in skeletal muscle known as
muscle atrophy (Mitch and Goldberg, 1996; Lecker et al,
1999}. In muscle atrophy, the UPS plays a pivotal role in
protein breakdown (Price et al, 1996; Tawa et al, 1997).
Several studies indicate that mRNAs encoding UPS compo-
nents are increased in atrophying muscle (Medina et al, 1991;
Wing and Goldberg, 1993; Bailey et al, 1996; Price et al, 1996;
Jagoe et al, 2002). In particular, the E3 ubiquitin ligases
MAFbx/Atrogin-1 and MuRF-1 (muscle RING finger 1) are
known to be markers of muscle atrophy (Bodine et al,
2001; Gomes et al, 2001). Both are induced in multiple
models of muscle atrophy including immobilization, dener-
vation and hindlimb suspension, and mice deficient in
either gene are resistant to denervation-induced muscle
atrophy (Bodine et al, 2001). Goldberg and co-workers pro-
posed that atrophy-related genes, whose expression is in-
duced in multiple types of muscle atrophy, are called
‘atrogenes’ (Sandri et al, 2004). Recently, it was demon-
strated that the IGF-I/PI3K/Akt pathway is an important
regulator of muscle mass in muscle hypertrophy and atrophy
(Sacheck et al, 2004; Sandri et al, 2004; Stitt et al, 2004).
In that case, the transcription factor FOXO plays a pivotal
role in activating atrogenes such as MAFbx/Atrogin-1
(Gomes et al, 2001).

Although many UPS players such as E3 ligases have been
characterized, the mechanism of how ubiquitinylated pro-
teins are delivered to the proteasome have not been fully
elucidated. A component of 19S5 proteasome, Rpnl0/S5a,
recognizes the ubiquitinylated proteins (Young et al, 1998;
Wilkinson et al, 2000). It has been shown that yeast proteins,
Rad23p and Dsk2p, bind to ubiquitinylated substrates and to
the 26S proteasome through their UBA and Ubl domains,
respectively, thereby functioning as shuttle proteins that
present polyubiquitinylated proteins to the proteasome
(Chen et al, 2001; Funakoshi et al, 2002; Elsasser and
Finley, 2005). Loss-of-function of shuttle proteins results in
abnormal accumulation of polyubiquitinylated proteins
(Lambertson et al, 1999; Saeki et al, 2002). However, yeast
can survive when both RAD23 and DSK2 genes are mutated,
suggesting that other mechanisms or molecule(s) poss-
essing a shuttle function exist (Saeki et al, 2002). Here, we
show that ZNF216, a novel ubiquitin-binding protein
containing an A20-type zinc-finger, is such a factor. Znf216
expression is upregulated in skeletal muscle in experi-
mental models of muscle atrophy, and Znf2i6-deficient
mice exhibit resistance to muscle atrophy accompanied by
abnormal accumulation of polyubiquitinylated proteins in
skeletal muscle. Our findings suggest that ZNF216, with its
potential function of anchoring ubiquitinylated proteins
to the proteasome, plays a critical role in degrading
muscle proteins.

©2006 European Molecular Biology Organization



Results

ZNF216 directly binds to polyubiquitin

We have identified a gene, Znf216 (Za20d2, Mouse Genome
Informatics), encoding an A20 zinc-finger (Znf-A20) motif-
containing protein, as a RANKL-induced gene upregulated
upon osteoclast formation using a microarray technique
(Hishiya et al, 2005). Znf216 was originally identified as a
candidate gene for hearing loss and is expressed in cochlear
and skeletal muscle (Scott et al, 1998; Huang et al, 2004). To
determine the function of ZNF216, we searched for molecules
that associate with ZNF216 using yeast two-hybrid screening
and isolated several clones encoding a gene for polyubiquitin
C. To determine whether ZNF216 interacts with ubiquitin in
mammalian cells, we transfected HEK293 cells with an
expression vector for FLAG-tagged ZNF216 and HA-tagged
ubiquitin and performed co-immunoprecipitation experi-
ments. ZNF216 possesses A20-type {(amino acids 11-35) and
AN1-type (amino acids 154-191) zine-finger domains at its
N- and C-termini, respectively (Figure 1A). Endogenous
ubiquitinylated proteins, which appear as smears, were co-
immunoprecipitated with FLAG-tagged ZNF216 (Figure 1B).
Notably, N-terminal deletion (AN; amino acids 36-213) or
point mutants (M1 and M3) of the A20-type zinc-finger (ZnF-
A20) domain abolished ubiquitin-binding ability of ZNF216,
indicating that the ZnF-A20 domain is indispensable for
binding to ubiquitin (Figures 1A and B)}. Whereas in non-
denaturing conditions, ubiquitinylated molecules were pre-
sent with FLAG-tagged ZNF216, these molecules completely
disappear from immunoprecipitates following heat denatura-
tion, which abolishes noncovalent protein-protein interac-
tions (Figure 1C), suggesting that ZNF216 associates with
ubiquitinylated proteins rather than being ubiquitinylated
itself. Next, to determine whether ZNF216 binds to ubiquitin
directly, we performed GST pull-down assays using GST-
ZNF216 fusion proteins (Figure 1D) and purified polyubiqui-
tin. As shown in Figure 1E, GST-ZNF216 but not GST bound
to polyubiquitin chains. As expected, binding of ZNF216
to polyubiquitin chains was completely abolished by a
point mutation in the ZnF-A20 domain (M1, Figure 1E).
Furthermore, a GST fusion protein containing only the ZnF-
A20 domain (amino acids 2-60) could bind to polyubiquitin
chains, suggesting that ZNF216 directly binds to polyubiqui-
tin chains, and that the ZnF-A20 domain is required for
binding to polyubiquitin. As for other ZnF-A20 containing
proteins, AWP1 (ZA20D3) also possessed polyubiquitin-bind-
ing activity but the ZnF¥-A20 domain(s) of Rabex-5 (Horiuchi
et al, 1997) and A20/TNFAIP3 (Opipari et al, 1990) proteins
did not (Supplementary Figure S1).

ZNF216 associates with the 26S proteasome

We also identified molecules associating with ZNF216 by
proteomic analysis of complexes formed with FLAG-tagged
ZNF216. Molecules expressed in HEK293 cells and that co-
immunoprecipitated with FLAG-tagged ZNF216 were ana-
lyzed by tandem mass spectrometry. By this analysis, every
subunit of the 26S proteasome complex was identified as
associating with FLAG-tagged ZNF216 (data not shown). To
identify the region of ZNF216 required for association with
the 26S proteasome, lysates of cells expressing either FLAG-
tagged ZNF216 or its mutants were immunoprecipitated with
anti-FLAG antibody. Co-precipitation of proteasomal compo-
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nents was monitored by immunoblotting using an antibody
against Rpn7p (S10a), a non-ATPase subunit of the 19S
regulatory subunit. As shown in Figure 2A, this protein
efficiently co-precipitated with FLAG-tagged ZNF216. The
interaction was also observed with truncated or point mu-
tants of ZnF-A20 (AN or M1), indicating that ubiquitin-
binding ability is dispensable for association with the 268
proteasome. To determine whether endogenous ZNF216 pro-
teins are also associated with the 26S proteasome, we per-
formed a GST pull-down assay using the ubiquitin-like (Ubl)
domain of hHR23B, a human homologue of Rad23, which is
known to bind to the 26S proteasome. As shown in Figure 2B,
GST-Ubl but not GST was pulled down with the endogenous
26S proteasome. Endogenous ZNF216 was also detected
in the GST-Ubl/26S proteasome complex (upper panels,
Figure 2B). Furthermore, purified recombinant ZNF216 did
not bind to GST-Ubl (lower panel, Figure 2B), suggesting that
endogenous ZNF216 is not directly bound to the Ubl domain
but associates with the 26S proteasome.

Colocalization with the aggresome

Next, we determined the subcellular localization of ZNF216.
Indirect immunofluorescence of ZNF216 expressed in
COS-7 cells showed that the protein was largely cytoplasmic
but was seen to a lesser extent in the nucleus (Figure 3A).
Aggresomes, which are insoluble aggregates of ubiquitiny-
lated proteins complexed with the proteasome and induced
by treatment with proteasome inhibitors, are known to mimic
inclusions seen in pathogenic UPS disorders (Johnston et al,
1998; Kopito, 2000; Lelouard et al, 2002). As shown in
Figures 3D-H, ZNF216 proteins were colocalized with aggre-
somes induced by treatment with the proteasome inhibitor
MG132. ZNF216 itself was not ubiquitinylated as shown in
Figure 1C.

Induction of ZNF216 expression upon muscle atrophy
Biochemical and cell biological evidence presented here
strongly suggests that ZNF216 functions in the UPS. In
skeletal muscle, it is generally accepted that the UPS plays
a critical role in muscular atrophy, and expression of atrophy-
related genes including those encoding UPS components is
induced in atrophying muscle (Jagoe et al, 2002; Lecker et al,
2004). As Znf216 was predominantly expressed in brain
and skeletal muscle (Scott et al, 1998), we investigated the
relationship between ZNF216 and muscle atrophy. To deter-
mine whether Znf216 expression is induced during muscle
atrophy, an in vitro model of muscle atrophy was utilized. It
has been reported that addition of dexamethasone to cultures
of differentiated C2C12 myotubes causes formation of myo-
tubes exhibiting signs of atrophy, including a reduction in
myotube diameter (Stitt et al, 2004). Such treatment drama-
tically induced expression of Znf216 (Figure 4A).

Next, expression of Znf216 was determined in in vivo
experimental models of muscle atrophy. Mice that undergo
fasting for 2 days show significant decreases in body weight,
as well as in the mass of the gastrocnemius muscles (data not
shown). In this model, fasting for 2 days results in dramatic
increases in Znf216 mRNA (Figure 4B) and protein
(Supplementary Figure S3) in muscle. Although there were
differences in induction patterns of two differently sized
transcripts of Znf216 by atrophy-inducting stimuli, both
transcripts encode the same protein (Supplementary Figures
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Figure 1 ZNF216 binds polyubiquitin directly through the ZnF-A20 domain. (A) Schematic representation of the primary structure of wild-type
ZNF216 and its mutants. ZNF216AN (aa 36-213) and ZNF216AC (aa 2-153) constructs lack the ZnF-A20 (aa 11-35) and ZnF-AN1 (aa 154-194)
domains, respectively. Cysteine residues at positions 30 and 33 within the ZnF-A20 were substituted with alanines (C30A/C33A) in ZNF216M1,
and both cysteines 170 and 175 within the ZnF-AN1 were substituted with alanines (C170A/C175A) in ZNF216M2. Both ZnF-A20 and ZnF-AN1
domains were mutated in ZNF216M3. (B) Co-precipitation of ubiquitinylated proteins and ZNF216. FLAG-tagged ZNF216 or mutants were
expressed in HEK293 cells, and cell extracts were immunoprecipitated with anti-FLAG antibody. Ubiquitinylated proteins detected with anti-
ubiquitin antibody were precipitated with FLAG-tagged ZNF216 but not with ZnF-A20 mutants. Expression levels of FLAG-tagged ZNF216
constructs are shown at the bottom. Bands corresponding to immunoglobulin chains are marked by an asterisk. (C) ZNF216 is minimally
ubiquitinylated. HEK293 cells expressing FLAG-tagged ZNF216 or HA-tagged ubiquitin were lysed and immunoprecipitation was performed
using anti-FLAG antibody. Aliquots of precipitated beads were boiled and immunoprecipitated again (re-IP). Each sample was separated on gels
and probed with anti-HA (left) or anti-FLAG antibody (right). Bands for immunoglobulin chains are marked by asterisks. (D) Constructs used
for in vitro binding assay. ZNF216WT, ZNF216M1 and ZNF216 M2 were as indicated in {A). ZNF216A20 possesses only the A20 domain (aa 2-60).
All constructs were produced as GST fusion proteins. (E) In vitro ubiquitin binding assay. Left panel: GST protein fused to the constructs
indicated in (D) was incubated with purified K48-linked polyubiquitin chains, followed by precipitation with GSH beads. In all, 10% of purified
polyubiquitin chains was separated without pull-down to evaluate protein amount (10% input). Right panel: the membrane was stained with
ponceau to evaluate levels of GST fusion protein.

S2 and S3). Expression of MuRF-1 (Figure 4B) and MAFbx
(Gomes et al, 2001} was also induced in fasting. Upregulation
of Znf216 was also observed in a model of denervation-
induced muscle atrophy. Neurectomy promotes significant
reduction (~20%) in the weight of gastrocnemius muscles
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within the first 7 days postsurgery. As expected, expression of
Znf216 and MuRF-1 was induced in gastrocnemius muscles
by denervation-induced muscle atrophy (Figure 4C). These
results suggest that Znf216 expression is associated with
atrophy in skeletal muscles.
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Figure 2 Interaction of ZNF216 with the 26S proteasome in mam-
malian cells. (A) Co-precipitation of the 26S proteasome and
ZNF216. Co-precipitated proteins with FLAG-ZNF216 were resolved
by SDS-PAGE and detected by immunoblotting using anti-S10a/
Rpn7p antibody (anti-S10) or anti-FLAG antibody. Aliquots of
cellular extracts were immunoblotted without immunoprecipitation
to evaluate protein expression in the bottom panels. (B) ZNF216
was detected in the 265 proteasome fraction. Upper panel, cell
lysates were incubated with a GST fusion of HHR23B Ubl (HHR23B
Ubl) to isolate the 26S proteasome. Precipitated proteins (P/D) were
separated and probed with anti-S10 or anti-ZNF216 antibody. Lower
panel: purified recombinant ZNF216 was incubated with a GST
fusion of HHR23B Ubl or GST protein. Precipitated (P/D) or not
precipitated (Sup) proteins were probed with anti-ZNF216 antibody.
No direct binding of ZNF216 to the Ubl domain of HHR23B was
detected.

A novel ubiquitin-binding protein, ZNF216
A Hishiya et al

The transcription factor FOXO has been reported to play a
critical role in muscular atrophy by inducing atrophy-related
genes, including MAFbx/Atrogin-1 (Sandri et al, 2004; Stitt
et al, 2004). Therefore, we asked whether FOXO activation
upregulated Znf216 expression. To do so, we employed a Cre-
loxP system (Furukawa-Hibi et al, 2002} in which constitu-
tively active FOXO4 (AFX-TM) created by mutation of the
three Akt phosphorylation sites, T32A, S253A and S31S5A
(Brunet et al, 1999), was expressed in C2CI12-AFX-TM cells
following infection by Cre recombinase-expressing adeno-
virus (Cre) (Figure 4D). Both AFX-TM mRNA and protein
were induced 24h after infection with Cre but not with
control adenovirus (Furukawa-Hibi et al, 2002). ZNF216
mRNA was markedly increased in C2C12-AFX-TM cells as a
result of infection with Cre but not following infection with
control virus (Figure 4E). These results suggest that ZNF216
may function as a downstream effector of FOXO in muscle
atrophy.

Generation of mice lacking ZNF216

To investigate the in vivo function of ZNF216, mice deficient
for ZNF216 (Znf216'®/"®*) were generated by gene trapping at
Omnibank of Lexicon Genetics (Zambrowicz et al, 1998). The
structure of the predicted trapped gene is shown in Figure 5A.
The trapping vector, VICTR48, was inserted 3.3 kbp upstream
of exon 3, which encodes the first methionine of mouse
Znf216 (Figure 5A). Znf216"® mice were born from in-
terbred heterozygous Znf216 /% mice in Mendelian ratios,
indicating that ZNF216 is dispensable for embryogenesis or
fetal development. No ZNF216 mRNA or protein was detected
in Znf216""* mice by Northern or immunoblot analyses,
respectively (Figures 5B and C), indicating that the mice are
ZNF216 nulls. Expression levels of ZNF216 in Znf216*/%
heterozygotes were nearly one-half those of wild-type mice.
Znf216""* mice were viable and fertile, without gross
abnormalities or apparent pathological alteration, but they
weighed less than sex- and age-matched controls (Figure 5D).
At 45 weeks, the average weights of Znf216%/* and

MG132

Figure 3 ZNF216 is localized in ‘aggresomes’ with ubiquitinylated proteins. (A-H) COS cells were transfected with expression vectors for
FLAG-tagged ZNF216 and HA-tagged ubiquitin. Fixed cells were subjected to indirect immunofluorescence using (A, E} anti-FLAG (with
AlexaFluor 488 anti-mouse IgG, green) and (B, F) anti-HA (with AlexaFluor 546 anti-rat IgG antibodies, red) antibodies. (C, G) Nuclei were
stained with DAPI in the same fields of each panel. (E-H) Transfected COS cells were treated with the proteasome inhibitor, MG132 (0.5 pM).
Aggresomes formed are indicated by arrowheads. The merged images were shown in (D and H).
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Figure 4 Expression of ZNF216 is induced by muscle atrophy. (A)
C2C12 myoblast cells were differentiated into myotubes, and treated
with 100 uM Dex for the indicated times. Northern blotting was
performed to reveal the effect of Dex on ZNF216 expression. The
entire coding region of ZNF216 was used as a probe, which
recognized 2.4 and 1.5kb mRNA species arising from alternative
splicing and polyadenylation. The loading control was elongation
factor o (EFla). (B) Fasting-induced muscle atrophy. Three mice
were fasted (F1 ~F3), and two mice (C1, C2) were fed freely. After 2
days, RNA was purified from gastrocnemius muscle, and Northern
blotting was performed to determine ZNF216 expression. The
membrane was re-probed with MuRF-1 and GAPDH. (C)
Denervation-induced muscle atrophy was induced by cutting the
sciatic nerve of the hindlimb of seven mice (1~7). The opposite
limb was sham operated as the control. At 7 days after surgery, total
RNA was purified from gastrocnemius muscles, and Northern
blotting was performed to detect ZNF216 expression. The mem-
brane was re-probed with MuRF-1 and GAPDH. (D) Cre-loxP-
mediated, constitutively active FOXO expression system. cDNA
encoding FLAG-tagged constitutively active FOX04 (AFX-TM) is
separated from the CAG promoter of an expression vector by a
loxP-flanked EGFP-poly(A) cassette. Infection with adenovirus ex-
pressing Cre recombinase (Cre) results in excision of the DNA
fragment located between the two loxP sequences and expression
of FLAG-tagged AFX-TM. (E) ZNF216 is downstream of FOXO. Total
RNAs were prepared from C2C12-AFX-TM cells at the indicated
times after infection with adenovirus expressing Cre (Cre) or lacZ
(control) and probed by Znf216 or EFle. A marked increase in
expression of Znf216 was observed only in Cre-infected cells.

Znf216* male mice were 42.66+7.06g (n=14) and
33.164+4.44¢g (n="9), respectively. The average weights of
female Znf216+/* and Znf216"" mice were 34.46+4.21 g
(n=14) and 26.8545.38g (n=11), respectively. After 30
weeks, both female and male Znf2167'® mice showed no
or subtle increases in weight, whereas Znf216%/" or
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Figure 5 Disruption of Znf216 gene in mice. (A) Gene trap strategy
of Znf216 gene. The structure of the trapping vector, VICTR48, is
shown in the upper line. The wild-type allele and the trapped,
transgenic allele follow the vector. The retroviral vector, VICTR48,
was integrated between exons 1 and 2 of the Znf216 gene and
transcription of downstream exons encoding ZNF216 was dimin-
ished. Exons are depicted by striped (noncoding exons) or sha-
dowed boxes (protein-coding exons) and numbered (El and E2).
LTR, long terminal repeat; SA, splice acceptor site; SD, splice donor
site; pA, polyadenylation signal, PGK, PGK promoter. (B} Northern
blot analysis. Total RNA was prepared from brains of Znf216%/+,
ZnfF216 7/ or Znf216'*""* mice. Full-length mouse ZNF216 cDNA
was used as a probe. The membrane was re-probed using an EFla
probe. (C) Immunoblot analysis. Extracts from brain of Znf216/*,
Znf216 /% or Znf216"°"™ mice were immunoblotted with anti-
body against ZNF216. The membrane was re-probed using anti-
tubulin antibody. (D) Growth curve of Znf216™®/ mice. Body
weights at each time point of Znf216*/*and Znf216"™"® mice
were indicated as open square boxes (males) or circles (females)
and closed square boxes (males) or circles (females), respectively.
*P<0.05; **P<0.005.

Znf216/"* mice gained weight as they aged (Figure 5D).
The size of most organs in Znf216/** mice was reduced in
proportion with body weight. However, the fat volume of
aged (>30 weeks of age) Znf216"*"" mice was significantly
decreased, suggesting that the marked difference in body
weight between wild-type and aged Znf216"¥'® mice is
mainly caused by decreased fat mass seen in Znf216"*/'&
mice (not shown). Detailed phenotypic characterization of
aged mutant mice will be provided elsewhere.

Znf216'°*/'°* mice exhibit partial resistance to
denervation-induced muscle atrophy

To further explore the involvement of ZNF216 in muscle
atrophy, neurectomy of sciatic nerve was undertaken in
wild-type and Znf216'%/" mice. As shown in Figure 6A, 7
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days after denervation, significant muscle weight loss and
reduction in fiber sizes of the gastrocnemius muscle were
observed in wild-type mice. By contrast, such decreases in
muscle weight were significantly attenuated in Znf216"/'™
mice (Figure 6A). Sections of gastrocnemius muscle also
showed larger fibers in muscle from neurectomized
Znf216"/%* mice than in control muscle (Figure 6B).
However, there was no significant difference in fiber area
between sham-operated wild-type and Znf216'/ mice
(wild type +sham operated, 1988+ 530 um?; wild type + de-
nervation, 1379 + 345 umz; lex/lex + sham  operated,
17764484 um?; lex/lex 4+ denervation, 1393 4344 um?). As
shown in Figure 6C, the reduction in fiber area was also
less apparent in an2161’3x/ ' mice compared to wild-type
mice. These results suggest that ZNF216 plays a crucial role
in reduction of muscle mass on denervation-induced muscle
atrophy.

Abnormal accumulation of ubiguitinylated proteins

in muscle from Znf216'*/'"** mice

To investigate what abnormalities occur during denervation-
induced muscle atrophy in Znf216"*®* mice, we examined
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Figure 6 Denervation induced muscular atrophy was attenuated in
ZNF216"%"* mice. (A) Reduction of GA muscle weight upon
neurectomy. Percent decreases in muscle weights are shown as
a percent of control, calculated as the left/right muscle weights.
(B) Cross-sections from gastrocnemius muscle were stained by
indirect immunofluorescence with anti-laminin. The reduction in
size was also significant in muscle fibers of control mice but less in
Znf216%*_(C) Muscle fiber cross-sectional areas were measured
in transverse tissue section (B). Percent relative fiber area of
denervated muscle to control fiber area (sham-operated) are shown.
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expression levels of factors involved in muscle atrophy. As
expected, expression of MAFbx/Atrogin-1 and MuRF-1 was
dramatically induced by denervation-induced muscle atrophy
in gastrocnemius muscle from wild-type mice (Figure 6GA).
In Znf216" mice, expression of MAFbx/Atrogin-1 and
MuRF-1 was also induced at levels comparable to those
seen in wild-type mice. Induction of Pmsal and Pmsdll,
genes encoding the 265 proteasome subunits «6 and Rpn6,
respectively, was also indistinguishable between Znf21 6™
and wild-type mice (Figure 7A). Furthermore, proteasome
activities in gastrocnemius muscles were comparable
between wild-type and Znf216"*" mice (Figure 7B). Thus,
induction of relevant ubiquitin ligases or proteasome compo-
nents was not affected in Znf216"'® mice. It is known that
ubiquitinylated proteins accumulate during muscle atrophy
(Medina et al, 1991; Wing et al, 1995). As shown in
Figure 7C, following denervation, ubiquitinylated proteins
accumulated in the gastrocnemius muscle of wild-type
mice, but higher levels of ubiquitinylated proteins accumu-
lated in muscle derived from Znf216""® mice (~2-fold:
P<0.001 in neurectomized Znf216'°/%* versus wild-type
muscle). Similar results were obtained by fasting-induced
muscle atrophy, although no difference in the levels of
ubiquitinylated proteins from controls (sham-operated or
fed) was observed between genotypes (Figure 7C). These
results indicate that ZNF216 is a critical regulator of muscle
atrophy, most likely functioning to regulate degradation of
muscle proteins without altering expression of proteasomal
components or known E3 ligases.

Effect of ZNF216 on UPS-mediated protein degradation
Accumulation of ubiquitinylated protein under any circum-
stance might be because of loss of inhibition of ubiquitinyla-
tion and/or deubiquitinylation (DUB). However, no
inhibition or DUB activity was observed (Supplementary
Figures S4 and SS5). As shown in Figure 7D, association of
ZNF216 protein to the proteasome was significantly increased
when atrophy was induced, suggesting that ZNF216 may be
involved in association of ubiquitinylated proteins and the
proteasome. The biochemical activity of ZNF216 is similar to
that of the UPS proteins, hHR23 and hPLIC, both of which
have a shuttle function and are known to bind to both
polyubiquitinylated proteins and the 26S proteasome
(Hartmann-Petersen and Gordon, 2004; Elsasser and Finley,
2005). Interestingly, overexpression of hHR23 and hPLIC
results in stabilization of unstable proteins such as p53
(Kleijnen et al, 2000; Glockzin et al, 2003). To determine if
ZNF216 functioned similarly, we employed a degradation
system using unstable GFP (Bence et al, 2001). In this system,
the CL1 peptide, which functions as a degron, is fused to
EGFP (EGFP-CL1). Degradation by conjugation with the
degron is mediated by the UPS (Bence et al, 2001). EGFP-
CL1, constitutively expressed in HEK293 cells, is unstable
and the estimated half-life (t;,,) of EGFP-CLI in this system
is about 11 min. Ubiquitinylated EGFP-CL] protein stabilized
by treatment with a proteasome inhibitor was associated
with ZNF216 but EGFP itself was not (not shown). As
shown in Figure 8A, protein degradation was markedly
retarded in the presence of ectopic ZNF216 (t;,,>30min)
compared to cells transfected with the loss of function mutant
ZNF216M3 or mock-transfected cells. Rapid turnover of
EGFP-CL1 protein was inhibited by treatment with the
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Figure 7 Changes in UPS upon muscular atrophy. (A) Expression of UPS components in denervation-induced muscular atrophy. Total RNAs
were purified from gastrocnemius muscle, and Northern blotting was performed using indicated probes. Expression of genes for ubiquitin-
ligases, such as MAFbx or MuRF-1, and proteasome subunits PSMA1 and PSMD11 was induced by muscle atrophy at comparable levels
between wild-type and ZNF216™/™™ mice. (B) Proteasome activity. Proteasome activities in muscle extracts from wild-type or ZNF216%/
mice were measured and are shown as arbitrary units. No significant difference in proteasome activity between wild-type and ZNF216""% was
observed. (C) High levels of ubiquitinylated proteins accumulated in muscles from ZNF216"%* mice than in muscles from wild-type mice.
Muscle exiracts from wild-type or ZNF216'"%* mice were subjected to immunoblotting using anti-ubiquitin antibody to analyze levels of
ubiquitinylated proteins. Left and right panels show fasting-induced and denervation-induced muscle atrophy, respectively. Each membrane
was re-probed with anti-actin antibody. (D) Association of ZNF216 with the proteasome was increased upon atrophy. The proteasome fractions
in muscle extracts from fed (ad [ib) or fasted (fasting) mice were precipitated with GST-Ubl or GST only as a negative control. Endogenous
ZNTF216 protein was co-precipitated with the proteasome, which is probed by the anti-S10 antibody.

proteasome inhibitor MG132 (MG132, Figure 8B). The levels
of the proteins stabilized by MG132 were comparable among
cells transfected with ZNF216 constructs, indicating that
protein synthesis of EGFP-CL1 was not significantly
affected by ectopic expression of ZNF216 (MG132,

overexpression of ZNF216 inhibits degradation of unstable
proteins via the UPS.

Discussion

Figure 8B). ZNF216WT, and to a lesser extent the mutants
M1 and M2 but not M3, attenuated degradation (NT,
Figure 8B). Thus, as is the case with other shuttle proteins,
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ZNF216 is an atrogene
In this report, we show that Znf216%/%* mice exhibit resis-
tance to denervation-induced muscle atrophy. It has been
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Figure 8 Ectopic expression of ZNF216-affected protein degrada-
tion. {(A) Degradation of EGFP-CL1 protein was delayed by over-
expression of ZNF216. 293 cells stably expressing EGFP-CL1 were
transfected with plasmid of ZNF216WT, ZNF216M3 or pcDNA3
(mock). Estimated half-lives of the EGFP-CL1 are 35, 11 and
11 min in ZNF216WT-, ZNF216M3- and mock-transfected cells,
respectively. De novo protein synthesis was arrested by cyclohex-
imide (CHX). The membrane was re-probed with tubulin antibody
to control for protein loading (tubulin) and FLAG antibody to detect
ZNF216 expression (FLAG). (B} Degradation of EGFP-CL1 protein in
the presence of various ZNF216 constructs. HEK293 cells stably
expressing EGFP-CL1 were transfected with plasmids expressing
the indicated mutants. Transfected cells were not treated (NT) or
MG132-treated (MG132), and EGFP-CL1 protein was detected with
an anti-GFP antibody (EGFP-CL1). The membrane was re-probed
with tubulin antibody to control for protein loading (tubulin) and
FLAG antibody to detect ZNF216 expression (FLAG).

shown that TNFa induces catabolic conditions through UPS
during cancer cachexia (Mitch and Price, 2001). Recently, it
has been reported that mice deficient in molecules involved
in the NF-xB pathway exhibit resistance to muscular atrophy
(Cai et al, 2004; Hunter and Kandarian, 2004; McKinnell and
Rudnicki, 2004). On the other hand, the IGF-FOXO axis has
been suggested to regulate muscle mass through induction of
‘atrogenes’ such as Murfl and MAFbx/Atrogin-1 (Sandri
et al, 2004; Stitt et al, 2004). Although we provide evidence
that Znf216 is downstream of FOXO, the NF-xB pathway
could represent an alternative signal inducing ZNF216.
Indeed, we have identified Znf216 as a gene induced by
RANKL, a TNF family ligand (Hishiya et al, 2005) which
activates the NF-xB pathway through RANK (Anderson et al,
1997; Lacey et al, 1998). Moreover, TNFo and IL-18 upregu-
late expression of ZNF216 in fibroblasts and macrophages
(Hishiya et al, 2005). These results suggest that Znf216 may
be activated by NF-xB. Huang et al (2004) recently reported
that ZNF216 inhibits the NF-xB pathway. Whereas treatment
with TNFu or overexpression of TRAFG dramatically acti-
vated a reporter driven by NF-kB response elements, ectopic
expression of A20/TNFAIP3 but not ZNF216 inhibited NF-xB
activation (not shown). Using mouse embryonic fibroblasts,
splenocytes or bone marrow cells from Znf216® or wild-
type mice, no significant differences were observed in TNFa-
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dependent NF-xB activation, LPS-induced cytokine expres-
sion or proliferation (unpublished data). Therefore, ZNF216
seems to function as a downstream effector (i.e., a compo-
nent of the UPS) rather than a specific negative regulator of
NF-xB signaling, although ZNF216 function in that pathway
is still under investigation. Whereas expression of ZNF216 is
not restricted to muscle, such expression was induced upon
muscular atrophy and loss of function of Znf216 promotes
resistance to denervation-induced atrophy, thereby suggest-
ing that it fulfills the definition of an ‘atrogene’

As it is in skeletal muscle, ZNF216 is highly expressed in
the brain (Scott et al, 1998). Aberrations in the UPS have
been documented in the pathogenesis of neurodegenerative
diseases such as Parkinson’s and Huntington’s diseases (Ross
and Poirier, 2004). Massive accumulation of ubiquitinylated
proteins, which are often aggregated and impair the UPS
leading to neuronal degeneration, has been observed in these
pathogenic conditions (Ciechanover and Brundin, 2003;
Korhonen and Lindholm, 2004). In cultured cells, blocking
the UPS by proteasome inhibitors leads to accumulation of
ubiquitinylated proteins. These ubiquitinylated proteins are
then transferred to perinuclear locations and form aggre-
somes (Johnston et al, 1998). As shown here, ZNF216 is
localized in aggresomes together with ubiquitinylated pro-
teins. Interestingly, proteomic analysis of a protein complex
containing HDACG6, a protein often associated with aggre-
somes (Kawaguchi et al, 2003), showed that the complex
included AWP1, a structural homologue of ZNF216
(Seigneurin-Berny et al, 2001). Although it is unclear whether
ZNF216 is involved in aggresome formation, there is great
interest in the role of ZNF216 in the pathogenesis of neuro-
degenerative diseases.

Molecular function of an A20-containing protein,
ZNF216

In muscle atrophy, more ubiquitinylated proteins accumulate
in muscle from Znf216'°/" mice than in muscle from wild-
type mice, suggesting an abnormal UPS function. Inhibition
of neither polyubiquitinylation nor DUB activity was ob-
served in ZNF216. Although our in vivo data showed sig-
nificant accumulation of polyubiquitinylated proteins in
muscle from Znf216™" mice, there is a possibility that
ZNF216 is a ubiquitin-ligase. It has been recently reported
that A20/TNFAIP3 protein possesses ubiquitin ligase activity
against RIP through its ZnF-A20 repeats (Wertz et al, 2004).
We asked whether the ZnF-A20 of ZNF216 exhibited activity
similar to A20/TNFAIP3, but in vitro ubiquitinylation assays
were negative (Supplementary Figure S6). In fact, the ZnF-
A20 of A20/TNFAIP3 protein does not bind polyubiquitin
chains as does the ZnF-A20 of ZNF216 (Supplementary
Figure S1). Furthermore, there are seven ZnF-A20 motifs in
A20/TNFAIP3 and only the fourth is responsible for E3
activity, suggesting that the ZnF-A20 motif is not inherently
active enzymatically (Wertz et al, 2004). However, we cannot
exclude the possibility that ZNF216 may possess DUB or E3
activity highly specific to an unknown substrate without
nonspecific or self-ubiquitinylating activity.

ZNF216 likely acts as a bridging or a shuttle factor of
ubiquitinylated proteins targeted to the proteasome. Shuttle
proteins, such as Rad23p and Dsk2p, share interfaces for
ubiquitinylated proteins and the proteasome (Hartmann-
Petersen and Gordon, 2004; Elsasser and Finley, 2005).

The EMBO Journal VOL 25 | NO 3| 2006 561



A novel ubiquitin-binding protein, ZNF216
A Hishiya et af

Although shuttle proteins are required for efficient protein
degradation, ectopic expression of hHR23 or hPLIC, the
human homologues of Rad23p or Dsk2p, respectively, lead
to stabilization of p53 protein (Kleijnen et al, 2000; Glockzin
et al, 2003). These outcomes may be caused by titration
effects due to overexpression and are commonly observed
following misexpression of shuttle proteins in yeast and
mammals (Hartmann-Petersen and Gordon, 2004; Verma
et al, 2004). Here, we show that ZNF216 has a ubiquitin
binding domain and can associate with the 26S proteasome
even in the absence of ubiquitin binding, and that over-
expression of the zinc-finger protein attenuates protein de-
gradation rate. There is no structural counterpart of ZNF216
in the yeast genome. We asked whether ZNF216 could rescue
the bridging function of RAD23 or DSK2 mutants by introdu-
cing ZNF216 into Arad23Adsk2 yeast cells, but the phenotype
could not be rescued (data not shown). This suggests that
ZNF216 is not the functional orthologue of these proteins.
Recently, the presence of an alternative pathway of Rad23p/
Dsk2p in protein targeting to the proteasome has been
suggested (Bazirgan and Hampton, 2005; Richly et al,
2005). It has been reported that tetra-ubiquitin constitutes
the minimum proteasomal targeting signal and that the
length of polyubiquitin chain may determine the targeting
route (Thrower et al, 2000; Bazirgan and Hampton, 2005;
Richly et al, 2005). Notably, ZNF216 preferentially binds
polyubiquitin chains longer than di- or tri-ubiquitin
(Figure 1D). Therefore, these data suggest that ZNF216 is a
novel ubiquitin recognition factor, required for efficient pro-
tein degradation via a pathway different from the canonical
Rad23p/Dsk2p pathway. Although it is now under investiga-
tion, the characterization of ZnF-AN1, an ANl-type zinc-
finger domain located at the C-terminus of ZNF216, may
reveal the precise molecular function of ZNF216.

Materials and methods

Antibodies

An anti-ZNF216 antibody was raised by immunizing rabbits against
synthesized peptide corresponding to the C-terminal sequence of
mouse ZNF216. Mouse monoclonal antibodies for FLAG (Sigma, St
Louis, MO) and ubiquitin (Santa Cruz Biotechnology, CA), rabbit
polyclonal antibodies for ubiquitin (Affiniti Research Products) and
actin (Neo Markers, CA), a rat monoclonal antibody for HA (Roche
Diagnostics, Mannheim, Germany), and a rabbit polyclonal anti-
body against S10a/Rpn7p (Affiniti Research Products) were
purchased from the indicated manufacturers. For indirect immuno-
fluorescence staining, AlexaFluor 488 goat anti-mouse IgG or
AlexaFluor 546 goat anti-rtat IgG antibody was obtained from
Molecular Probes, OR.

Identification of interacting proteins

RNA was purified from RAW264.7 cells stimulated by RANKL, and
used to construct the yeast library (MatchMaker Library Construc-
tion & Screening Kit, Clontech). Yeast two-hybrid screening with
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pGBKT7-ZNF216 was performed as described previously (Masuda
et al, 2001). Identification of the co-immunoprecipitated proteins
with N- or C-terminally FLAG-tagged ZNF216 (ZA20D2) or AWP1
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Experimental models of muscle atrophy

For fasting-induced muscle atrophy, 8-week-old C57BL6 male mice
were deprived of food but given free access to water. After 2 days,
gastrocnemius muscles were harvested for each experiment.
Denervation-induced muscie atrophy was performed by dissecting
the sciatic nerve of one hindlimb, and the other hindlimb was sham
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experiment. All animal experiments were approved in advance by
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evaluate statistical differences between the two groups.

Znf216-deficient mice

Generation of heterozygous Znf216*/%" mice was essentially done
by the gene trap method at Lexicon Genetics (Zambrowicz et al,
1998). Briefly, ES cells heterozygous for the trapped Znf216 gene
were microinjected into eight-cell-stage ICR mouse embryos and
transplanted into uteri. Chimeric mice were crossed to C57BL/6J
mice. Northern and immunoblot analyses confirmed disruption of
the gene (see text). For genotyping, primers were as follows: KO-A,
ACCGACAGGATAGACAATGGCAGAG; KO-B, CGATTTTAAGAAAG
GAGGCTCTGACC; [LTR2, AAATGGCGTTACTTAAGCTAGCTTGC.
The wild-type and inserted alleles were detected by PCR using
KO-A and KO-B (0.5kb), and LTR2 and KO-B (0.3 kb), respectively.

EGFP-CL1 degradation assay
The nucleotide sequence encoding the CLl1 peptide
(ACKNWFSSLSHFVIHL) (Gilon et al, 1998) was inserted into the
Xhol/EcoRl site of pEGFP-C3, and the resulting plasmid was
designated pEGFP-CL1. A cell line stably expressing EGFP-CL1
(293EGFP-CL1) was generated by transfection of pEGFP-CL1 into
293 cells. For the degradation assay, ZNF216 expression vectors
were transfected into 293EGFP-CLI cells and cells were harvested
48h after transfection. MG132 (final 10 uM) or cycloheximide (final
100 pg/ml) was added to the culture at 12 or 1h before harvest,
respectively. Protein extraction was as described above.
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RNA interference has been applied for the prevention of virus infections in mammalian cells but has not
succeeded in eliminating infections from already infected cells. We now show that the transfection of JC

virus-infected SVG-A human glial cells with small interfering RNAs that target late viral proteins, includin

o
el

agnoprotein and VP, results in a marked inhibition both of viral proiein expression and of virus production.
RNA interference directed against JC virus genes may thus provide a basis for the development of new
strategies to control infections with this polyomavirus.

IC virus (JCV) belongs to the polyomavirus family of dou-
ble-stranded DNA viruses and causes progressive multifocal
leukoencephalopathy (PML) in humans (23). PML is often
observed in immunosuppressed individuals, such as those with
AIDS or advanced malignancies. Although highly active anti-
retroviral therapy, which includes treatment with protease in-
hibitors, improves the survival rate of patients with AIDS-
related PML. (2, 7), current therapeutic approaches to PML
are not satisfactory. Treatment with cytosine arabinoside (8) or
cidofovir (15) has failed to prove efficacious in individuals with
PML. Trials of topotecan, which inhibits DNA topoisomerase
and blocks JCV replication in vitro (11), are currently under
way in such individuals. RNA interference (RNAI) with small
interfering RINAs (siRNAs) has recently become a widely used
approach for repressing cellular or viral gene expression (5, 6,
10, 16). Although several studies have shown that virus in-
fections can be prevented by a prior or concomitant admin-
istration of siRINAs, the elimination of established infections
from cells or tissues by RNAi has not been demonstrated
(1.

To attempt to inhibit JCV production in infected cells, we
designed the following siRNAs (Dharmacon) to target three
different JCV proteins (Fig. 1a): VP274 and VP691 for VP1,
Agl22 and Agl47 for agnoprotein, and LT78 and LT134 for
the large T antigen (T-Ag). The JCV early and late RNAs are
generated by alternative splicing. The early RNAs encode
T-Ag and the small t antigen (14), whereas the major late RNA
encodes both agnoprotein and VP1 (21). We introduced the
JCV-specific siRNAs into cells of the SVG-A (simian virus 40
[SV4Q]-transformed human fetal glial cells) line (13) that had
been inoculated with JCV (Mad-1/SVEA strain; 1,024 hemag-
glutination activity units per 3 X 10° cells) 4 days previously.
ICV late proteins, including VP1 and agnoprotein, were de-
tected by an immunoblot analysis at 2 days postinfection (dpi)
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and Cellular Pathology, Hokkaido University School of Medicine,
N13, W7, Kita-ku, Sapporo 060-8638, Japan. Phone: 81-11-706-5053.
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and were abundant at 4 dpi (Fig. 1b). At 4 and 6 dpi, each
siIRNA (120 pmol per 6 X 10 cells) was introduced individu-
ally into SVG-A cells by the use of Lipofectamine 2000 (In-
vitrogen) (Fig. 1c). About 80% of the SVG-A cells were suc-
cessfully transfected with a fluorescein-conjugated Agl22
siRNA (data not shown). The abundance of JCV proteins in
siRNA-transfected cells was examined 48 h after the second
transfection by an immunaoblot analysis with antibodies specific
for agnoprotein (3, 18, 19), VP1 (12, 22), or SV40 T-Ag (Ab-2;
Oncogene Research Products) (20). Cells transfected with
Agl22, Agld7, or VP274 manifested a marked depletion of
viral proteins compared with cells transfected with a control
siRNA with a scrambled sequence which is not present in
mammalian cells (Dharmacon) (Fig. 1d). Agl22 inhibited the
expression of VP1 as well as that of agnoprotein in a dose-
dependent manner, but it did not affect the abundance of
T-Ag, lamin A/C, or actin (Fig. 1d and e). The antibodies to
SV40 T-Ag did not allow for differentiation between JCV T-Ag
and 5V40 T-Ag in SV40-transformed cells, as these two pro-
teins share >70% amino acid sequence identity (4). We
therefore assessed the effects of L'T78 and LT134 on JCV
T-Ag expression by reverse transcription (RT) and PCR; the
abundance of ICV T-Ag mRNA was not affected by the
transfection of cells with either siRNA (data not shown).
We also examined the effects of Agl22 and VP274 siRNAs
by an indirect immunofluorescence analysis in JCV-infected
cells. At 48 h postiransfection, methanol-fixed cells were
stained with antibodies to VP1 or agnoprotein and then with
Alexa Fluor 488-conjugated goat antibodies to rabbit immu-
noglobulin G (Molecular Probes). Cells positive for VP1 or
agnoprotein were visualized with a laser-scanning confocal mi-
croscope (Olympus) and counted in six fields of view. The
proportion of agnoprotein-positive cells was significantly re-
duced for cells transfected with Agl22, VP274, or both siRNAs
compared with the value for cells transfected with the scram-
bled siRNA (Fig. 2a). Similarly, the percentage of VP1-posi-
tive cells was also reduced by transfection with Agl22, VP274,
or both Agl22 and VP274. We confirmed the inhibition of the
expression of agnoprotein and VP1 in cells transfected with
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FIG. 1. Effects of postinfection RNAi on the abundance of JCV proteins in JCV-infected SVG-A cells. (a) Schematic representation of major
early and late mRNAs of JCV. Major early mRNAs encode the small t antigen and T-Ag, which are translated as splicing variants. Two major forms
of lale mRNA encode either agnoprotein and VP1 or agnoprotein, VP2, and VP3. The regions of the viral RNAs targeted by the siRNAs are
indicated by arrows. (b) Immunoblot analysis of the abundance of VP1 and agnoprotein of JCV in SVG-A cells at the indicated times after
infection with JCV. (¢} Schedule for JCV infection and siRNA transfection in SVG-A cells. (d) Immunoblot analysis of the indicated proteins in
JCV-infected cells subjected to transfection with the indicated siRNAs. (e¢) Immunoblot analysis of the indicated proteins in JCV-infected cells
subjected to transfection with the Ag122 siRNA at 60 or 120 pmol/well or with a lamin A/C-specific siRNA. Control (infected) cells were subjected

to mock transfection.

Agl22, VP274, or both siRNAs by an immunoblot analysis
(Fig. 2b). The extent of inhibition of viral protein expression
achieved with the combination of Agl22 and VP274 did not
differ significantly from that achieved with either siRNA alone.
The observed inhibition of both agnoprotein and VP1 expres-
sion by either Agl22 or VP274 was likely due to the degrada-

tion of the polycistronic late RNA for both of these proteins
induced by each siRNA.

It is thought that siRNAs target mRNAs containing the
same sequences and induce their cleavage. We therefore ex-
amined the effects of Agl22 and VP274 on the abundance of
JCV mRNAs. Total RNAs were isolated from cells 12 or 24 h
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FIG. 2. Indirect immunofluorescence analysis of the effects of
RNAI on viral protein expression in JCV-infected SVG-A cells. (a)
The proportion of cells that were positive for agnoprotein or VP1 was
determined by an indirect immunofluorescence analysis 48 h after
transfection with the indicated siRNA(s). The data are expressed as
percentages of the proportion determined for JCV-infected cells trans-
fected with the scrambled siRNA (control) and are means = standard
deviations (SD) of values from at least three independent experiments.
#* P < (.02 versus the value for cells transfected with the scrambled
siRNA (Student’s ¢ test). (b) Immunoblot analysis of VP1, agnopro-
tein, and actin expression in JCV-infected cells transfected with the
indicated siRNA(s). (¢} The signals for agnoprotein and VP1 were
quantified with an image analyzer and expressed as percentages of the
value for cells transfected with the scrambled siRNA.

after transfection with a siRNA, treated with DNase I, and
subjected to RT with a Superscript first-strand synthesis system
(Invitrogen) followed by real-time quantitative PCR with a
GeneAmp5700 instrument (Applied Biosystems). The amount
of each viral mRNA was normalized to that of B-actin mRINA
in the same sample. The abundance of agnoprotein and VP1
mRNAs was significantly reduced in JCV-infected cells trans-
fected with Agl22, VP274, or both siRNAs (Fig. 3). The re-
duction in the amounts of viral mRNAs, however, was not as
large as that in the amounts of the encoded proteins. We
eliminated the possibility of contamination of the viral DNA in
the RT-PCR samples by (i) performing a DNase I treatment
prior to RT-PCR, without the reverse transcriptase, and (ii)
performing an RNase A treatment prior to the reverse tran-
scriptase reaction. For both treatments, the RT-PCR signal
was lost, suggesting that there was no contamination of the
viral DNA in the RT-PCR samples. Whereas siRNAs are
known to be incorporated into an RNA-induced silencing com-
plex and to direct RNA-induced silencing complex-mediated
sequence-specific mMRNA degradation (9), the detailed mech-
anism of this process remains unclear. One possible explana-
tion for the difference in the magnitude of the effects of the
JCV-specific siRNAs on the amounts of viral RNAs and pro-
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FIG. 3. Depletion of viral RNAs by RNAIi in JCV-infected SVG-A cells. Total RNAs isolated from JCV-infected cells 12 or 24 h after
transfection with the indicated iIRNAs were subjected to an RT-PCR analysis of agnoprotein and VP1 mRNAs. The data were normalized to the
amount of B-actin mRNA and are expressed as percentages of the normalized value for ICV-infected cells transfected with the scrambled siRNA
(control); they are means = SD of values from at least three independent experiments. *, P << 0.05, and **, P << 0.02 versus the value for cells

transfected with the scrambled siRNA.
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FIG. 4. Inhibition of JCV production by RNAI in SVG-A cells.
Extracts prepared from JCV-infected cells 36 h after transfection with
the indicated siRNAs were assayed for hemagglutination activity
(IIA). The data are expressed as HA titers per 25 pl of cell extract and
are means * SD of values from at least three independent experi-
ments. **, P < 0.02 versus the value for cells transfected with the
scrambled siRNA.

teins is that the target mRNA bound with a siRNA might be
detected by RT-PCR before its degradation.

To examine the effect of RNAi on JCV production, we
measured the hemagglutination activity (17, 22) of JCV-in-
fected SVG-A cells 36 h after siRNA transfection. The hem-
agglutination activities of cells transfected with Agl22, VP274,
or both of these siRNAs were 6.7, 9.3, and 4.1%, respectively,
of that for cells rransfected with the scrambled siRNA (Fig. 4).
Thus, siRNAs that target agnoprotein or VP1 greatly inhibited
JCV production in infected cells.

In summary, we have achieved a marked inhibition of JCV
production by RNAI in cells already infected with the virus.
Qur results may have important implications for the develop-
ment of a new approach to the treatment of PML. The appli-
cation of an RNAi-based antiviral strategy for PML will re-
quire an efficient and specific delivery of siRINAs to the central
nervous system.
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