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Effects of ocular dominance on binocular
summation after monocular reading

adds

Tomoya Handa, CO, PhD, Kimiya Shimizu, MD, Kazuo Mukuno, MD,
Takushi Kawamorita, CO, Hiroshi Uozato, PhD

PURPOSE: To investigate the relationship between ocular dominance and binocular summation with
monocular reading adds.

SETTING: Department of Orthoptics and Visual Science, School of Allied Health Sciences, Kitasato
University, Sagamihara, Kanagawa, Japan.

METHODS: Contrast sensitivities were measured by having subjects view contrast charts at spatial
frequencies of 1.5, 3.0, 6.0, 12.0, and 18.0 cycles per degree after the addition of positive spherical
lenses that ranged from -+ 1.0 to + 3.0 diopters (D). Through the use of a balance technique, the test
group was quantitatively divided into 12 weak and 8 strong ocular dominance subjects on the basis of
binocular rivalry. in study 1, binocular contrast sensitivity was measured in the weak and strong ocular
dominances by adding a positive spherical lens in front of 1 eye, whereas the other eye was fixed at
a corrected distance.

RESULTS: In study 1, the binocular summation was observed only after adding positive spherical
lenses in the nondominant eye, The differences in binocular contrast sensitivity that occurred after
adding a positive spherical lens in the dominant eye versus that seen in the nondominant eye were
statistically significant in the strong ocular dominance subjects who had +1.5 D and +2.0 D de-
focuses (P<.05; analysis of variance).

CONCLUSIONS: Binocular summation was effectively maintained with reading adds in the
nondominant eye and was significantly influenced by the magnitude of ocular dominance. Evaluating
binocular summation after monocular reading adds seems to be a good method to evaluate

adaptability to monovision.
© 2005 ASCRS and ESCRS

Monovision is a means of presbyopic correction in which
the dominant eye is conventionally corrected for distance
and the nondominant eye corrected for near.' Although the
success rate for monovision with contact lenses and
refractive surgery has been quite high,® not all those
with monovision achieve a successful final result. In
general, it has been suggested that ocular dominance has
a strong effect on the success or failure of monovision.
Recently we used a new evaluation method to quantitate
ocular dominance by applying monovision during cataract
surgery. We demonstrated there was a strong relationship
between the quantity of ocular dominance and patient
satisfaction after monovision induction by intraocular lens
implantation.®’ Therefore, to improve the success rate and
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techniques for monovision, we need to determine the exact
role that ocular dominance plays in monovision subjects.
Ideally, monovision subjects should be able to see
clearly at all distances. Thus, monovision needs to retain
a certain level of binocular summation, clear binocular
vision that maintains intraocular blur suppression® (the
ability to suppress the blur image in 1 eye) regardless of the
distance should the flexibility change in either of the eyes.
Therefore, the tolerance for binocular summation with
monovision plays an important role in monovision suc-
cess. Binocular summation®'? has been demonstrated by
examining the contrast sensitivities that exist in the 2 eyes
of a subject. Binocular contrast sensitivity has been shown
to be higher than that seen for monocular vision and is
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OCULAR DOMINANCE ON BINOCULAR SUMMATION

usually because the 2 eyes work together to maintain a
certain level of summation even when the 2 eyes have un-
equal sensitivities. Based on this, the upper limit of the
reading add in monovision has been set at 2.5 diopters (D)
because the binocular contrast sensitivity reverts back to
a monocular level when reading adds in the nondominant
eye go beyond this.' This means that for reading adds of less
than 2.5 D in the nondominant eye, binocular summation
can be demonstrated.

The advantage that is gained by selecting the non-
dominant eye for the reading add and the dominant eye for
distance involves the effects of ocular dominance.''**?
For example, driving safety,'? intraocular blur suppres-
sion,'* and ability in visual-guided locomotor tasks'*'” all
involve the dominant eye for distance, and this designation
has become the accepted conventional method for mono-
vision procech;lres.l However, the reason for the advantage
that is gained by selecting the nondominant eye for reading
adds is still unclear, especially regarding the differences in
the binocular summation between the dominant eye and
nondominant eye after reading adds.

In this study, we investigated the relationship between
ocular dominance and binocular summation after monoc-
ular reading adds while paying attention to magnitude of
ocular dominance.

SUBJECTS AND METHODS

Twenty healthy subjects, aged 20 to 28 years, participated in
the study. After written informed consent was obtained, both eyes
in each subject were measured. All participants had normal
ophthalmic findings with the exception of minor refractive er-
rors in several subjects, and all had visual acuities of at least
1.2 (logMAR) for distance (5 m) and 1.0 (logMAR) for near (30
cm) vision. The dominant eye was determined through the use of
sighting dominance (hole-in-card test) and sensory dominance
(binocular rivalry), and the data obtained provided a means of
observing the equivalence of sighting and sensory eye dominance.

Sensory dominance was evaluated by a balance technique
using binocular rivalry. Subjects were presented with binocular
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rivalry targets (ie, rightward-tilted [45 degrees] and leftward-
tilted [135 degrees]) shaped patches of rectangular cycles per
degree (cpd) gratings that were 4 degrees in size. The contrast of
the target in the dominant eye was varied with the range being
changed from 100% to 80% to 60% to 40% to 20%. The
nondominant eye was fixed at 100% in all trials. Subjects
estimated the exclusive visibility as a general dominance of the
trial target visibility when compared with that of the other targets.
For the dominant eye trials, subjects were told to press a button
when the dominant eye target was exclusively visible during the
time that the range was decreased from 100% to 20% for the
dominant eye target. For the nondominant eye trials, subjects
were told to press a button when the nondominant eye target was
exclusively visible during the time the nondominant eye target
was fixed at 100%. Each trial lasted 1 minute and was followed by
an inter-trial interval of 1 minute. All trials were repeated 2 times.

The qualities of ocular dominance were quantitatively
evaluated as the reversal point at which the exclusive visibility
of the nondominant eye crossed over with that of the dominant
eye. In this study, weak ocular dominance was defined as the
reversal point (at which the exclusive visibility of the non-
dominant eye crossed over with that of the dominant eye) in low
decreasing contrasts of 80% and 60% in the dominant eye target.
The strong ocular dominance was defined as the reversal point
that was observed at the high decreasing contrast of 40% and 20%
or when it did not occur at all in the dominant eye.

In the test group, weak dominance and strong ocular dom-
inance were in observed in 12 and 8 subjects, respectively.

Methods of Study 1

Binocular contrast sensitivity was measured in the strong and
weak ocular dominance subjects after the addition of a positive
spherical lens that was placed in front of 1 eye. Subjects were
asked to view contrast charts with spatial frequencies of 1.5, 3.0,
6.0, 12.0, and 18.0 cpd (VCTS6500, Vistech Consultants). The
powers of the positive spherical lenses that were added to the 1 eye
spanned the range from +1.0, +1.5, +2.0, +2.5, to +3.0 D.
The other eye was maintained at refractive conditions that
exhibited the best corrected visual acuity for distance. For the
dominant and nondominant trials, subjects were measured after
the addition of positive spherical lenses in the dominant eye and
nondominant eye, respectively. Each trial was followed by an
inter-trial interval of 1 minute. All trials were repeated 3 times.
Binocular summation was defined as the state at which the mean
binocular contrast sensitivity was higher than the mean monoc-
ular contrast sensitivity.

Data Analysis

The differences in the contrast sensitivity between the
dominant and nondominant eyes were evaluated by a repeated-
measures analysis of variance (ANOVA). A value of P = .05 was
considered significant.

RESULTS

Binocular contrast sensitivities in the dominant and
nondominant eye trials in the weak and strong ocular
dominance subjects are shown in Figures 1 and 2, re-
spectively. Variations of the contrast sensitivities obtained
by adding defocus lenses are shown separately in graphs
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Figure 1. Binocular contrast sensitivity function in the weak ocular dominance subjects after the addition of 0, +1, + 1.5, +2, + 2.5, and +3.0 D spherical
lenses in 1 eye. In all figures, the open triangles connected by the dash line represent the monocular contrast sensitivity of dominant eye with fuil distance
correction; these serve as a reference for the other data provided. The solid diamonds represent the binocular contrast sensitivities with 0.0 D add (upper left).
in subsequent figures, solid circles represent the binocular contrast sensitivities in the dominant eye trials and solid squares represent the binocular contrast

sensitivity in the nondominant eye trials. Bars correspond to the SD.

that plotted the 6 adding lenses of 0, +1.0, +1.5, +2.0,
+2.5, and +3.0 D. Binocular contrast sensitivities for the
dominant and nondominant eye trials identified a general
decrease for both the weak and strong ocular dominance.
The contrast sensitivities at +3.0 D tended to be lower than
those at +1.0 D. These variations in the dominant and
nondominant eye were statistically significant for all de-
focuses (P<<.05, ANOVA).

Binocular summation was defined as the condition in
which the binocular contrast thresholds were higher than
the monocular (dominant eye) contrast thresholds. In the
weak ocular dominance subjects, dominant eye trials did
not show summation for any spatial frequency. In contrast,
the nondominant eye trials not only exhibited summation
for the 1.5 cpd, 3 cpd, and 6 cpd of 1.0 D and 1.5 D, but also
for the 1.5 cpd of 2.0 D. In all defocuses, contrast
sensitivities in the nondominant eye trials were slightly
higher than those in the dominant eye defocuses. The
differences in the contrast sensitivity between the dominant
and nondominant trials were not statistically significant
(P>.05, ANOVA). In the strong ocular dominance, the
dominant eye trials did not exhibit summation for any of
the spatial frequencies. In contrast, the nondominant eye
exhibited summation in the 1.5 cpd and 3 cpd of L.OD. In
all trials, contrast sensitivities in the nondominant eye
defocuses were higher than those in the dominant eye
trials. The differences in the contrast sensitivity between
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the dominant and nondominant trials were statistically
significant in the 1.5 D and 2.0 D trials (P<.05, ANOVA).

DISCUSSION

The most important findings in this study were the
difference in the loss of binocular contrast sensitivity
between reading adds in the dominant and that in non-
dominant eye. The difference was a greater loss of contrast
sensitivity in the strong ocular dominance subjects. To
guarantee the reliability of the data for each subject, con-
trast sensitivity was confirmed as being identical by per-
forming 3 repeated measurements on different days.

Binocular summation begins to collapse if the monoc-
ular defocus exceeds a +1.5 D add.'® Theoretically, with
monovision, the corrected dominant eye is used for dis-
tance and the nondominant eye for near vision to en-
sure the ability to see clearly at all distances. Therefore,
successful monovision would require a near focus in the
reading eye of around 2.5 D to achieve clear reading vision.
Generally, it has been found that most monovision sub-
jects have a certain level of stereo acuity and exhibit very
high satisfaction levels with regard to the overall results.®
The assumption behind this practice is that it is easier to
suppress blur in the nondominant eye. For example, Schor
and Erickson'? indicated that blur suppression is greater
when the dominant eye is corrected for distance. Collins
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Figure 2. Binocular contrast sensitivity function in the strong ocular dominance subjects after the addition of 0, +1, +1.5, +2, +2.5, and + 3.0 D spherical
lenses in 1 eye. In all figures, the open triangles connected by the dash line represent the monocular contrast sensitivity of dominant eye with full distance
correction; these serve as a reference for the other data provided. The solid diamonds represent the binocular contrast sensitivities with 0.0 D add (upper left).
In subsequent figures, solid circles represent the binocular contrast sensitivities in the dominant eye trials and solid squares represent the binocular contrast
sensitivity in the nondominant eye trials. Bars correspond to the SD. With the +1.5 and 4 2.0 D defocus, statistically significant differences in binocular
contrast sensitivity between the dominant and nondominant eye were found (P<.05, ANOVA).

and Goode'” reported that when there was evidence of
equivalence of sighting and sensory dominance in the
dominant eye, it was easier to suppress blur in that eye.

These findings are consistent with our results, which
showed the nondominant eye trials had more effective blur
suppression than in the dominant eye trials. Moreover, it
appears that the difference between the 2 groups is that in
the strong ocular dominance, there is a greater loss of
contrast sensitivity in the dominant eye trials witha 1.5 D
spherical lens. This difference was not seen in the group
with weak ocular dominance. In other words, in dominant
and nondominant eyes with strong ocular dominance,
defocus results in a greater loss of contrast sensitivity than
with weak ocular dominance. These results suggest the
strong effects of ocular dominance in binocular summation
with monovision.

An important clinical finding in this study was the
difference in binocular summation between weak ocular
dominance and strong ocular dominance. Ocular domi-
nance is 1 of the important factors in monovision success
Recently, we indicated that strong ocular dominance is an
unfavorable factor in monovision success® and binocular
summation may be 1 of the important factors in mono-
vision success. Several reports'*® have demonstrated the
loss of binocular summation with monocular defocus in
monovision, but no studies have minutely investigated
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binocular summation in relation to ocular dominance.
Hence, evaluating binocular summation with reading
add in 1 eye appears to be a useful, practical method for
evaluating the adaptability to monovision. Further studies
are needed to clarify the effects of binocular summation in
relation to the magnitude of ocular dominance in success
and subjects’ satisfaction with monovision.
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Higher—-order wavefront aberrations in eyes implanted
with aspheric or spheric intraocular lens
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Risako Higa®! Kimiya Shimizu

Abstract. Purpose ! To compare higher-order wavefront aberrations in eyes implanted with aspheric or spheric in-
traocular lens (IOL). Cases and Methods : Twenty cataract patients underwent phacoemulsification-aspiration. In
each patient, one eye was implanted with spheric IOL and the fellow eye with aspheric IOL. These eyes were evalu-
ated by a wavefront analyzer. Higher—order aberrations were expanded into Zernike’s polynomial expression. Coma,
spherical aberration, and total higher~order aberration were compared as root mean square (RMS). Results : At pupil
diameter of 3 mm, the spheric aberration was significantly less in eyes with aspheric than sheric IOL. At pupil diame-
ter of 5 mm, spheric and total higher-order aberration was significantly less in eyes with aspheric than sheric IOL. At
both pupil sizes, the fourth-order spheric aberration was significantly less in eyes with aspheric than sheric IOL (p<
0.05). Conclusion : It is possible to reduce spheric aberration by using aspheric instead of spheric IOL.
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laboratory science

Evaluation of apparent ectasia of the posterior
surface of the cornea after keratorefractive surgery

Yoshiaki Nawa, MD, Kozo Masuda, ORT, Tetsuo Ueda, MD, Yoshiaki Hara, MD,

Hiroshi Uozato, PhD

Purpose: To calculate the apparent posterior corneal changes after keratorefractive
surgery and reevaluate corneal ectasia displayed by Orbscan (Orbtek).

Setting: Department of Ophthalmology, Nara Medical University, Nara, Japan.

Methods: Postoperative:preoperative magnification ratio of the posterior surface of
the cornea was calculated in a theoretical eye model.

Results: Assuming the preoperative corneal thickness is 600.00 um, the
preoperative refractive power of the anterior corneal surface is 48.0 diopters (D), the
refractive power of the cornea is 1.376, the ablation diameter is 6.0 mm, the
postoperative corneal thickness is 480.00 wm, the postoperative refractive power of
the anterior corneal surface is 38.0 D, and the posterior surface of the cornea does
not change postoperatively, the apparent image of the posterior surface of the cornea
becomes 0.778% smaller postoperatively. If the posterior radius of curvature of the
cornea is 6.2 mm, it becomes smaller by 48.24 pm. If this change directly affects the
difference map, the posterior surface of the cornea moves forward by 48.24 um.

Conclusion: The results correspond to the amount of ectasia in previous reports.

This artifact may explain the apparent ectasia detected by Orbscan.
J Cataract Refract Surg 2005; 31:571-573 © 2005 ASCRS and ESCRS

Does the posterior surface of the cornea truly
protrude after keratorefractive surgery? Since
Wang and coauthors’ first study,’ many authors have
reported posterior surface changes in the cornea after
keratorefractive surgery.”” In a discussion of Wang and
coauthors’ paper,® Maloney expressed surprise that
a cornea thicker than after hyperopic automated
lamellar keratoplasty (ALK) could lead to ectasia. He
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did not find evidence of ectasia in 38 post-ALK eyes in
which corneal thickness ranged from 126 to 236 pm.
Maloney suggested the posterior corneal changes might
reflect artifactual changes.

This issue has not been sufficiently investigated. We
agree that true keratectasia occasionally exists but think
that many reports of ectasia detected by Orbscan
(Orbtek) may be an artifact. We propose an explanation
of the apparent ectasia of the posterior corneal surface
after keratorefractive surgery.

Materials and Methods

Observation of the posterior surface of the cornea shows
an image that is magnified by a lens composed of the anterior
surface of the cornea and the corneal stroma. After
keratorefractive surgery, the ratio of magnification changes,
as reported.’

0886-3350/05/$-see front matter
doi:10.1016/}.jcrs.2004.05.050
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LABORATORY SCIENCE: ARTIFACT OF ORBSCAN

Briefly, we assume that the anterior radius of curvature is
r {mm), the refractive power of the anterior surface of the
cornea is K(diopter [D]), the central thickness of the cornea is
t{jvm), the preoperative suffix is 1, the postoperative suffix is
2, the refractive index of air is 7y (= 1.0), the refractive index
of the cornea is 7, and the posterior radius of curvature of the
cornea does not change after surgery.

In the paraxial theory, the preoperative magnification of
the corneal endothelial cells by the overlying corneal lens
{M1) is expressed in the following equation, in which the
distance between the anterior corneal surface and the image is
t’lz

M, =nxt\/t

where

'y = (n/n)/[L+ (21 /n) x K]

Similarly, the postoperative magnification of corneal
endothelial cells by the overlying corneal lens (M) is
expressed in the next equation, in which the distance between
the anterior corneal surface and the image is /5

My=nxt,)/t,

where
thy = (82/m)/[1+(22/m) X K]

Thus, the postoperative:preoperative magnification ratio
of the image (R) is expressed as follows (z < 0):

R=M2/M1 = [1+(Z‘1K1)/ﬂ]/[1+(t2K2)/7’l}

For example, if the preoperative refractive power of the
anterior corneal surface is 48.0 D, the corneal thickness is
600.00 pm, the ablation zone diameter is 6.0 mm, the
postoperative refractive power of the anterior corneal surface
is 38 D, the corneal thickness is 480.00 pm, the refractive
index of the cornea is 1.376, and the postoperative:preoper-
ative magnification ratio is & Ris calculated as 0.99222. That
is, postoperatively, the posterior surface of the cornea appears
0.778% smaller than the preoperative posterjor surface. If the
posterior radius of curvature of the postoperative cornea is
6.2 mm (6200.00 um), the apparent length is 48.24 pm
shorter than the actual length.

In this case, the postoperative central area with an
apparently steeper radius of curvature apparently shifts
forward against the best-fit sphere, which has been de-
termined by the peripheral 7 to 10 mm area. The peripheral
area is untouched by laser ablation. The calculation algorithm

of the forward shift of the posterior cornea displayed in the
difference map has not been described by the manufacturer. If
it is assumed that the change is translated directly to the
forward shift in the calculation of the difference map, it will
show a 48.24 pum forward shift of the posterior surface of the
cornea.

Next, if it is assumed that the preoperative refractive
power of the anterior corneal surface is 48.0 D, the corneal
thickness is 600 pm, the preoperative and postoperative
radius of curvature of the posterior surface of the cornea is
6.2 mm (6200 p.m), the amount of myopic correction is XD,
the amount of ablation depth is 6 X 6 x X/3 pm, the re-
fractive index of the cornea is 1.376, and the amount of correc-
tion (X) varied from 0 to 10 D. As Maloney pointed out, the
accuracy of Orbscan is =20 wm. Evaluating the differential
map by the highest point guarantees ectasia caused by noise.
Thus, apparent ectasia is defined in the following equation:

Apparent ectasia (pm) = 20 + 6200(1 — R)

Figure 1 shows the relationship between the amount of
correction and the calculated value of the apparent ectasia of
the posterior surface of the cornea, assuming that the
apparent change in the posterior radius of curvature translates
to the difference map directly. This calculation can be applied
to photorefractive keratectomy, laser in situ keratomileusis,
and similar keratorefractive procedures.

Discussion

The apparent image of the posterior surface of the
cornea changes after keratorefractive surgery. For exam-
ple, the number of corneal endothelial cells changes
after keratorefractive surgery.”

Orbscan can obtain many slit images of the cornea.
These images are combined and reconstituted as an
elevation map of the anterior and posterior cornea.

Apparent
change ®°
(um) s
40
30
2 & [ g 10
Amount of correction
(D)
Figure 1. The relationship between the amount of myopic

correction and the apparent forward shift of the posterior cornea.
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LABORATORY SCIENCE: ARTIFACT OF ORBSCAN

Images of the posterior cornea are obtained through the
overlying corneal epithelium and stroma. After kerato-
refractive surgery, the posterior cornea is observed
through a different lens with a different refractive
power. When a posterior differential map is displayed
with Orbscan, we usually predetermine a peripheral fit
zone. If the magnification ratio does not change before
and after keratorefractive surgery, the differential map
of the central cornea should be displayed without
significant errors. However, no report has shown that
Orbscan can calculate the magnification ratio or modify
the posterior corneal images.

Our data suggest that the apparent ectasia of the
posterior surface of the cornea correlates with the
amount of correction. A myopic correction of 10.0 D
corresponds to 68.24 wm of ectasia of the posterior
surface of the cornea, using the assumptions of this
study. This correlation and the ectasia value are
consistent with other reports of corneal ectasia.’*”
For example, Baek et al.® show that 10.0 D of myopic
correction causes a forward shift of the posterior surface
of the cornea of approximately 60.00 pm. This
correspondence suggests that many reported cases of
ectasia may result from this artifact. In addition, several
articles report that data displayed on the Orbscan may
not be accurate.'®"’

The limitation of our study is that we have not
validated this hypothesis using other devices. We will
continue to evaluate the issue by including other
parameters, such as anterior chamber depth, axial
length, and pachymetry and other devices. The
Pentacam using Scheimpflug imaging (Oculus) and
several devices using high-frequency digital ultrasound
may be useful. We hope this report will stimulate

discussion of this issue and further investigation by
other researchers.
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Effect of Pupil Size and Optical Aberration on Visual Functions under Binocular and
Monocular Viewing Conditions

1,2)

Hiroshi Uozato®® and Takushi Kawamorita®

R Department of Ophthalmology and Visual Science, Kitasato University Graduate School of Medical Sciences,
2 Department of Orthoptics and Visual Science, Kitasato University School of Allied Health Sciences

TERE X B TIZB I A BILE L INES, BRI E I 2BEL2RET L. HREIERBOSH16IRTH 5.
FEE, TR BREBTEBWCaY F IR MEE - 85 (log MARE) OMIEEITy, WIRE T CREEMIE AT RER
FRAVREEFLET FP-10000° (TMI#) 2 AV CERET COBILELFRIL 7. €512, OPD-Scan® (NIDEK#) THl
FELENEG.0 mm 2BV 3IZER 12, Schwiegerling DEEARKZ AWTEOB O DHRERIZHIG L BILET
DEFRINE, 2<HRE, RERNELEREL, kB 2fTo/k. a5 AMRE -#bLdic, @MBRHETTH
BELRARRE LAY O, SREHFOBILEE, MERT ARSI, BREIEIFELEELZRLL. B
i, FEARCERAZERONELZHEMNCES S, REEEZHN LI 2D ERLRBRELEZLTWELE
Y VAR

We investigated the effects of pupil size and optical aberration on visual functions under binocular and mono-
cular conditions. Pupil diameters were continuously recorded during examination of contrast sensitivity (CS) and
visual acuity (log MAR scale). Aberrometry was measured with OPD-Scan. Zernike coefficients were calculated
for the pupil diameters under binocular and monocular conditions using Schwiegerling’s method of recalculating
the expansion coefficient. Significant differences were found between binocular log CS and monocular log CS.
Binocular visual acuity was significantly better than monocular visual acuity. Mean pupil diameters examined under
binocular conditions decreased significantly as compared to monocular conditions. With the increases in pupil
diameter, optical aberrations increased significantly. These results suggest that decrease in pupil diameter from
monocular to binocular conditions causes a decrease in optical aberration, resulting in the improved subjective
visual performance.

(Atarashii Ganka (Journal of the Eye) 22(1) : 93~095, 2005)

Key words | BEFLEE, RIOVEEFREILET, INE, v F 5 X MEE, #77. pupil size, infrared electronic pupil-
lometer, optical aberration, contrast sensitivity, visual acuity.
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