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Hypoxia-inducible factors, key transcription factors for hypoxia-
dependent gene expression, play important roles in angiogenesis
and tumor growth. The VHL protein binds to the o subunit of (HIF-o)
for its oxygen-dependent degradation. VHL mutations are found
frequently in sporadic RCC. Disruption of VHL results in an abnormal
accumulation of HiF-gi, leading to the upregulation of downstream
genes such as the vascular endothelial growth factor gene. We
constructed a luciferase reporter vector driven by hypoxia-
responsive elements (5HRE/luc) and a therapeutic vector expressing
a herpes simplex virus thymidine kinase gene (SHRE/tk). In the
transient transfection assay using VHL-deficient 786-O cells,
constitutive luciferase expression was detected under both aerobic
and hypoxic conditions. in contrast, 786-0 cells transfected with a
wild-type VHL showed hypoxia-inducible luciferase activity. In
in vitro MTS assay, 50% of growth inhibition of 786-0O cells stably
transfected with 5HRE/tk was achieved with exposure to 0.2 ug/mL
of GCV under both aerobic and hypoxic conditions. Xenografts of
the stable clone in SCID mice exhibited a marked regression on daily
injections of GCV (50 mg/kg) for 10 days. In conclusion, a hypoxia-
responsive vector may have therapeutic potential for RCC with VHL
mutations. (Cancer Sci 2005; 96: 288-294)

H ypoxia-inducible factors, known as transcription factors,
control the expression of genes that play important roles
in angiogenesis and tumor growth.9-¥» HIF are composed of a
heterodimer of o and B subunits. The o subunit of HIF (HIF-o)
is regulated tightly by oxygen availability, while the 8 subunit
(HIF-18) is expressed constitutively. Three HIF isoforms
(HIF-10, HIF-200 and HIF-30) similar in structure and binding
capability to HIF-1p have been identified.® HIF activate trans-
cription by binding to the HRE, which was originally reported
in the 3’ flanking region of the human and mouse Epo genes.®*
Similar HIF binding sites have been found in regulatory regions
of other hypoxia-inducible genes, such as VEGF, EPO and
GLUT-1.6-9

The molecular mechanisms behind the regulation of HIF have
been elucidated by recent studies, and indicate that the VHL
protein forms an E3 ligase complex in association with elongin
B, elongin C, Cul2 and Rbx1,%® which binds to HIF-o for its
oxygen-dependent degradation via the ubiquitin—proteasome
pathway.(4-'? Furthermore, binding of VHL to HIF requires the
hydroxylation of several proline residues within the oxygen-
dependent domain of HIF-¢ in the presence of oxygen.?8-2D

Mutations of the VHL tumor suppressing gene are associated
with the development of multiple tumors, including hemangiob-
lastomas in the central nervous system, RCC and pheochromo-
cytomas.®® In sporadic clear cell RCC, which accounts for 75%
of RCC,® the VHL gene was mutated in 33-57% of cases®2®
and silenced by hypermethylation in an additional 15-19%.%%30
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Interestingly, most of the VHL mutations in RCC were located
at a particular site within exon 2 encoding the HIF-binding f
domain.®Y Thus, disruption of VHL results in a marked increase
in HIF-1 and/for HIF-2 activity in non-hypoxic conditions
because of the impaired VHL-dependent degradation of HIF-1a
or HIF-20, leading to the upregulated expression of VEGE,
GLUT-1 and EPO, as demonstrated by studies using VHL-
deficient cell lines,®2* and clinical samples of RCC.®**" From
these findings, we speculated that the dysregulation of HIF-«
caused by VHL mutation in RCC might be exploited as a poten-
tial therapeutic target.

Gene therapy has been used in clinical trials for cancer treat-
ment. One of the current problems with cancer gene therapy is
the poor targeting selectivity of vectors, leading to a low effi-
ciency of gene transfer to tumor cells and an increased risk of
normal tissue toxicity. A tumor-specific gene therapy targeting
aberrant transcriptional control may be a solution because the
use of tumor-specific promoters can regulate the expression
of therapeutic genes at a specific site or in a particular tumor.
Several published studies have shown vector systems targeting
hypoxic regions within solid tumors, utilizing HRE derived
from mouse phosphoglycerate kinase-1,%® mouse VEGF® and
EPO.“" 1In an earlier study, a vector construct using five copies
of HRE derived from the human VEGF gene promoter ligated
to a hCMVmp (SHRE/hCMVmp) conferred a marked increase
(over 500-fold) in responsiveness to hypoxia in human fibro-
sarcoma HT1080 cells.*? Based on this hypoxia-inducible pro-
moter system, a therapeutic model targeting tumor hypoxia
was established using the gene for Escherichia coli NTR, a
prodrug-activating enzyme.“? HT1080 cells stably transfected
with the SHRE/hCMVmp-NTR vector showed hypoxic induction
of NTR gene expression in correlation with increased sensitivity
to in vitro exposure to the prodrug, and a growth delay was
observed in tumor xenografts of the same stable transfectants
treated with both intraperitoneal injection of the prodrug and
respiration of hypoxic gas.”? From these findings and results,
we expected the hypoxia-inducible vector to be useful for targeting
dysregulation of HIF in VHL-deficient RCC as well. The purpose
of this study was to test the therapeutic potential of the hypoxia-
inducible vector system for RCC harboring VAL mutations.

5To whom correspondence should be addressed. E-mail: shibata@rad.med.kindai.ac.jp
Abbreviations: CMV, cytomegalovirus; EPO, erythropoietin; GCV, ganciclovir;
GLUT-1, glucose transporter 1; HA, hemagglutinin; hCMVmp, human cytomegalo-
virus minimal promoter; HIF, hypoxia-inducible factor; HRE, hypoxia-responsive
element; HSV, herpes simplex virus; HSVtk, herpes simplex virus thymidine kinase
gene; luc, luciferase; NTR, nitroreductase; PBS, phosphate-buffered saline; RCC,
renal cell carcinoma; RT-PCR, reverse transcription-polymerase chain reaction; SDS,
sodium dodecylsulfate; tk,- thymidine kinase; VEGF, vascular endothelial growth
factor; VHL, von Hippel-Lindau.
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5xHRE firefly luciferase
5HRE/luc
5HRE/tk 5
BGH polyA
Fig. 1. Structure of hypoxia-inducible plasmids. The constructs of the

hypoxia-inducible reporter plasmid 5HRE/luc and the therapeutic plasmid
5HRE/tk are indicated.

Materials and Methods

Hypoxia-inducible vectors. A hypoxia-inducible vector express-
ing a firefly luciferase gene with a backbone of pGL3 (Promega,
Madison, WI, USA) (SHRE/hCMVmp/luc) was constructed
previously.®*® To generate a SHRE/tk therapeutic vector, the
luciferase gene in the SHRE/hCMVmp construct with a backbone
of pEF/cyto/myc (Invitrogen, Carlsbad, CA, USA) as shown
previously,*? was replaced with a human HSVtk gene (Invivogen,
San Diego, CA, USA). Each plasmid construct is shown in
Fig. 1.

Cell cultures and hypoxic treatment. Human RCC 786-O cells
were purchased from the American Type Culture Collection
(Manassas, VA, USA), and 786-O cells stably transfected with
either HA-tagged wild-type VHL (786-O/VHLwt), HA-tagged
truncated VHL 1-115 (786-O/VHLmt) or an empty vector
(786-0O/VHL(—/-)), were provided by Dr Kaelin WG Jr, and
are presented as WT8, 115-3, and pRc3, respectively.“ Un-
transfected 786-0 cells were cultured in Dulbecco’s modified
Eagle’s medium containing 10% fetal bovine serum, while the
transfected cells were maintained in the same medium and
serum containing 800 pg/mL of G418. Human fibrosarcoma
HT1080 cells were maintained in MEMa. containing 10% fetal
bovine serum. For aerobic incubation, cells were cultured in a
well-humidified incubator with 5% CO, at 37°C. For hypoxic
treatment, cells were cultured in a Bactron II anaerobic environ-
mental chamber (Sheldon Manufacturing, Cornelius, OR, USA)
maintained with 90% N,, 5% H, and 5% CO,,.

Transient transfection and luciferase assay. Cells (1 x 10%) were
seeded in six-well plates 24 h before transfection. Transfection
was carried out with 2 pug of SHRE/luc, 0.04 ug of the control
pRL-CMV plasmid (Promega) and 6 uL of Superfect Reagent
(Qiagen, Hilden, Germany) according to manufacturer’s instruc-
tions, The medium was replaced with a fresh batch 3 h after
transfection. After incubation for 16-20h, the cells were
trypsinized and split. They were then incubated 10-12 h before
either hypoxic or aerobic incubation for 18 h. Cell lysates
were then prepared with 400 pL of passive lysis buffer using a
Dual luciferase assay kit (Promega). Luciferase activity was
measured using a Lumat LB 9507 luminometer (Berthold, Bad
Wildbad, Germany).

Immunoblotting analysis. Cells (2 x 10%) were seeded in a pair
of six-well plates. The next day, one of the plates was kept
under hypoxic conditions and the other under aerobic conditions
for 18 h. Cells were then collected in 100 uL. of 1 x sample
buffer (50 mM Tris-HCl [pH 6.8], 100 mM dithiothreitol, 2%
SDS, 0.1% bromophenol blue and 10% glycerol) and heated at
95°C for 5 min when 20 pL of each sample was immediately
loaded on a SDS polyacrylamide gel (10% for VHL detection;
7.5% for HIF-20, detection) and separated by electrophoresis.
To achieve an equal amount of loading between samples,
protein volumes were normalized by cell number. Proteins were

Ogura etal.

transferred to a nitrocellulose membrane, blocked with 5% non-
fat milk in Tris-buffered saline, and incubated with 0.2 pg/mL
of anti-HA antibody (Roche Diagnostics, Indianapolis, IN,
USA) for VHL detection or with 0.1 pug/mL of anti-EPAS1
antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for
1h for HIF-20, detection. Detection was carried out with a
chemiluminescence-based method using the ECL Plus Western
Blotting Detection System (Amersham Biosciences, Piscataway,
NJ, USA).

Stable transfection. To establish stable transfectants of 786-O/
VHL(-/-), 786-O/ VHLmt, 786-O/ VHLwt and HT1080 with the
5HRE/tk vector, 3 x 10° cells were seeded and stably transfected
with both 10 pug of SHRE/tk plasmid and 1 pg of pEF6/Myc-
His-A plasmid, which expresses a blasticidin-resistance gene,
by a modified calcium-phosphate method. The cells were then
irypsinized 24 h after transfection and cultured in the selection
medium containing 5 pg/mL blasticidin for 10 days. After
selection, the mixtures of each blasticidin-resistant cell were
used directly for both RT-PCR analysis and in vitro prolifera-
tion assay without the isolation as a clone. To establish stable
clones of 786-O cells with SHRE/tk vector, 3 X 10° of 786-O
cells were plated in a 6 cm dish. The next day, the cells were
transfected with 5 g of plasmid using 15 pL of Superfect
Reagent. They were then trypsinized 24 h after transfection
and cultured in the selection medium containing 800 pg/mL of
G418. The G418-resistant colonies were isolated and used for
in vitro cell proliferation assays and mouse xenograft assays.

In vitro cell proliferation assay. One thousand cells were seeded
in each well of two 96-well plates and allowed to attach
overnight. Cells were treated with medium in the absence or
presence of GCV (Invivogen) at various concenirations for
24h in either hypoxic conditions for 18h and aerobic
conditions for a subsequent 6 h, or else in aerobic conditions for
24 h. The medium was then replaced with fresh medium without
the GCV, and subsequent aerobic incubation was carried out
for an additional 72 h. Growth inhibition was determined by
colorimetric quantification using a Celltiter 96 Aqueous One
Solution Cell Proliferation Assay Kit (Promega). Briefly, 10 uL
of MTS tetrazonium solution (3-{4,5-dimethylthiazol-2-y1]-5-[3-
carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner
salt) was added to each well. After incubation for 2 h, abs-
orbance at 490 nm was measured using a Microplate Reader
(Bio-Rad, Hercules, CA, USA). Cell viability was calculated as
the ratio of the absorbance value at each condition against that
incubated in medium without GCV under continuous aerobic
conditions.

Semiquantitative RT-PCR analysis. Blasticidin-resistant stable
transfectants of 786-O/ VHL(-/-), 786-O/ VHLmt, 786-O/ VHLwt
and HT1080 with SHRE/tk vector were cultured under aerobic
and hypoxic condition for 18 h, and total RNA was extracted
using an RNA extraction kit (Qiagen). Complementary DNA
was synthesized from 2.5 ug total RNA using an oligo dT-
Adaptor Primer (Takara Biomedicals, Tokyo, Japan). Primers
used for PCR were HSV/tk-forward: 5-ATA TCG TCT ACG
TAC CCG AG-3"; HSV/ik-reverse: 5-CGC ACC GTA TTG
GCA AGC AG-3’; GAPDH-forward: 5'-ACC ACA GTC CAT
GCC ATC AC-3’; and GAPDH-reverse: 5-TCC ACC ACC CTG
TTG CTG TA-3’. The PCR was carried out to amplify the HSV/
tk and GAPDH genes for 25 and 20 cycles, respectively. The
PCR products were separated by agarose gel electrophoresis and
stained with ethidium bromide.

Mouse xenograft assay. Three million cells were suspended in
100 uL. PBS and inoculated in the right flank of male 6-8-
week-old C.B-17/lcr-scid Jel mice (Clea Japan, Tokyo, Japan).
When the tumor volume had reached approximately 200 mm?,
mice were treated daily with 50 mg/kg GCV or a comparable
volume of PBS by intraperitoneal injection for 10 days. Tumors
were measured using a caliper and tumor volume was calculated
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according to the following equation: volume = 0.5 X ax b® (a,
larger diameter; b, the smaller diameter). The study was
approved by the ethical committee of the Kyoto University
Institute of Laboratory Animals.

Results

Constitutive luciferase expression of a hypoxia-inducible vector
in VHL-deficient and VHL-mutated RCC cells. To test the activity of
a hypoxia-inducible vector in VHL-deficient 786-O RCC cells,
luciferase activity was examined following transient transfection
with a SHRE/luc vector (Fig. 1). In 786-O/ VHL(-/~) cells, strong
luciferase expression was detected under both aerobic and
hypoxic conditions. This observation was completely different
from that for HT1080 cells, as shown in a previous report.®?
We also tested 786-O cells transfected with the wild-type
VHLcDNA (786-O/VHLwt), and those transfected with the
truncated VHL 1-115 (786-O/VHLmt), which is a C-terminal
truncation mutant lacking a region frequently altered in sporadic
and VHL-related RCC.“® 786-O/ VHLwt showed an inducible
luciferase activity in a hypoxia-dependent manner, while 786-0/
VHLmt showed a marked expression under both aerobic and
hypoxic conditions (Fig.2A). In addition, we examined the
expression of VHL and HIF-2¢: in an immunoblotting analysis.
A protein with the predicted size of the VHL protein was
detected in each of 786-O/VHLwt and 786-O/ VHLmt. HIF-2x
protein was detected under both aerobic and hypoxic conditions in
786-0O/ VHL(—/-) and 786-O/VHLmt, while hypoxia-dependent
HIF-20. expression was detected in 786-O/VHLwt (Fig. 2B),
supporting the result of the luciferase assay. Thus, the expression
pattern of a hypoxia-inducible vector became constitutive via
mutation of the VHL gene.

Invitro cytotoxicity of S5HRE/tk influenced by different VHL
statuses. To test the therapeutic efficacy, we constructed a
plasmid expressing a HSVtk gene based on the same hypoxia-
inducible system (Fig. 1). The SHRE/tk vector was introduced
into 786-O/VHL(-/-), 786-O/VHLmt, 786-O/VHLwt and
HT1080 cells, and stable transfectants were treated with various
concentrations of GCV for 24 h under either 18 h of hypoxic
followed by 6 h of aerobic conditions, or continuous aerobic
conditions. The growth inhibitory effects were determined by
MTS assay 96 h after the start of treatment. In 786-O/VHL(—/—)
and 786-O/VHLmt, a growth inhibition rate of 50% was
achieved with exposure to less than 0.2 ug/mL GCV under both
aerobic and hypoxic conditions. On the other hand, the growth
inhibition in both 786-O/VHLwt and HT1080 were observed
only under hypoxic conditions, while no significant growth
inhibition was observed with exposure up to 10 pg/mL of GCV
under aerobic conditions (Fig. 3A). HSVtk transcription levels
were examined using semiquantitative RT-PCR analysis (Fig. 3B).
High levels of HSVitk transcripts were detected under both
aerobic and hypoxic conditions in 786-O/ VHL(—/-) and 786-0/
VHLmt, but only under hypoxic conditions in 786-O/ VHLwt
and HT1080 cells, indicating HSVik transcription levels
correlated with sensitivity to GCV. From these results, in vitro
antitumor effects of SHRE/tk and GCV gave rise to RCC cells
with mutations in the VHL gene both under aerobic and hypoxic
conditions as well as to hypoxic cells, while cells with wild-type
VHL were spared under aerobic conditions.

In vivo antitumor effects in SCID mouse xenografts of 786-O cells
transfected with SHRE/tk. To prepare the mouse xenograft model,
selected clones of 786-O transfected with SHRE/tk were established
and screened by MTS assay. Among the transfected clones, clone
9 was used for further analysis, indicating a growth inhibition
rate of 50% with exposure to less than 0.1 pg/mL GCV under
both aerobic and hypoxic conditions (Fig. 4A). On the other
hand, the growth of untransfected 786-O cells was not inhibited
by up to 10 ug/ml. of GCV regardless of hypoxic treatment
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Fig. 2. Constitutive gene expression from the hypoxia-inducible
promoter in VHL-deficient and VHL-mutated 786-O cells. (A) Dual
luciferase assay was carried out using 786-O/VHL(-/~), 786-O/VHLmt,
786-O/VHLwt and HT1080. The cells were transiently transfected with
both 5HRE/luc vector and pRL-CMV, and cultured under aerobic (open
bar) or hypoxic (closed bar) conditions. To normalize the firefly
luciferase activity from the 5HRE/luc vector, renilla luciferase activity
from pRL-CMV was used as an internal control. The normalized
luciferase activity under hypoxic conditions was divided by the one
under aerobic conditions to calculate the relative luciferase activity.
Results are the mean of three independent experiments + SD. (B)
Immunoblots against VHL (upper) and HIF-20. (lower) were carried out
using 786-O/VHL(-/-), 786-O/VHLmt and 786-O/VHLwt cells under
aerobic (A) and hypoxic (H) conditions.

(Fig. 4A). To confirm ir vivo therapeutic efficacy, a growth
delay assay was carried out. Tumor-bearing mice were treated
with daily injections of GCV (50 mg/kg) or PBS for 10 days. In
mice with xenografts of clone 9, marked tumor regression was
observed during GCV treatment, while tumors treated with PBS
continued to grow (Fig. 4B). Among the six mice treated with
GCV, three mice showed tumor regrowth after cessation of
GCYV, while three mice showed stable tumor size (Fig. 4C). On
the other hand, the tumor xenografts of untransfected 786-O
cells grew regardless of GCV treatment (Fig. 4B).

Discussion

The most common type of human kidney tumors, clear cell
RCC, often have mutations of the VHL gene, resulting in an
abnormal accumulation of HIF-o. and upregulation of hypoxia-
dependent gene expression driven by HRE regardless of oxygen
status. We have developed a hypoxia-inducible vector using
HRE derived from human VEGF to target hypoxic cells existing
in solid tumors and to overcome the resistance of hypoxic cells
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Fig. 3. Cytotoxicity of SHRE/tk and GCV in VHL(~/-) .
and VHLmt cells. (A) 786-O/VHL(-/-), 786-O/VHLmt,
786-O/VHLwt and HT1080 were exposed to GCV B 786-0 786-0 786-0
under aerobic (open) or hypoxic (closed) conditions. VHL(~/-) VHLmt VHLwt HT1080
Cell viability was quantified using the MTS assay
at 72 h after the end of the GCV treatment, and A H H H A

calculated as the ratio of the absorbance value at each
condition against that incubated in medium without
GCV under continuous aerobic conditions. Results
are the mean of three independent experiments =
SD. (B} Cells were cultured under aerobic (A) or
hypoxic (H) conditions, and expression of HSVtk
mRNA was assessed using semiquantitative RT-PCR
using a specific primer set. GAPDH mRNA was also
analyzed as an internal control.

to chemotherapy and radiotherapy. Here, we demonstrated a
therapeutic model for VHL-deficient RCC using the hypoxia-
inducible vector system.

First, we confirmed that HIF transcriptional activity is dysreg-
ulated by VHL mutations. Luciferase activity was remarkably
increased in response to hypoxia in HT1080 and 786-O/ VHLwt
cells transfected with the SHRE/luc vector, In 786-O/ VHL(—/-)
and 786-O/VHLmt, however, strong luciferase expression was
detected under both aerobic and hypoxic conditions (Fig. 2A).
Figure 2B shows that such dysregulation in 786-O cells is pre-
sumably mediated by constitutive HIF-20. expression, because
786-0 cells lack HIF-10.%” These results are consistent with
reports by Maxwell ef al. and Hu et a6

HSVtk is a common prodrug-activating gene used in pre-
clinical and clinical trials. GCV is phosphorylated specifically
by HSVitk to its monophosphate, which is subsequently converted
to the di- and tri-phosphate forms by guanylate kinase and other

cellular kinases. GCV-triphosphate can be incorporated into -

elongating DNA, causing inhibition of DNA replication and
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single strand breaks.“” In this study, we constructed HSVtk in
conjunction with the SHRE/hCMVmp promoter as a therapeutic
vector. HT1080 and 786-O/VHLwt stably transfected with
5HRE/tk showed that hypoxia-inducible transcription of HSVik
correlated with increased sensitivity to GCV, as had been dem-
onstrated by Shibata et al. using the same promoter system.“?
Here, 786-O/VHL(—/—) and 786-O/VHLmt with the SHRE/tk
vector showed hypersensitivity to GCV, together with constitu-
tive HSVik transcription under both aerobic and hypoxic condi-
tions. From these results, our hypoxia-inducible vector has a
selective therapeutic effect not only on hypoxic cells but also on
RCC with VHL mutations.

According to the mechanism in action described above, the
HSVtk—GCV system is particularly suitable for eradication of
rapidly dividing tumor cells. On the other hand, because acti-
vated GCV is an S-phase-specific cytotoxin, it is necessary that
target cells must be actively dividing in S-phase at the time of
exposure.“? As shown in Fig. 4B, xenografts of 786-O cells
transfected with SHRE/tk showed a marked response to GCV and
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Fig. 4. In vivo antitumor efficacy in tumor xenografts
consisting of 786-O clone stably transfected with
(C) clone 9 SHRE/tk. (A) MTS assay was carried out with the
® o GCV stable 786-O clone 9 transfected with SHRE/tk
£ 3 (left) and untransfected 786-O  cells (right),
_g indicating hypersensitivity to GCV in clone 9 under
= both aerobic (open) and hypoxic (close) conditions.
s 2 (B) A growth delay assay was carried out using
g xenografts derived from clone 9 (left) and
[ untransfected 786-O cells (right). Tumor-bearing
o 1 SCID mice were treated by daily intraperitoneal
= injection of either 50 mg/kg GCV (open) or a
@ comparable volume of PBS (closed) for 10 days.
o« Relative tumor volume as a function of days from
0 the start of treatment is indicated. Each point and

reduction in size during GCV treatment. However, half of them
showed regrowth after cessation of GCV (Fig. 4C). This may be
because elimination of activated GCV reactivated division of
surviving cells that were not in S-phase during GCV treatment,
and because administration dose and/or duration of GCV treat-
ment might have been insufficient to eradicate tumors. In this
experimental setting, we did not plan to use 786-O/VHLwt as a
control because Iliopoulos et al. had already shown that 786-
O subclones transfected with the wild-type VHL gene sup-
pressed tumor formation in the nude mouse xenograft model.*

As shown in Fig. 3A, 786-O/VHLwt and HT1080 trans-
fected with SHRE/tk exhibited clear differences in sensitivity to
GCV under aerobic and hypoxic conditions. These transfectants
have no significant growth inhibition with exposure up to 10 pg/
mL of GCV under aerobic conditions, suggesting the possibility
of the use of the SHRE promoter to reduce toxicity to normal
tissues where hypoxic area dose not usually exist. It would be
certain that the use of constitutive promoters such as CMV instead
of HRE drive high expression of HSVitk in normal cells that
have wild-type VHL even under aerobic conditions, which may
damage normal cells. Ir vivo toxicity, however, remains to be
evaluated with systemic administration of CMV or HRE vectors

292

error bar is the mean (n=4-6) and SD. (Q)
Individual tumor growth derived from clone 9 is
indicated.

using a clinically relevant gene delivery system such as viral
vectors. Binley et al. reported that use of the OBHRE promoter
reduced hepatotoxicity with systemic administration of adeno-
viral vectors,“®

In this study, we demonstrated the proof-of-principle for a
therapeutic model exploiting dysregulation of the VHL/HIF
pathway in RCC, providing for the potential application of a
hypoxia-inducible vector system to the novel therapeutic treatment
of RCC. For clinical application, however, further experiments
should be conducted using gene delivery systems such as aden-
oviral or retroviral vectors, bacteria and macrophages. Of note,
a report published during the preparation of this paper demon-
strated a therapeutic effect using an oncolytic wild-type
adenovirus with HRE from human VEGF gene promote on
VHL-deficient RCC.#? ,

In present clinical practice, patients with RCC are treated
mainly with surgical resection for primary lesions. Metastatic
RCC are treated with immunotherapy using interferon-o or
interleukin-2, but are still difficult problems. Radiotherapy and
chemotherapy are often ineffective. A tumor-specific gene
therapy using the hypoxia-responsible vector system may be an
option for the treatment of RCC in addition to these therapeutic

© Japanese Cancer Association doi: 10.1111/j.1349-7006.2005.00044.x
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modalities. Recently, several new therapeutic approaches for
RCC have been tested in clinical trials using a radiolabeled
chimeric monoclonal antibody targeting CAIX,®? or using a
neutralizing antibody to VEGE.®?

In conclusion, the hypoxia-inducible vector system may
have therapeutic potential for RCC with VHL mutations. Further
study using delivery systems such as viral vectors, bacteria and
macrophages should be conducted for clinical application.
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The genomic information obtained through the human genome project has been accelerating the
analysis of the functions of various disease relevant genes. The high molecular weight biomolecules,
including oligonucleotides, antisense nucleotides, small interference RNA and peptides, as well as genes
(cDNA) and proteins, are becoming increasingly important for the development of molecular therapies.
However, the potential of such information-rich macromolecules for therapeutic use has been limited by
the poor permeability across the lipid bilayer of the cellular plasma membrane. Over the past decade, a
unique activity of oligopeptides, known as protein transduction domains (PTDs) or cell penetrating pep-
tides (CPPs), has made it possible to transduce biologically active macromolecules into living cells iz vitro
by conjugating a PTD to the desired macromolecule. Furthermore, this activity has also enabled the sys-
temic delivery of bioactive macromolecules to all tissues in living animals. However, we are now confront-
ed with the next difficulty delivering the macromolecules specifically to the therapeutic targets iz vivo. In
this review, we focus on the application of PTD to develop antitumor macromolecules and introduce sev-
eral representative strategies to discriminate between tumor and normal tissue. In addition, we discuss
the unique characteristics of breast cancer, which are expected to facilitate the application of PTD to

develop novel protein therapy for breast cancer.
Breast Cancer 13:16-26, 2006.

Key words: Protein therapy, Protein transduction domain {PTD}, HIV-1 tat, Tumor hypoxia,

Hypoxia-inducible factor-1 {HIF-1)

Efficient internalization of therapeutic agents
into target cells is critical to gain the desired ther-
apeutic effect. However, since the plasma mem-
brane of the cell surface forms an effective barrier
and limits the internalization of high molecular
weight materials into the cells, the application of
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PTD, Protein transduction domain; CPP, Cell penetrating peptide;
HIF, Hypoxia-inducible factor; TAT, Transcriptional activator of
transcription; HIV-1, Human immunodeficiency virus-1; IGF,
Insulin-like growth factor-l; IGF-R, IGF receptor; RCC, Renal celf
carcinoma; VHL, Von Hippellindau; CTL, Cytotoxic T lymphocyte;
DC, Dendritic cell; OVA, Ovalbumin; TRP2, Tyrosinase-related
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ODD, Oxygen-dependent degradation; 5-Gal, B-galactosidase;
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information-rich macromolecules, such as DNA
and proteins, to therapies has been restricted. A
variety of methods have been widely proposed to
effect their delivery into living cells iz vivo as well
as in vitro™; unfortunately, many of them have
shown inefficient delivery. In these strategies, a
number of other problems, such as complex mani-
pulation, cellular toxicity and immunogenicity,
have been reported and have prevented macro-
molecules from routine therapeutic use.

In 1988, Green et al. and Frankel ef al. sepa-
rately reported that the transcriptional activator of
transcription (TAT) protein from human immun-
odeficiency virus-1 (HIV-1) has a unique potential
to enter cells in culture when added exogenous-
ly*®. The domain responsible for this transloca-
tion has been ascribed to the short basic region
comprised by residues 47-57 of the TAT protein
and is termed the “TAT protein transduction
domain (PTD)”°. Subsequent studies have demon-
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strated that TAT-PTD facilitates the internalization
of conjugated proteins into living cells iz vitro®,
Likewise, a number of the other cationic peptides,
e.g. the peptides from the third o helix of the
antennapedia homeodomain and from the VP22
protein of the herpes simplex virus, have been
reported as PTDs showing the same attractive
activity as TAT-PTD”. The common feature among
these peptides is their highly cationic nature,
which is due to their high proportion of basic
amino acids, such as arginine and lysine resid-
ues®. Using these PTDs, various kinds of physio-
logically and therapeutically active macromole-
cules, such as peptides, proteins?, oligo DNAs™,
super magnet beads™, liposomes” and 1 phages™
have been successfully transduced into living cells.
Intracellular delivery of these macromolecules
modulates the functions of various genes related
to the cell cycle™ and apoptosis i vitro. More-
over, Schwarze ef al. demonstrated that intraperi-
toneal injection of a TAT-PTD-fused 120 kDa £-
galactosidase (f-Gal) protein resulted in the deliv-
ery of the biologically active fusion protein to all
tissues in mice, including the brain". Their res-
ults opened a new possibility for the direct deliv-
ery of macromolecules into patients as protein
therapy. Indeed, several groups, including ours,
have applied this strategy to develop novel protein
drugs to treat preclinical tumor-bearing animals'**.

In this review, we describe the properties and
the potential of TAT-PTD as a carrier of informa-
tion-rich macromolecules, and introduce repre-
sentative research, in which TAT-PTD-mediated
protein therapy showed significant antitumor
effects with target-specificity, but without side
effects. Furthermore, we discuss the possibilities
of such protein therapy for breast cancer treat-
ment. '

Mechanism of TAT-PTD-Mediated Protein
Transduction into Living Cells

Despite the distinctive potential of the TAT-
PTD and the other arginine- and/or lysine-rich
peptides as carriers of macromolecules, little is
known about the mechanism involved in the cellu-
lar uptake of PTD-fused macromolecules as well
as the wild type HIV-1 TAT protein.

In the early days, it was reported that no inhibi-
tion of internalization was observed at 4 C*, and
similar observations were reported for the basic
amino acid-rich peptide derived from the antenna-
pedia homeodomain®. Therefore, until recently, it

was widely assumed that the PTD-mediated inter-
nalization of macromolecules occurs in an energy-
and receptor-independent manner and is alterna-
tively based on direct transport through the lipid
bilayer®. However, it has been reported that the
energy- and receptor-independence of PTD-medi-
ated internalization are due to experimental arti-
facts in the process of cell fixation prior to micro-
scopic observation and also due to the inadequate
removal of proteins bound to the cell surface®*,
Furthermore, it has been reported that the inter-
nalization is almost completely suppressed at 4 C
in unfixed conditions**. These results, together
with the observation that heparan sulfate and the
inhibitor of low density lipoprotein receptor-relat-
ed protein precluded the cellular uptake of PTD-
fused macromolecules®®, suggest that the inter-
action of TAT-PTD with cell surface constituents
plays an important role, and is followed by an
active endocytic process. Several recent papers
support the involvement of an endocytic pathway
in the PTD-mediated protein internalization®*.

Since endocytosis is a complex mechanism
including several different pathways, the identifi-
cation of the critical pathway responsible for the
internalization has recently been commenced.
Using a permeable TAT-Cre recombinase reporter
assay on living cells, Wadia et al. extensively ana-
lyzed the mechanism of cellular uptake of TAT-
fusion protein and clearly summarized the details
in 2004. After the initial ionic cell-surface interac-
tion, TAT-fusion proteins are rapidly internalized
by lipid raft-dependent macropinocytosis, but are
independent of interleukin-2 receptor/raft- caveo-
lar- and clathrin-mediated endocytosis and phago-
cytosis™. On the other hand, Richard et al. dem-
onstrated in 2005 that a specific inhibitor of
clathrin-dependent endocytosis partially inhibits
TAT peptide uptake, implicating this pathway in
TAT-peptide entry*. The molecular basis for the
PTD-mediated cellular uptake of macromolecules
into living cells still remains controversial, so fur-
ther study is necessary to fully understand the
process.

Development of TAT-PTD-Mediated
Antitumor Protein Therapies

Research on protein transduction has dramati-
cally expanded from in vitro to in vive in the last
decade. The advantage of this application is that
we can accomplish rapid and equal distribution of
PTD-linked macromolecules to all tissues and
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Fig 1. p53related cellular apoptosis. HDM2 facilitates the proteolytic degradation of p53 protein. However, once damages of

genomic DNA become severe, p53 is stabilized and induces various gene expressions such as Noxa and Puma and induce the
release of Smac protein from mitochondria. The Smac protein interacts with XIAP and suppresses its activity, resulting in apopto-
sis. Since overexpression of HDM2 and IAPs inhibits apoptosis in many clinical tumors, the inhibition of their activities by p53N
peptide and SmacN7 peptide respectively have been examined as novel antitumor strategies.

cells in vivo. However, it conversely leads to disad-
vantages in others. Especially for the development
of PTD-fused anticancer macromolecules, the
medications should have target-specificity and act
locally, otherwise it may lead to damage of normal
tissues and result in side effects. In the following
sections, we describe representative applications
showing target-specificity as well as the antitumor
effect of TAT-mediated protein therapies i# vivo.

1) Application of a Tumor Suppressor Gens,
p53

Accumulated knowledge about signal cascades
in cancer cells has revealed that genetic alter-
ations of oncogenes and/or tumor suppressor
genes make cells more malignant, resulting in
deregulated proliferation and the evasion of apop-
tosis. In the development of novel cancer therapy,
significant efforts at restoring the lesions that pre-
vent the implementation of the apoptotic response
have been made in order to specifically cause the
death of malignant cells and in order to spare nor-
mal cells carrying few such apoptotic burdens.
Such a strategy has been expected to show a much
lower toxicity in normal tissue, compared with the
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conventional genotoxic agents that are currently
in clinical use.

The gene encoding the tumor suppressor p53
is the most common anti-apoptotic lesion in can-
cer cells® and approximately 50% of human can-
cers bear pb3 gene mutations. In most remaining
cases, pb3 activity is impaired by alternative mole-
cular mechanisms, such as an elevated level of a

'p53 inhibitor, Mdm2*® and the E6 protein of
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HPV®, or silencing of a p53 co-activator, ARF*®,
One of the most important functions of p53 is “cell
cycle arrest”, in which p53 disturbs the replication
of damaged genomic DNA and the fixation of
mutations, allowing for DNA repair. Another
important function is the “induction of apoptosis”,
which occurs in cases in which the damage to the
genomic DNA is too severe to be repaired (Fig 1).
These abilities of p53 are essential for the proper
regulation of cell proliferation in multi-cellular
organisms®. Loss of these functions frequently
leads to cellular neoplastic transformation, and
increases the resistance of cancer cells to anti-can-
cer therapies®. Therefore, restoring p53 activity
in tumor cells has been expected to be an effec-
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tive strategy to induce cancer cell death in a large
population of cancer patients. Gene therapy strate-
gies have been indeed conducted to restore the
tumor suppressor function of p53 with both viral
and non-viral vectors. However, the efficacies of
these approaches were difficult to confirm under
certain conditions in clinical studies as well as in
preclinical studies™®. Some problems associated
with immunogenicity and the low efficiency of sys-
temic distribution were inevitable with this drug
delivery system®. To overcome these difficulties,
Tatmediated approaches were carried out as fol-
lows.

Harbour et al. aimed to restore endogenous
p53 activity by using a permeable peptide™. In the
regulation of p53 activity, HDM2 interacts with the
N-terminal region of the p53 protein and decreas-
es the ability of p53 to act as a positive transcrip-
tional factor and facilitates the proteolytic degrada-
tion of the p53 protein® (Fig 1). Indeed, the over-
expression of HDM2 has been reported in many
clinically recognized tumors, which contain the
wild type p53 gene, and is associated with the
functional inactivation of the p53 protein**.
Therefore, it is anticipated that the disruption of
the inhibitory effect of HDM2 on p53 activity
would yield therapeutic benefits in tumor cells
that over-express the HDM2 protein. To examine
this hypothesis, the N-terminal region of the p53
protein was fused to the TAT-PTD. The resultant
TAT-p53N peptide induced the rapid accumulation
of p53 and the activation of apoptotic genes, and
resulted in the preferential killing of tumor cells
and the regression of human retinoblastoma cells
in a rabbit eye. Minimal retinal damage was
observed after intravitreal injection',

2) Application of a Proapoptotic Gene, Smac

A major obstacle in cancer therapy is the resis-
tance of cancer cells to current anticancer treat-
ments, such as chemotherapy and radiotherapy®.
Defects in apoptotic programs are caused by
deregulated expression and function of the com-
ponents of the apoptotic pathway and contribute
to such resistance®*. Inhibitors of apoptosis pro-
teins (IAPs) are frequently overexpresssed in
malignant tumors®, and they inhibit caspase activ-
ity by directly binding to activated caspase-3 and-
7% The second mitochondria-derived activator
of caspases (Smac) was identified as the protein
that is released from the mitochondria to the cyto-
sol in response to apoptotic stimuli and antagoni-
zes IAPs to promote apoptosis®™® (Fig 1). There-

fore, the up-regulation of Smac activity in tumor
cells may improve the resistance to anticancer
therapies (Fig 1).

Fulda et al. examined the hypothesis using
cell-permeable synthetic Smac peptides (TAT-
SmacN7 in this review) containing a polypeptide
from the N-terminal of Smac protein for the inacti-
vation of X-linked IAP (XIAP)*®, As a result, the
peptide enhanced the ability of Apo2L/tumor
necrosis factor-related apoptosis-inducing ligand
(TRAIL) in an intracranial malignant glioma xeno-
graft model iz vivo™. Moreover, the complete era-
dication of established tumors and the survival of
mice were achieved only upon combined treat-
ment with the Smac peptide and Apo2L/TRAIL. In
these experiments, no detectable toxicity to nor-
mal brain tissue was observed.

Yang et al. examined whether the inhibition of
IAPs combined with chemotherapy produced syn-
ergistic effects or not'". First of all, they confirmed
that the defect in apoptosome activity was dramati-
cally restored by the IAP-targeting SmacN7 pep-
tide, which is the seven N-terminal amino residues
of mature Smac and has the potential to disrupt
XIAP-caspase-9 interaction. On the other hand,
SmacN7 peptide did not show any striking effect
on the apoptosome activity of normal lung fibrob-
last cells. They finally demonstrated that newly
synthesized SmacN7 peptide fused to the cell
membrane permeable polyarginine (SmacN7R8)
strongly reversed the apoptosis resistance, and
displayed a synergistic effect with chemotherapy
in vivo.

3) Application of a Tumor Suppressor. Gene,
VHL

Since it was reported that the growths of a vari-
ety of cancer cells are dependent on insulin-like
growth factor-] IGF-I)-mediated signaling, inhibit-
ing the pathway has shown therapeutic effects on
a variety of experimental tumor xenografts (Fig
2). For example, a truncated form of the IGF-I rec-
eptor (IGF-IR) acts as a dominant negative inhibi-
tor of IGF-IR and abrogates ligand-dependent cel-
lular transformation and tumorigenesis in vitro
and in vivo®. Similarly, a specific IGF-IR anti-
body®™ and a specific IGF-IR antisense oligonu-
cleotide®™ suppress the tumor growth and prolong
the survival of tumor-bearing mice, respectively.
Renal cell carcinoma (RCC) was reported to be
dependent on the IGF-I-mediated signaling path-
way for its growth. Previously, Datta et al. report-
ed that IGF-I-mediated signaling is inhibited in the
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Fig 2. Function of pVHL in IGF-I-mediated signaling and in hypoxia-responsible gene expression. The growth of various cancer
cells are dependent on IGF-1 signaling. The signal is inhibited in the presence of pVHL in RCC cells, and thus inhibition of this sig-
nal pathway has been aimed by VHL1w2s peptide. pVHL also acts on hypoxia-dependent gene expression. In normoxic conditions,
hydroxylated HIF-1« protein is recognized by pVHL and ubiquitinated, resulting in the rapid proteolytic degradation. In hypoxic
conditions, stabilized HIF-1« interacts with constitutively expressed HIF-14 and induces various gene expressions related to

tumor malignancy.

presence of wild type von Hippel-Lindau tumor
suppressor gene product (pVHL) in RCC cells and
a specific amino acid sequence (104-123) in the §
domain of the pVHL (VHL101123) is responsible for
this function™ (Fig 2). These results indicate that
the pVHL function via the 104-123 amino acid
region leads to the restricted IGF-IR signaling,
resulting in restricted cell proliferation and restr-
icted RCC growth. This is consistent with the
reports that the VHL tumor suppressor gene is
mutated in the majority of patients with RCCs, as
well as in patients with VHL disease™®, and that
the mutations are located in one of the hotspots of
the VHL gene®. In addition to a well-known func-
tion of pVHL to regulate the stability of hypoxia-
inducible factor-1a (HIF-1a) protein®, this activi-
ty must also play an important role in the tumori-
genesis of RCCs.

Based on this preclinical research, Datta et al.
examined the effects of VHL w25 on tumor charac-
teristics® (Fig 2). VHL 112 conjugated to the TAT-
PTD (TAT-FLAG-VHL peptide) inhibited the
thymidine incorporation into RCC cells by nearly
80% compared with a counterpart protein (TAT-
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FLAG). Furthermore, the TAT-FLAG-VHL pep-
tide inhibited the tyrosine phosphorylation of
MAP kinase, an essential downstream molecule
that leads to cell proliferation. Thus, these results
suggest that TAT-FLAG-VHL peptide blocks the
IGF-Iinduced RCC proliferation iz vitro. Further-
more, i.p. injection of TAT-FLAG-VHL peptide
retarded the growth of subcutaneous RCC tumors,
and in some cases, regressed the tumors volume,
and dramatically inhibited the invasiveness deeper
into the muscle layer.

4) Application of a HIF-1g¢ 0DD Domain;
Development of Hypoxia-Targeting Protein Drug

The genetic alterations in tumor cells directly
cause the deregulated proliferation and the high
metabolic demands of tumor cells, which in turn
lead to the development of hypoxia in solid tumo-
rs®®, Tumor hypoxia has been recognized as a
tumor specific microenvironment, in other words,
healthy adults probably have few such fissues. In
such conditions, a transcriptional factor, hypoxia-
inducible factor-1 (HIF-1), induces various genes
related to angiogenesis® and glycolysis®, and
leads to invasive and metastatic properties in
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Fig 3. Hypoxia-dependent Proapoptotic Function of TOP3. TOP3 is degraded through the same ubiquitin-proteasome system as
HIF-1 & protein under normoxic conditions, but stabilized under hypoxic conditions. Because upstream caspases, ¢.g. caspases-9,
are activated to some extent by hypoxic stress, TOP3 is cleaved to generate an active caspase-3, resulting in the enhancement of

apoptotic cell death.

tumor cells®. HIF-1 activity is associated with the
resistance of tumor cells to conventional radio-
therapy and chemotherapy™® and with the patient
mortality in clinical studies®””. Therefore, exten-
sive efforts have been directed toward the devel-
opment of novel therapies, which specifically dam-
age the hypoxic/HIF-1-activating tumor cells®™,

HIF-1 is a heterodimeric transcriptional factor
composed of an alpha subunit (HIF-1«) and a con-
stitutively expressed beta subunit (HIF-13)™ (Fig
2). HIF-1 & expression is tightly regulated at the
post-translational level by oxygen-dependent pro-
Iyl hydroxylation and subsequent ubiquitination of
its oxygen-dependent degradation (ODD) domain
within the HIF-1a protein®. The pVHL is respon-
sible for the ubiquitination. The stability of the
HIF-1a protein is mainly responsible for the regu-
lation of HIF-1 transcriptional activity™.

‘We applied this unique property of the ODD
domain to develop a novel hypoxia-targeting pro-
tein drug™. First of all, we identified the minimum
region of the ODD domain responsible for the
oxygen-dependent degradation of arbitrary pro-
teins fused to it. As a result, we confirmed the
hypoxia-dependent -Gal and luciferase activity of
ODD--Gal fusion protein™® and ODD-Luciferase
fusion protein (Harada ef al., in preparation), res-
pectively, in the culture cell®®. To apply the ODD-
fusion protein to an iz vivo study, we fused TAT-

PTD to the N-terminal of the ODD-f-Gal protein
and created a TAT-ODD-f-Gal triple fusion pro-
tein. After i.p. injection with the TAT-ODD-g-Gal
fusion protein to subcutaneous tumor-bearing
mice, the §-Gal activity and the existence of the
fusion protein were detected only in the hypoxic
regions of the solid tumor. On the other hand,
they were not observed in the normal tissue.
These results demonstrate that biologically active
proteins can be exogenously delivered to hypoxic
tumor cells by the TAT-ODD peptide iz vivo. This
was the first example demonstrating the target-
specificity of TAT-mediated protein delivery. To
examine whether the TAT-ODD fusion protein
with cytotoxicity shows antitumor effects or not,
the TAT-ODD peptide was further fused to a pro-
apoptotic protein (Fig 3). We intentionally chose a
precursor of caspase-3, procaspase-3, because it is
activated in response to hypoxic stress, which was
thought to reduce the possibility of side effects in
the well-oxygenated normal tissues (Fig 3). Sys-
temic administration with the resultant fusion pro-
tein, TAT-ODD-Procaspase-3 (TOP3), reduced the
tumor mass as well as suppressed the tumor
growth without any obvious side effects in tumor-
bearing mice. The hypoxia-targeting effect of
TOP3 was proven using a rat ascites model, in
which intraperitoneal injection with MM1 cells
results in highly hypoxic ascetic fluid™. Inoue et
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al. demonstrated that intraperitoneal injection
with TOP3 resulted in a significant increase in the
lifespan of rats with the malignant ascites, and fur-
thermore, 60% of the treated animals were cured
without the recurrence of ascites.

B) Other Passibilities for the Development of
TAT-PTD-Mediated Antitumor Protein Therapy

Several in vitro studies have reported other
possibilities which may enable delivery of the bio-
logically active macromolecule specifically to the
desired tumor i# vivo™ ™. First, the fact that PTDs
selectively interact with distinct glycosaminogly-
can species may allow targeting of selective tis-
sues that differ in their surface-expressed gly-
cosaminoglycan patterns®. Second, by inserting a
tissue- and organelle-specific cleavage recognition
site between PTD and the macromolecule, PTD
may be cleaved off, resulting in the accumulation
of the PTD-free macromolecules in the desired tis-
sue and organelle, respectively™. Third, it is also
possible to generate a PTD-linked protein drug
that specifically acts in tumor cells while not affec-
ting normal cells, by applying transformed cell-
specific protein activity”. Finally, by using a pep-
tide that can be recognized by the tumor-specific
membrane proteins, it may be possible to design a
variety of proteins that specifically internalize into
desired tissues.

Application of TAT-Mediated Protein Drugs
to Breast Cancer Treatments

Low molecular weight chemical compounds
easily pass through the cellular plasma membrane
in vitro, and furthermore show efficient distribu-
tion iz vivo, and thus they have been focused on
for a long time in the development of anticancer
drugs. Almost all of the conventional chemothera-
peutic agents, however, show low target-specificity
and largely affect normal tissues as well as tumors.
TAT-PTD has also been reported to transduce var-
ious macromolecules to all tissues i vivo™, so
this technique may cause side effects, but for
additional devices. Over the past decade, several
modifications have been examined to achieve a
tumor-specific antitumor effect of PTD-mediated
strategies, as mentioned above. To apply TAT-
mediated protein therapy to breast cancer treat-
ments, it is necessary to understand the common
features among breast cancers and utilize them to
construct a protein drug targeting breast cancer.
In the remainder of the present review, we will dis-
cuss the characteristics of breast cancer and the
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possibilities of PTD-mediated protein therapy tar-
geting then.

Pusztai et al. identified a number of novel and
routine prognostic markers of breast cancer by
analyzing the gene expression profiles obtained
from fine-needle aspirations of breast cancer™.
From their list, we may be able to find a novel pro-
tein that is specifically stabilized in breast cancer,
but degraded in normal tissues, and to apply such
regulation to develop a breast cancer-targeting
protein drug.

The role of apoptosis in oncogenesis is current-
ly being studied intensively in breast cancer™. A
decrease in the apoptosis index (AI) due to the
overexpression of [APs and the mutation of the
p53 gene must lead to the resistance of cancer
cells to current anticancer treatments, such as
chemotherapy and radiotherapy®. Several studies
have analyzed the prognostic significance of Al in
breast carcinomas. Lipponen et a@l. showed a sig-
nificant difference in survival from breast carcino-
ma (n=288) depending on the Al value (cut-off
point for Al was 10/mm?® ®, Zhang et al. also
reported a 30% difference in survival at 5 years
(» <0.001) in 126 patients with breast carcinoma
(cut-off point for Al was 11/mm®®. These reports
indicate that the induction of apoptosis prolongs
the survival of patients with breast carcinoma. In
this sense, a protein, which has the potential to
induce cellular apoptosis, may be a reliable candi-
date to be introduced into the breast carcinoma.

Chromosome 3P allele loss is a frequent event
in a variety of common sporadic cancers, and
breast carcinoma is no exception. To analyze the
extent and frequency of 3p allelic losses in early
stage invasive sporadic breast carcinoma, loss of
heterozygosity analysis was carried out using a 3p
microsatellite marker by Martinez et al.*®. They
reported that 6 out of 22 tumors showed loss at
3p25-24, including the von hippel landau locus. In
such breast carcinomas, IGF-IR signaling must
not be suppressed because of the VHL-deficiency,
resulting in unrestricted cell proliferation. There-
fore, the introduction of VHL 104123 with TAT-PTD is
expected to show an antitumor effect. Moreover,
VHL-deficiency must lead to the stabilization of
HIF-1a protein in such breast carcinomas. Since
the stability of TOP3 is regulated by pVHL via
the same ODD-regulation as the HIF-1a protein,
TOP3 must be stabilized even in the aerobic
regions of such breast cancers, as well as in the
hypoxic regions. Therefore, we can expect addi-
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tional efficacy of TOP3 toward this type of breast
cancer.

The accessibility of breast carcinomas permits
the use of a polarographic needle electrode to
measure the oxygen tension directly in cancer
patients. Such studies have shown a significantly
lower median oxygen partial pressure (pO:) in
malignant tumors compared with benign tumors
and normal breast tissue. The median pO: values
in malignant tumors, in benign tumors and in nor-
mal tissues were in the range of 23-28 mmHg, 42
mmHg and 54-65 mmHg, respectively® *. Of all
readings in breast cancers, 30-40% fell below 10
mmHg, which is uncommon in normal tissue.
Forty % of breast carcinomas contain almost anox-
ic regions in the range 0-2.5 mmHg, in which
tumor cells still survive®, In such a microenviron-
ment, the expression of the HIF-1 « protein is usu-
ally induced. Bos ef al. reported that HIF-1a pro-
teins were indeed accumulated in breast cancers,
and furthermore, the frequency of HIF-1«-posi-
tive cells increased in parallel with the increasing
pathological stage of each sample®. Therefore,
the novel hypoxia-targeting protein drug, TOP3,
will likely show antitumor effects on malignant
breast cancer.

Distribution of chemotherapeutic agents from
tumor blood vessels to hypoxic tumor cells is also
limited and thus only poor efficacy is usually obt-
ained in conventional cancer chemotherapy. On
the other hand, biologically active proteins could
be delivered into whole tumor including hypoxic
tumor cells, after i.p. injection with the fusion pro-
tein genetically conjugated with TAT-PTD™. This
result demonstrates that TAT-PTD solves the
problem of the poor delivery of anticancer agents
to hypoxic tumor cells. Therefore, we can expect
further effects of TOP3 on hypoxic cells in breast
cancer.
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