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Abstract

Although several COX-2 inhibitors have recently been radiolabeled, their potential for imaging COX-2 expression remains unclear. In
particular, the sulfonamide moiety of COX-2 inhibitors may cause slow blood clearance of the radiotracer, due to its affinity for carbonic
anhydrase (CA) in erythrocytes. Thus, we designed a methyl sulfone-type analogue, 5-(4-iodophenyl)-1-[4-(methylsulfonyl)phenyl]-3-
trifluoromethyl-1H-pyrazole (IMTP). In this study, the potential of radioiodinated IMTP was assessed in comparison with a '25] 1abeled
celecoxib analogue with a sulfonamide moiety (‘**I-IATP).

Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation by hydrogen peroxide. The biodistribution of
25 IMTP and '*’I-IATP was determined by the ex vivo tissue counting method in rats. Distribution of the labeled compounds to rat blood
cells was measured.

Results: The COX-2 inhibitory potency of IMTP (IC50=5.16 pM) and IATP (ICsp=8.20 uM) was higher than that of meloxicam
(IC59=29.0 uM) and comparable to that of SC-58125 (IC5o=1.36 uM). The ICs ratios (COX-1/COX-2) indicated the high isoform
selectivity of IMTP and IATP for COX-2. Significant levels of '*’[-IMTP and '2*I-IATP were observed in the kidneys and the brain (organs
known to express COX-2). The blood clearance of '*’I-IMTP was much faster than that of '*>I-IATP. Distribution of '*’I-IATP to blood cells
(88.0%) was markedly higher than that of '*’I-IMTP (18.1%), which was decreased by CA inhibitors.

Conclusions: Our results showed a high inhibitory potency and selectivity of IMTP for COX-2. The substitution of a sulfonamide moiety
to a methyl sulfone moiety effectively improved the blood clearance of the compound, indicating the loss of the cross reactivity with CA in
25LIMTP. *I-IMTP may be a potential SPECT radiopharmaceutical for COX-2 expression.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Cyclooxygenase-2 (COX-2); Inhibitor; Radioiodination; SPECT; Radiopharmaceutical

1. Introduction of the COXs—a constitutive form (COX-1) and an
inducible isoform (COX-2)—and several of their variants
have been discovered [1]. COX-1 is constitutively expressed
in most tissues and is responsible for maintaining homeo-
stasis, whereas COX-2 is induced in response to inflamma-
tory stimuli. Besides being associated with inflammation,
COX-2 has been implicated in a number of pathological

* Corresponding author. Tel.: +81 75 753 4608; fax: +81 75 753 4568. processes, including many human cancers, atherosclerosis,
E-mail address: kuge@pharm.kyoto-u.ac.jp (Y. Kuge). and cerebral and cardiac ischemia [2-5]. We also reported

Cyclooxygenases (COXs) catalyse the key rate-limiting
step in the conversion of arachidonic acid into prostaglan-
dins and thromboxanes. To date, at least 2 distinct isoforms

0969-8051/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.nucmedbio.2005.10.004
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the neuronal expression of COX-2 in rodent and primate
models of cerebral ischemia [6—-10].

Accordingly, the noninvasive imaging of COX-2 expres-
sion should help in understanding the pathophysiology of
the diseases and contribute to the clinical use of COX-2
inhibitors [11]. In this regard, several COX-2 inhibitors
were recently radiolabeled with F-18 and their potentials for
positron emission tomography (PET) tracers were prelimi-
narily evaluated [12—14]. The results for the potentials of
these labeled compounds, however, are not necessarily
consistent from one laboratory to another. In addition, the
short half-life of 'F may hamper the determination of the
specific binding of the tracer to COX-2, because it is known

that the COX-2 inhibitors show time-dependent inhibition
of COX-2 [11]. The longer half-lives of single photon
emission tomography (SPECT) nuclides, such as Tc-99m
or 1-123, may be more suitable for radiotracers to image
COX-2. From these points of view, we intended to develop
radioiodinated COX-2 inhibitors as SPECT tracers for
imaging COX-2 expression.

As for SPECT tracers, Yang et al. [15] proposed a
9mTe labeled celecoxib (celebrex) analogue as a potential
tracer for COX-2 expression. Kabalka et al. [16] recently
reported the radiosynthesis of a 123 1abeled celecoxib
analogue. However, the detailed characteristics of these
tracers, including affinity and selectivity to COX-2, have not

0 0O O
NaH, THF CF,CO,Et
CH3 » » CF 3
X 0°C / 60 min 0°C —>ri. X
1a X=1 2a X=I
1b X=Br 2b X=Br
H,CO,S —@—NHNHZ HCl N
HC”
EtOH N-N
b »—CF,
S,
reflux / 4 hr 3a X=1 IMTP)
X 3b X=Br (BMTP)
O§Sllo

EtOH N

2a, 2b NNy —CF,

reflux /4 hr ==
3¢ X=I (JIATP)
X
3d X=Br (BATP)

Fig. 1. Synthesis of IMTP (compound 3a), BMTP (compound 3b), IATP (compound 3¢} and BATP (compound 3d).

Compound 1a, iodoacetophenone

Compound 1b, bromoacetophenone

Compound 2a, 4,4,4-trifluoro-1-(4-iodophenyl)-butane-1,3-dione
Compound 2b, 4,4,3-trifluoro-1-(4-bromophenyl)-butane-1,3-dione

Compound 3a, 5-(4-iodophenyl)-1-{4-(methylsulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole
Compound 3b, 5-(4-bromophenyl)-1-[4-(methylsulfonyl)phenyl}-3-trifluoromethyl-1H-pyrazole
Compound 3¢, 5-(4-iodophenyl)-1-[4-(aminosulfonylphenyl]-3-trifluoromethyl-1H-pyrazole
Compound 3d, 5-(4-bromophenyl)-1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole
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been determined and their usefulness remains unclear. In
particular, the sulfonamide moiety of celecoxib may cause
slow blood clearance of the radiotracer, due to its affinity for
carbonic anhydrase in erythrocytes [17,18].

Thus, we designed a methyl sulfone-type analogue, 5-(4-
iodo-phenyl)-1-[4 -(methylsulfonyl)phenyl]-3-trifluoro-
methyl-1H-pyrazole (IMTP), iodinated at position 4 of the
5-phenyl ring as a SPECT tracer for imaging COX-2
expression (Fig. 1). In this study, radioiodinated IMTP was
synthesized, and its potential was assessed in comparison
with a '**I-labeled cerecoxib analogue with a sulfonamide
moiety (1’ I-IATP).

2. Materials and methods
2.1. General

Sodium 'ZL-iodide (642.8 GBg/mg) was purchased from

Perkin Elmer Life and Analytical Sciences (Boston, MA).
All chemicals used were of reagent grade.

Proton nuclear magnetic resonance ('H NMR) spectra
were recorded on a JNM-EX 400 spectrometer (JEOL,
Tokyo, Japan), and the chemical shifts were reported in
parts per million (ppm) downfield from an internal
tetramethylsilane standard. Fast atom bombardment (FAB)
mass spectra were recorded with a JMS-HX/HX110A model
spectrometer (JEOL).

2.2. Synthesis

2.2.1. 5-(4-lodophenyl)-1-[4-(methylsulfonyl)phenyl]-3-
trifluoromethyl-1H-pyrazole (IMTP)

IMTP was synthesized according to the procedure
outlined in Fig. 1. To dry tetrahydrofuran (THF, 5 mL)
were added NaH (19.5 mg, 0.49 mmol) and iodoacetophe-
none la (100 mg, 0.4 mmol). The mixture was stirred at 0°C
for 60 min, and then ethyl trifluoroacetate (145 pL,
1.22 mmol) was added dropwise. After stirring at 0°C for
12 h and at room temperature for 12 h, the reaction mixture
was acidified with 1IN HCI and then neutralized with IN
NaOH. The reaction mixture was extracted with chloroform.
The organic layer was washed with brine, dried over
Na,S0,, filtered and concentrated in vacuo to give brown-
ish oil. The crude product was purified by silica gel
column chromatography (AcOEt/hexane/triethylamine=
1:6:0.01) to give 2a as brownish oil in a yield of 35%. 'H
NMR (CDCl3) 6, 7.71 (d, J=7.3 Hz, 2H), 7.51 (d, J=7.6 Hz,
2H), 6.30 (s, 1H).

Compound 2a (45.7 mg, 0.134 mmol) and 4-methyl-
sulfonyl-phenylhydrazine hydrochloride (29.8 mg,
0.134 mmol) were dissolved in ethanol (3 ml) and heated
under reflux for 4 h. The mixture was allowed to cool before
concentration. The crude product was purified by silica gel
flash column chromatography (AcOEt/hexane=1:2) to give
IMTP 3a as a colorless.solid in a yield of 51%. 'H NMR
(CDClLs) 4, 7.97 (d, /=8.8 Hz, 2H), 7.74 (d, J=8.5 Hz, 2H),
7.53 (d, J=8.8 Hz, 2H), 6.97 (d, J=8.3 Hz, 2H), 6.79
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(S, IH), 3.08 (S, 3H) FAB-MS calcd for C17H12IF3N2028
[MH*]: m/z 493, found 493.

2.2.2. 5-(4-Bromophenyl)-1-[4-(methylsulfonyl)phenyl]-3-
trifluoromethyl-1 H-pyrazole (BMTP)

BMTP was synthesized in the same manner as IMTP,
using bromoacetophenone 1b (100 mg, 0.5 mmol) as a
starting material instead of iodoacetophenone la (Fig. 1).
Compound 2b was obtained in a yield of 31%. 'H NMR
(CDCL) é, 7.75 (d, J=8.1 Hz, 2H), 7.59 (d, /=7.8 Hz, 2H),
6.43 (s, 1H). Product 2b was then reacted with 4-methyl-
sulfonylphenylhydrazine hydrochloride to give BMTP 3b as
a colorless solid in a yield of 78%. '"H NMR (CDCls) 6,
7.97 (d, J=8.8 Hz, 2H), 7.54 (d, J=8.5 Hz, 2H), 7.53
(d, /=8.8 Hz, 2H), 7.11 (d, J=8.8 Hz, 2H), 6.79 (s, 1H),
3.07 (s, 3H). FAB-MS calcd for C;7H,,BrF;N,028 [MH"]:
m/z 445, found 445.

2.2.3. 5-(4-lodophenyl)-1-[4-(aminosulfonyl)phenyl]-3-
trifluoromethyl-1H-pyrazole (IATP)

This compound was synthesized by the same method as
for IMTP, except that 4-aminosulfonylphenylhydrazine
hydrochloride was used instead of 4-methylsulfonylphenyl-
hydrazine hydrochloride (Fig. 1). The product 2a was
reacted with 4-aminosulfonylphenylhydrazine hydrochlo-
ride to give IATP 3c as a colorless solid in a yield of
85%. "H NMR (CDCls) 6, 7.93 (d, J=8.5 Hz, 2H), 7.73 (d,
J=8.5 Hz, 2H), 7.47 (d, /=8.5 Hz, 2H), 6.97 (d, /=8.5 Hz,
2H), 6.78 (s, 1H), 4.99 (s, 2H). FAB-MS calcd for
C16H]11F3N3OZS [MH+] mlz 494, found 494.

2.2.4. 5-(4-Bromophenyl)-1-[4-(aminosulfonyl)phenyl]-3-
trifluoromethyl-1H-pyrazole (BATP)

This compound was synthesized using the same method
as for BMTP, except that 4-aminosulfonylphenylhydrazine
hydrochloride was used instead of 4 -methylsulfonylphenyl-
hydrazine hydrochloride. The product 2b was reacted with
4-aminosulfonylphenylhydrazine hydrochloride to give
BATP 3d as a colorless solid in a yield of 48%. '"H NMR
(CDCH) 0, 7.94 (d, J=8.5 Hz, 2H), 7.53 (d, J=8.3 Hz, 2H),
7.47 (d, J=8.5 Hz, 2H), 7.11 (d, J=8.3 Hz, 2H), 6.78
(s, 1H), 4.89 (s, 2H). FAB-MS calcd for C,sH;IF;N30,8
[IMH™: m/z 446, found 446.

2.3. Radiolabeling

The radioiodinated IMTP and IATP were obtained by a
halogen exchange reaction with sodium '**I-iodine according
to the methods of Kiyono et al. [19], Briefly, BMTP or BATP
was added to a mixture of sodium '**I-iodine, ammonium
sulfate and copper (II) sulfate pentahydrate in water in a vial.
The reaction mixture was heated for 2 h at 140°C. After
cooling, the reaction mixture was filtered with a 0.22-um
filter (Ultrafree-MC 0.22-um filter unit, Millipore, Benford,
TX). The filtered solution was applied to a reverse-phase
high-performance liquid chromatography (HPLC) column
(Cosmosil 5C;3-AR-300 Packed Column, 25010 mm id,
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Nacalai Tesque, Kyoto, Japan) and eluted at a flow rate of
2.0 ml/min with 10 mM KH,POy4/acetonitrile=1:1 for the
purification of '2*ILIMTP (R,=54 min for BMTP, 64 min for
IMTP) and 10 mM KH,POy/acetonitrile=53:47 for that of
IATP (R=58 min for BATP, 70 min for IATP).

The radiochemical purity of the labeled compound was
determined by TLC and analytical HPLC. The TLC was
performed on a silica gel plate, developed with AcOEt/
hexane=1:2 (R;=0.6 for IMTP and 0.4 for IATP).
Analytical HPL.C was performed on a 150x4.6-mm id
Cosmosil AR-300 column (Nacalai Tesque, Kyoto, Japan)
eluted at a flow rate of 1.0 ml/min with 10 mM KH,PO,/
acetonitrile=1:1 for '*I-IMTP (R=18.0 min) and 10 mM
KH,PO4/acetonitrile=53:47 for 'ZI-JATP (R;=17.9 min).

2.4. COX inhibitory potency

Peroxidase inhibitory activities of IMTP and IATP were
assessed by measuring the COX-catalyzed oxidation of
N,N,N',N-tetramethyl-p-phenylenediamine (TMPD) by hy-
drogen peroxide using a commercially available kit (Color-
imetric COX Inhibitor Screening Assay Kit, Cayman
Chemical). Briefly, 10 ul of ovine COX-1 or COX-2
‘solution was added to a 96-well plate with 150 pl of
0.1 moV/L Tris buffer at pH 8.0, 10 pl of heme solution in
DMSO and 10 pl of the test compound (final concentration:
107*-107° mol/L). After 5 min of incubation at 25°C; 20 pL
of TMPD and 20 pL of 1.1 mM arachidonic acid were
added to the mixture. The oxidation of TMPD was
monitored by measuring the absorbance of the mixture with
a plate reader at 600 nm. SC-58125, meloxicam and
indomethacin were used as reference compounds.

2.5. Animal experiments

Animal studies were conducted in accordance with
institutional guidelines, and the experimental procedures
were approved by the Kyoto University Animal Care
Committee.

Biodistribution studies were performed on male Sprague-
Dawley rats. '2’I-IMTP (74 kBg/rat) or 'Z°I-IATP (74 kBq/
rat) was administered to rats under chloral hydrate
anesthesia by tail vein injection. At appropriate time points
after the administration, the rats were sacrificed by
exsanguinations under chloral hydrate anesthesia. Blood
and organs were excised and weighed, and the radioactivity

Table 1
COX inhibitory potency and selectivity of IMTP, IATP and reference
compounds

Compounds ICso (M) ICsp ratio (COX-1/COX-2)
COX-1 COX-2

IMTP >100 5.16+2.83 >19

IATP >100 8.20+1.43 >12

SC58125 >100 1361044  >73

Meloxicam® >100 29.0 >35

Indomethacin® 0.08 119 0.007
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Table 2
Biodistribution of '*’I-IMTP in rats (%dose/g tissue)

Time after injection (min)

10 30 60 180
Blood 0.08+0.02 0.08+0.01 0.06+0.01 0.04+0.01
Plasma 0.12+0.03 0.12+0.01 0.09+0.01 0.06+0.01
Heart 0.49+0.11 0.5040.05 0.38%0.06 0.23+0.04
Lung 0.48+0.14 0.42+0.08 0.34+0.04 0.28+0.05
Liver 1.59+0.29 1.5340.27 1.02+0.15 0.5940.11
Kidney 0.65+0.14 0.60+0.07 0.42+0.06 0.344:0.05
Pancreas 0.59+40.13 1.26+0.56 0.67+0.11 0.88+0.35
Spleen 0.28+0.06 0.2740.05 0.23+0.07 0.15+0.04
Stomach 0.27+0.10 0.19+0.04 0.23+0.06 0.17+0.05
Intestine 0.27+0.06 0.384+0.20 0.27+0.04 0.25+0.05
Muscle 0.07£0.02 0.22+0.04 0.17+0.03 0.16+0.01
Thyroid 0.37+£0.25 0.5410.13 0.69+0.30 0.58+0.26
Brain 0.25+0.06 0.23+0.04 0.17+£0.03 0.10+0.02
Brain/blood® 3.1940.17 2.87+0.31 2.74+0.24 2.67+0.09

Mean+S.D. for four to five animals.
? Brain-to-blood ratio.

was measured with an auto well gamma counter (ARC2000,
Aloka, Tokyo, Japan).

2.6. Distribution to blood cells

Distribution of '*’I-IATP and '*’IIMTP to blood cells
and the effects of several compounds on the distribution were
measured by using rat whole blood. Acetazolamide and
chlorthalidone were used as reference compounds for
binding to carbonic anhydrase (CA), chlorpromazine for
binding to the cellular membrane of red blood cells and
phenothiazine for binding to hemoglobin. Heparinized
whole blood from male Sprague-Dawley rats was pre-
incubated at 37°C with gentle shaking for 5 min and then
251.IMTP (0.74 kBq) or '“I-IATP (0.74 kBq) was added.
After incubation at 37°C for 10 min, chlorpromazine,
phenothiazine, acetazolamide or chlorthalidone was added
in final concentrations of 10 to 300 pg/ml and then incubated
at 37°C for 10 min. A small portion of the blood samples was
counted in an auto well gamma counter (Cobra II Auto-

Table 3
Biodistribution of '2>I-IATP in rats (Y%dose/g tissue)

Time after injection (min)

10 30 60 180
Blood 0.63+0.08 0.534+0.03 0.44+0.03 0.45+0.05
Plasma 0.14+0.02 0.1240.01 0.11+0.01 0.10+0.01
Heart 0.8610.12 0.62+0.03 0.57+0.03 0.56+0.03
Lung 0.77+0.06 0.58+0.03 0.53+0.05 0.55+0.04
Liver 1.89+0.28 1.31+0.14 1.13+0.12 1.15+0.15
Kidney 0.92+0.11 0.64+0.03 0.55+0.05 0.58+0.06
Pancreas 0.77+0.07 0.79+0.06 0.71+0.06 0.784:0.18
Spleen 0.58+0.07 0.44+0.03 0.39+0.03 0.36+0.02
Stomach 0.24+0.04 0.194+0.06  0.24+0.04 0.2240.06
Intestine 0.26+0.04 0.29+0.04 0.32+0.07 0.36+0.04
Muscle 0.23+0.06 0.28+0.01 0.27+0.03 0.29+40.03
Thyroid 0.58+0.18 0.47+0.14 0.60+0.07 0.51+0.17
Brain 0.23+0.02 0.22+0.02 0.21+0.01 0.2010.01
Brain/blood® 0.36+0.05 0.42+0.03 0.48+0.03 0.45+0.05

Meant8.D. of three independent experiments.
# Mean of two independent experiments.
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Fig. 2. Levels of '**LIMTP and '**I-IATP in the blood. Mean+S.D. for
four to five animals.

Gamma, Packard, Tokyo, Japan), and the rest were centri-
fuged for 1 min and the plasma separated. A small portion of
the plasma samples was also counted. Hematocrit was
measured using an i-STAT portable clinical analyzer
(i-STAT, East Windsor, NJ). Distribution of the labeled
compounds to blood cells was calculated as follows:

T =[1—Cp/Cp x (100 — H;)/100] x 100

where T is the distribution% to blood cells, Cp and Cg are the
radioactivity in blood and plasma, respectively, and H, is the
hematocrit value. .

2.7. Statistical analysis

Data are presented as mean values with the standard
deviation, unless otherwise noted. Statistical analysis was
performed by one-way ANOVA followed by Bonferroni—
Dunn test for post hoc comparisons. Statistical significance
was defined as a two-tailed P value <.05/6 (i.e., .0083).

3. Results
3.1. Synthesis and radiolabeling

IMTP, BMTP, IATP and BMTP were obtained with
overall yields of 18%, 25%, 26% and 17%, respectively,
from the starting material la or 1b. The radiosynthesis of

25

I25LIMTP and 'Z’IFIATP was achieved with an iodine-
bromide exchange reaction. '*’L-IMTP and '*’I-IATP were
obtained with no carrier being added by the follow-
ing separation from the precursors (BMTP and BATP) using
reverse-phase HPLC. The radiochemical yields were 42% for
'25LIMTP and 35% for '*’I-IATP, and the radiochemical
purities were >95% for both of the labeled compounds.

3.2. COX inhibitory potency

IMTP and IATP inhibited COX-2 in a concentration-
dependent manner, while they showed no inhibitory potency
for COX-1 even at the highest concentration examined.
Table 1 summarizes the ICs, values of the test compounds.
The ICsq values of IMTP and IATP were 5.16 and 8.20 uM
for COX-2 and >100 yM for COX-1. The COX-2
inhibitory potency of IMTP and IATP was higher than that
of meloxicam (IC5,=29.0 uM) and comparable to that of

© SC-58125 (ICso=1.36 pM). The ICs, ratio (COX-1/COX-2)

for IMTP, IATP, SC-58125 and meloxicam was >19, 12,
73 and 3.5, indicating a high isoform selectivity of IMTP
and IATP for COX-2.

3.3. Biodistribution

The biodistribution of '2’I-IMTP and '**I-IATP is shown
in Tables 2 and 3, respectively. The level of radioactivity for
125 IMTP in the blood decreased more rapidly than that for
IZLIATP (Fig. 2). The radioactivity in the blood was
0.04 %dose/g tissue for **I-IMTP and 0.45 %dose/g tissue
for '?’I-IMTP at 180 min after the tracer administration. At 10
min after the injection, high levels of the radioactivity were
found in the liver and kidneys for both compounds. '**I-IATP
showed relatively higher levels of radioactivity in the heart
and lung. Both compounds showed no marked accumulation
in the stomach and thyroid. Significant levels of radioactivity
were found in the brains of rats, with brain-to-blood ratios of
2.67-3.19 for '’I-IMTP and 0.36~0.48 for '*°I-IATP.

3.4. Distribution to blood cells

Distribution of “’I-IATP to blood cells (88.0%) was
markedly higher than that of '*’I-IMTP (18.1%) as shown

100
A 1PLIMTP B LRSLJATP
O: 6ugmlL
75 BE: 10pgmL || ||
B : 100 pg/mlL
B : 300 pg/mL
50 B

o
th

Distribution to blood cells (%)

0
Acetazolamide
Chilortalidone

Chlorpromazine

Phenothiazine

Acetazolamide  Chlorpromazine
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Fig. 3. Distribution of >’I-IMTP (A) and 'Z’I-IATP (B) to blood cells. Mean+S.D. of three measurements. *P <.05/6 (i.e., .0083).
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in Fig. 3. The distribution of '*’I-IATP to blood cells was
significantly decreased by CA inhibitors (acetazolamide
and chlorthalidone), but not by chlorpromazine or pheno-
thiazine. The distribution of "*’I-IMTP to blood cells was
not affected by any of the compounds used in the
present study.

4, Discussion

In the present study, we synthesized a methyl sulfone-
type COX-2 inhibitor, 5-(4-iodophenyl)-1-[4-(methylsulfo-
nyl)phenyl]-3-trifluoromethyl-1 H-pyrazole (IMTP). The po-
tential of radioiodinated IMTP for imaging COX-2
expression was evaluated in comparison with a '*’I-labeled
celecoxib analogue with a sulfonamide moiety (‘**I-IATP).
The major findings in the present study can be summarized
as follows: (1) IMTP had a high inhibitory potency and
selectivity for COX-2. (2) "**I-IMTP showed a biodistribu-
tion compatible with the known distribution of COX-2. (3)
The blood clearance of '*’I-IMTP was much faster than that
of 'I-IATP. (4) '*’I-IATP showed markedly higher
distribution to blood cells than '2’I-IMTP, which was
decreased by CA inhibitors. These results demonstrate that
the substitution of the sulfonamide moiety to a methyl
sulfone moiety effectively improved the blood clearance of
the compound, indicating the loss of the cross reactivity
with CA in '*’I-IMTP. Methyl sulfone-type COX-2
inhibitors may be a preferential candidate as radiopharma-
ceuticals for COX-2 expression.

The methyl sulfone moiety and sulfonamide moiety at
position 4 of the 1-phenyl ring are considered to be optimal
for COX-2 selectivity [11]. In this regard, several COX-2
inhibitors with a methyl sulfone or sulfonamide moiety were
recently radiolabeled and preliminarily evaluated as imaging
agents [12—14,16]. However, the effects of these moieties
on the pharmacokinetics of the labeled tracers have not been
determined. Our results clearly showed that the substitution
of the sulfonamide moiety to the methyl sulfone moiety
effectively improved the blood clearance of the compound
(Fig. 2). In addition, the high distribution of I25LIATP to
blood cells was significantly inhibited by CA inhibitors
(Fig. 3). Recently, it was reported that sulfonamide-type
celecoxib analogues show high affinity to carbonic anhy-
drase (CA) [18]. Agents containing sulfonamides (e.g.,
acetazolamide) have been widely used in clinical medicine
to inhibit carbonic anhydrase (CA) [17,18]. The slow blood
clearance of '’I-JATP can be ascribed to the affinity of its
sulfonamide moiety to CA in erythrocytes [17,18]. These
results indicate the feasibility of methyl sulfone-type COX-2
inhibitors as radiopharmaceuticals for COX-2 expression.

Although COX-2 is an inducible isoform, it is predom-
inantly found in the normal brain and kidneys [20]. The
preferential uptakes of '>LIMTP and '*’I-IATP in these
organs were compatible with the expression of COX-2 in
these organs. The high brain-to-blood ratio of '*’I-IMTP
indicates the feasibility of this compound for COX-2
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imaging in the brain. On the other hand, no marked
2LIMTP accumulation was observed in the stomach or
thyroid, indicating its stability to in vivo deiodination. The
present results using '’I-IMTP are consistent with those
using '®F-SC-58125, which showed preferential uptakes in
the brain and kidneys with rapid blood clearance [12].
SC-58125 is a methyl sulfone-type COX-2 inhibitor that has
the same structure as IMTP except that the fluorine in
SC-58125 is replaced with iodine in IMTP. These results
further confirm the potentials of methyl sulfone-type COX-2
inhibitors as radiopharmaceuticals for COX-2 expression.

In the present study, we determined the biodistribution of
the labeled compounds at several time points within 3 h,
considering that small animals generally show rapid
pharmacokinetics compared with that in humans. Conse-
quently, we demonstrated that '**I-IMTP showed preferen-
tial uptakes in the brain and kidneys with much faster blood
clearance than '*’I-IATP. Time points <3 h appear to be
appropriate to extrapolate the pharmacokinetics in humans
from those in rats. We generally perform experiments to
block the uptake of a candidate compound in tissues by
coinjecting the nonradioactive compound, in order to
confirm its specific distribution. In the present study,
however, we did not perform such blocking experiments,
because the physiological expression levels of COX-2 are
relatively low compared with those in the pathological state.
Such blocking experiments do not appear to be suitable to
demonstrate the specific distribution of radiolabeled COX-2
inhibitors. McCarthy et al. [12] failed to obtain in vivo
blocking data to show the specific binding of a radiotracer
(1®F-SC58125) to COX-2 in rats. Contrarily, de Vries et al.
[13] indicated the specific binding of '®F-desbromo-
DuP-697 by blocking experiments in rats. Experiments in
animal models with higher COX-2 expression may be
necessary to assess the specific binding of tracers to COX-2.
We must await further studies to achieve this goal. Experi-
ments to demonsirate the advantage of longer half-lives of
SPECT nuclides are also required.

The COX-2 inhibitory potency of IMTP and IATP was
higher than that of meloxicam and was comparable to that of
SC-58125, suggesting that the introduction of iodine at
position 4 of the 5-phenyl ring did not largely affect the
COX-2 inhibitory potency. In addition, ICs, ratios (COX-1/
COX-2) for IMTP and IATP showed high isoform
selectivity of these compounds for COX-2 (Table 1),
indicating that the selectivity of IMTP and IATP for
COX-2 is comparable to celecoxib [21,22]. These results
were consistent with the consideration on the structure—
activity relationship reported by Herschman et al. [11] and
suggest that the introduction of iodine at position 4 of the
5-phenyl ring is acceptable.

5. Conclusion

A radioiodinated COX-2 inhibitor, '*’I-IMTP, was
synthesized. Our results showed a high inhibitory potency



