Antineovascular therapy, a novel antiangiogenic therapy

As cancer chemotherapy damages rapidly growing cells, not
only tumour cells but also normal growing cells such as bone
marrow and intestinal cells are damaged. These normal cell
damages appear as side effects. Chemotherapy may also dam-
age angiogenic endothelial cells, since these cells are growing
cells, although chis effect had not been well noticed since this
effect is included in main effect of the antitumour agent.

Browder et 4/, determined an appropriate administration
scheduling for cancer treatment (93). This schedule was char-
acterised by low dose injection at short intervals, and named
‘antiangiogenic schedule’, because they observed apoptosis of
angiogenic endothelial cells prior to tumour cell killing, The
antiangiogenic schedule showed marked suppression of
angiogenesis, since a shorter treatment-free period might not
allow reconstruction of new blood vessels. It was also demon-
strated that this enhdnced antiangiogenic effect brought
marked suppression of tumour growth. It was confirmed in
various kinds of cancer models. Additionally, this schedule
could be applied to drug-resistant tumour and p53-deficient
tumour cell lines, since the mechanism was based on disrup-
tion of angiegenic vasculature [94). Furthermore, administra-
tion of lipesomal formulation of cytotoxic agent in
antiangiegenic schedule showed more enhanced antitumour
effect compared with free formulation of it: liposomal formu-
lation might allow sustained drug release. Combinational
aduministration of both cytotoxic agent and angiogenic inhibi-
tor in antiangiogenic schedule also showed more enhanced
antitumour effect compared with administration of cytotoxic
agent alone [93].

Kerbel ef @l reported that repeated low-dose administra-
tion (metronomic dosing) showed potent therapeutic effect
and prolongation of survival time of mice in various cancer
models (94]. They also demonstrated the effectiveness of met-
ronomic dosing in drug-resistant cancer model. This thera-
peutic scheduling is now waiting to be taken into clinical
cancer chemotherapy (95].

4.5 Antiangiogenic photedynamic therapy

Photodynamic therapy (PDT) promises potent efficacy
against neoplastic and abnormal tissues such as tumour tissue.
PDT uses a combination of photosensitiser, such as porphy-
rin, chlorin, or phthalocyanine derivatives, and tissue-pene-
traring visible laser light, In brief, laser light promotes the
photosensitiser into an excited state, and when it comes back
to ground state, activated oxygen, such as singlet oxygen, is
generated by interaction with exygen. Activated oxygen then
directly kills tumour cells (96). As laser irradiation can be
localised around the tumour, severe side effects that are usu-
ally observed in chemotherapy can be avoided. Benzoporphy-
rin derivative monoacid ring A (BPD-MA) is a second
generation of photo-sensitiser, and their liposomal formula-
tion is commercialised as Visudyne™ (Quadra Logic Tech-
nologies/Novartis) for the treatment of AMD in which
uncontrolled angiogenesis eccurs. Specific laser irradiation at
angiogenic site causes eradication of angiogenic endothelial

cells, resulting in disruption of angiogenic vasculature [97].
Based on this idea, the authors established a novel photody-
namic cancer therapy targeting to angiogenic vasculature,
namely antiangiogenic PDT. This therapy also targets on the
growing angiogenic endothelial cells of newly formed vessels.

The authors previously determined antiangiogenic schedul-
ing of photodynamic therapy for cancer therapy, which per-
formed laser irradiation 15 min after administration of
photosensitiser (15-min PDT). In general, laser irradiation is
performed 3 — 5 h after administration of BPD-MA because
the photosensitiser highly accumulates in tumour tissue at
those times. However, at earlier times such as 15 min after
administration, the photosensitiser mainly exists in
bloodstream and may be incorporated in angiogenic endothe-
lial cells rather than in tumour cells. In fact, antiangiogenic
PDT scheduling (15 min PDT) effectively damaged ang-
iogenic vasculature compared with 3-h PDT by use of dorsal
air sac model. Furthermore, in a therapeutic experiment,
15-min PDT using liposomal BPD-MA effectively suppressed
tumour growth and showed prolonged survival time of solid
tumour-bearing mice [98,99).

To enhance electrostatic interaction of liposomal BPD-MA
with angiogenic endothelial cells, the authors used positively
charged liposomes as a carrier for BPD-M, because the surface
of endothelial cells are negatively charged 1100). For this pur-
pose we used polycation liposomes (PCLs): liposomal surface
was coated with polyethylenimine. BPD-MA-encapsulated
PCLs showed strong binding to endothelial cells and
enhanced cytotoxic effect against endothelial cells after laser
irradiation in wvitro no11021. Corresponding to this in vitro
data, BPD-MA-encapsulated PCLs showed potent therapeu-
tic effect such as tumour regression and prolonged survival
time in solid tumour-bearing mice after irradiation of laser
15 min after administration [103}. Furthermore, it has been
clarified that enhanced tumour regression by BPD-MA
PCL-mediated PDT depends on disruption of angiogenic
vasculature. These observations indicate that antiangiogenic
PDT is expected to be efficient cancer therapy compared with
traditional PDT.

5, Conclusion

Tumour angiogenesis is a critical event for solid rumour
growth, and research has been carried out to develop inhibi-
tors for blocking certain step in angiogenesis. Antiangiogenic
therapy is thus proposed. There are many good reviews on
antiangiogenic therapy which aims to inhibit certain ang-
logenic processes such as VEGF-mediated signalling and
MMP-related ECM degradation, and so on [104]. Recently, it
has become noticed that cancer chemotherapy damages ang-
iogenic endothelial cells as well as tumour cells, because ang-
iogenic endothelial cells are growing cells, such as tumour
cell. And new strategy for antiangiogenic therapy is
proposed, which aims to damage pre-formed neovessels. In
this review, the authors described three different approaches;
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Figure 3. Antitumaur (antineovascular) therapeutic experiment with adriamycin-encapsulated liposomes. ADM-encapsulated
liposome was prepared by a modification of the remote-loading method, and the encapsulation efficiency was > 90% throughout the
experiment. A) Suppression of tumour growth by APRPG-LIDADM in Meth A sarcoma-bearing mice. ADM encapsulated in control
liposome (white square = LipADM) or in liposome-modified with stearoyl APRPG (black square = APRPG-LIpADM) (10 mg/kg as ADM),
ADM alone (black circle = 10 mg/kg), or 0.3M glucose solution (white circle = control) were injected intravenously into tumour bearing
BALB/c mice (n = 6) at days 6, 9 and 12 after implantation of Meth A sarcoma cells. The size of the tumour and body weight of each
mouse were monitored daily. Tumour volume was calculated using the formula 0.4 (a x b2), where "a" was the largest and "b* was the
smallest diameter of the tumour. Variance in a group was evaluated by the F-test, and differences in mean tumour volume were
evaluated by Student's t-test. Data are presented as mean tumour volume and SD. SD bars are shown only for the last points for the sake
of graphic clarity. Arrows show the day of treatment. Significant differences are indicated (*, p < 0.05; **, p < 0.01). B) Suppression of in
vivo angiogenesis by APRPG-LipADM. For assay of antineovascular activity, a chamber ring loaded with Colon 26 NL-17 cells (1 x 107
cells/ring) was dorsally inaculated into five-week-old BALB/c male mice. At 2 days after inoculation, LipADM, APRPG-LipADM (10 mg/kg
as ADM), or 0.3M glucose solution were injected intravenously into DAS model mice. At 4 days after inoculation, 1% Evans Blue solution
was injected intravenously into the mice. After 1 min, they were sacrified and the pigment in the skin attached to the ring was extracted
for the measurement of absorbance at 620 nm. The data represent an absorbance of the pigment at angiogenic site and significant
differance from the LipADM is indicated (*, p < 0.05).

ADM: Adriamycin; APRPG: Ala-Pro-Arg-Pro-Gly; DAS: Dorsal air sac; LipADM: Liposome adriamycin; PRP: Platelet-rich plasma; SD: Standard deviation.
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firstly one aims to deliver cytotoxic agents to angiogenic
endothelial cells, secondly to function cytotoxic agents more
to angiogenic endothelial cells than to tumour cells by altering
administration scheduling of the agents, and thirdly to dam-
age angiogenic endothelial cells by use of appropriate schedul-
ing and appropriate carrier of photosensitiser in PDT. To
clarify the difference of this strategy from conventional
antiangiogenic therapy, the authors named this as
‘anti-neovascular therapy (ANET)".

Inhibition of angiogenic process is a promising approach,
however, it sometimes brings only tumour dormancy.
Moreover, most of the angiogenesis of these inhibitors need
an abundant dose and frequent administration to suppress
tumour growth. Selective bur not drastic activities of these
inhibirors may make clinical studies difficult. On the con-
trary, ANET aims to disrupt angiogenic vasculature by deliv-
ering cytotoxic agent to angiogenic vessels. Therefore, ANET
is expected not only to suppress tumour growth, but also to
eradicate tumour cells through complete cut-off of oxygen
and nutrients. In general, cancer chemotherapy is accompa-
nied with strong side effects and acquired drug resistance.
Therefore, drug delivery systems which selectively deliver the
drugs to the target tumour are awaited. Recently, vascular car-
geting has become a focus of interest, since certain drugs or
drug carriers first meet neovasculature before extravasation in
the tumour. In particular, targeting of a tumour angiogenic
vasculature is promising for cancer treatment since these ves-
sels have properties different from those of the pre-existing
systemic vasculature. Furthermore, angiogenic endothelial
cells are growing cells, and are effectively damaged by antitu-
mour drugs if the drugs are appropriately delivered to or func-
tioned on the neovessel cells. In this review, the authors have
shown that the direcr eradication of angiogenic endothelial
cells is actually more potent to eradicate tumours than the
direct damaging of tumour cells by angiogenic vasculature-
targeting ANET’. ANET including metronomic-dosing
chemotherapy and antiangiogenic PDT would be a hopeful
treatment modality for cancer patients.

6. Expert opinion

Since cancer became one of the higher fatality diseases in
developed countries, various kinds of anticancer agents
have been developed for cancer therapy. Although they
show effective direct cytotoxicity against tumour cells, most
of them accompany severe side effects, such as myelosup-
pression, because they also damage some growing normal
cells. This problem is mainly caused by low selectivity of
the drugs, since most anti-cancer agents show their dra-
matic eytotoxicity in a cell cycle-dependent manner. Due to
this problem, clinical MTD of anticancer agents often fails
to show enough therapeutic efficiency. Additionally,
acquirement of drug resistance in tumour cells sometimes
causes difficulty in cancer therapy. For these reasons, devel-
opment of novel cytotoxic agents becomes more difficult.

Thus, introduction of drug delivery system (DDS)
technology and a novel approach for cancer therapy are
now expected.

Since Folkman and co-workers stated the importance of
angiogenesis in tumour growth in the earlier 1970s 1105 and
discovered angiostatin in 1996 (491, angiogenesis in cancer
research has been considered. Up till now, the angiogenic
processes and involvement of angiogenic factors and signal
transducing molecules have been elucidated. According with
this interest, cancer therapy targeting angiogenesis has been
focused. In the present review, the authors have firstly intro-
duced various kinds of targeting molecules for antiang-
iogenic therapy and their antitumour effect. As a result, it
has been clarified that angiogenesis is processed with com-
plex stages where angiogenic endothelial cells play an impor-
tant role. In brief, angiogenesis initiates with interaction of
angiogenic factors with their receptors, following with signal
transduction, endothelial cell proliferation, migration, inva-
sion, and tube formation. Antiangiogenic therapy aims to
inhibit one or several steps of angiogenesis and subsequently
to suppress tumour growth. However, it is questionable
whether: an injectable dose could completely suppress
tumour angjogenesis; suppression of angiogenesis leads to
complete eradication of tumour cells; whether antitumour
effect lasts long-term; and whether it is applicable for any
stage or various kinds of tumours. In fact, some cases are
reported: natural angiogenic inhibitor, endostatin showed
effective inhibition of angiogenesis in early stage of tumour
but not shown in late stages. Additionally, although various
kinds of antiangiogenic agents have been developed, some
doses do not show satisfactory antitumour effect in clinical
study. One of the reasons for this is based on the alternative
functions of a variety of pro-angiogenic factors in various
stages of angiogenesis. To overcome this problem, a novel
approach in antiangiogenic therapy has been expected.

Since conventional cytotoxic anticancer drugs target ang-
iogenic endothelial cells as well as other growing cells, the
authors developed one of a novel antiangiogenic therapy,
ANET. ANET includes angiogenic vasculature-targeting
chemotherapy, metronomic-dosing therapy, and antiang-
iogenic photodynamic therapy. Angiogenic vasculature-tar-
geting chemotherapy was achieved with active-targeting
tools and DDS technology: anticancer drug-encapsulating
liposomes modified with a peptide specifically bound to
angiogenic endothelial cells were used. This liposomal
anti-cancer drug suppressed tumour growth in a
tumour-bearing mice model. Furthermore, usage of DDS
technology decreased side effects by lowering administration
dose of cytotoxic agents and by altering biodistribution of
the agents because of the targeting effect. Merronomic-dos-
ing chemotherapy aims to shift the action site of cytotoxic
agents from tumour cells to angiogenic endothelial cells with
continuous low-dose administration scheduling and shows
potent anti-tumour effect against various cancers including
drug-resistant cancer. Antiangiogenic PDT, which also shifts
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the target from tumour cells to angiogenic endothelial cells,
shows efficient antitumour activity with reduced side effects.
Thus, these strategies promise complete cancer cure with
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