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Fig, 2. Decomposition curves for algal DOM obtained from different growth phases
and after UV treatment. Error bars represent standard deviations of means of triplicate
treatment flasks (Errors less than the size of the symbols are not shown).
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Fig. 3. Fractions of DOM released by M. geruginosa in different growth phases (HoA:
hydrophobic acids; HoN: hydrophobic neutral; HiB: hydrophilic bases; HiA: hydro-
philic acids; HiN: hydrophilic neutrals). Error bars represent standard deviations of
means of duplicate fractionation for each fraction.

phases of M. aeruginosa. Levels remained constant at 2.61 £ 0.01 mg/l in
PhaseI, 5,75 £ 0.05 mg/l in Phase I and 10.53 % 0.07 mg/] in Phase ITT (Fig. 1).
In contrast, exposure to UV made a considerable difference to the biodegrad-
-ability of the algal DOM (Fig.2). Biodegradability decreased after exposure,
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depending on the UV treatment, and the decrease was largest in the oldest cul-
ture. For example, the microbial degradation (for 5 days) of the DOM from
growth phase II decreased by up to 17.4 % after UVA treatment and by 21.1%
after UVB treatment, when compared to no UV treatment.

DOM-fraction distribution of algal DOM

Hydrophilic fractions of the DOM predominated in all growth phases of M.
aeruginosa (Fig. 3). In particular, the HiA fraction was found to be the most
abundant i all growth phases, representing 62.6-70.7 % of the algal DOM.
The HiB fraction was the second most prominent, accounting for 7.2—-23.2 %.
Thus, the HiA and HiB fractions are likely to be the most significant fractions
produced by M. aeruginosa. With aging of the algae, the proportions of the
HiB fraction increased, while the HiA and HiN fractions decreased. The hy-
drophobic fractions (HoA and HoN) were consistently a minor proportion of
the total in all growth phases, together accounting for less than 13 % of the
algal DOM.

After exposure to UV radiation, however, the composition changed de-
pending on the growth phase and the UV treatment (Fig.4). The proportions of
the HiB and HiA fractions were considerably changed compared to the other
fractions. In all growth phases the proportion of the HiB fraction decreased
after UV exposure (by 1.5—8.1% after UVA treatment and by 5.3-15.8 % after
UVB treatment). In confrast, the HiA fraction increased by as much as the de-
crease in the HiB fraction after UV exposure (by 4.7-8.7% after UVA treat-
ment and 9.3-16.3 % after UVB treatment). The changes in proportions of the
two fractions after UV radiation increased with the age of the culture. '

Evidence of photoalteration in two fractions, HIiA and HiB, of algal
DOM

To clarify the changes in the two fractions (HiB and HiA) after UV exposure,
we measured the fluorescence at 270/350 nm, as an index of protein-like DOM
for the HiB fraction, and several carboxylic acids for the HiA fraction.

The fluorescence (at 270/350 nm) of the algal DOM (whole DOM before
fractionation) was high in Phase III (1.61) and low in PhaseI (0.13) (Fig.5a).
After exposure to UV, the fluorescence declined exponentially with UV expo-
sure time in all growth phases, and the decrease was marked in Phase I after
UVB weatment (Figs. 5 a,b).

Three carboxylic acids (oxalic, formic and acetic acids) were detected in
all the growth phases of M. aeruginosa (Fig. 6). Oxalic acid occwred in low
concentrations (below 10pg/ in all phases) and showed little varfation with
the age of the culture. In contrast, formic and acetic acids had relatively high



Photoalteration and bicdegradability of algal DOM 279

Phase |
100

I no treatment
UVA treatment

80 -

% to DOC

DO rerrirrinecr e e e e

o WZH

R UVB treatment

Phase Ii
100

HiA

% to DOC

Phase Il
100

HiA

% to DOC

20

o

HoA HoN HiB

Fractions
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concentrations (33-226 pg/l and 18-206 pg/i, respectively), and increased
greatly with the age of the culture (see white bars in Fig. 6). After UV treat-
ment, the three carboxylic acids greatly increased in all the DOM sources, in-
dicating photochemical production of carboxylic acids from algal DOM. The
increase in carboxylic acids was higher after UVB treatment than after UVA
treatment in samples from all growth phases. For example, compared to no
UV treatment, acetic acid increased up to 72 g/l after UVA. treatment and up
to 153 pg/l after UVB treatment in Phasell. '

Decreased biodegradability of HiB fraction after UV treatment

A different biodegradability (measured as the percentage of DOC utilized
compared to the initial DOC in the fraction) was observed in the HiB fraction
after UV treatment (Fig. 7). The HiB fraction produced by M. aeruginosa was
injtially very labile to bacterial degradation, showing a high biodegradation of
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81.6 + 5.6 % over 5days. However, this biodegradability decreased signifi-
cantly after UV treatment (p = 0.009 for UVA treatment and p = 0.007 for
UVB freatment by paired t-test), and the decrease was greater in the UVB
treatment than in the UVA treatment (74.7 £ 4.6 % after UVA treatment and
60.8 + 2.3 % after UVB treatment). On the other hand, there was no difference
in biodegradability of the HiA fraction between before and after UV treat-
ments (Fig. 7). :

Discussion

It is well known that UV radiation can alter the DOM pool by causing com-
plete degradation into CO,, and by cleaving the DOM into smaller and more
labile molecules, enhancing bacterjal activity (MILLER & ZEpp 1995, WETZEL
et al. 1995, AMoN & BENNER 1996, MoRaN & Zzrp 1997, GARDNER et al.
1998, KIEBER et al. 1999, WETZEL 2000). However, the extent of photochemi-~
cal transformation of DOM into CO, shows a wide range from 0 to 60 % in
many natural waters (WIEGNER & SEITZINGER 2001). Clear photo-oxidation
has been observed only in waters containing high levels of humic substances
(HS), but with no or little algal DOM. Complete photo-oxidation may be lim-
ited to allochthonous DOM, high in HS, because HS strongly absorb short
wavelength light (FRIMMEL 1994), and most HS are not derived from algae but
rather higher plants (WETzEL 2001). In addition, recent studies have shown
that initially labile algal-derived DOM becomes more recalcitrant after UV ex-
poswre (TRanNvik & Kokary 1998, Pausz & HErNDL 1999). These studies
found that microbial activity in DOM which had been exposed to UV was in-
hibited by 15 to 20 %, while the loss of DOC was less than 1% during UV ex-
posure., Research to date has shown that the effects of UV radiation depend
largely on the DOM source as well as the light source and length of exposure.
In the present study, all the algal DOM produced from different growth phases
of M. aeruginosa was transforrned into more recalcitrant forms after UV expo-
sure without photo-oxidation (Figs.1 and 2). These results confirm several re-
cent findings on the decreased biodegradability of algal DOM due to UV 1a-
diation, and indicate that these findings are common in algal DOM.
Furthermore, there was a difference in the distribution of DOM-fractions
after UV exposure, especially in the two major fractions (HiB and HiA) of
DOM produced by M. aeruginosa (Fig.4), reflecting photoalteration in the
fractional composition of algal DOM as well as the bicdegradability. The
changes in the two fractions after UV radiation were clear in the oldest cul-
ture. After UV exposure, the HiB fraction decreased, while the HiA fraction
increased by as much as the decrease in HiB. In contrast, THoMas & Lara
{1995) showed that algal DOM was not changed in chemical composition or
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concentration after UV exposure. The difference between their results and
ours may be due to the sources of algal DOM used in the two studies. We used
freshly produced algal DOM, while the DOM used by THoMAs & Lara
(1995) had been aged in the presence of bacteria for 8 months. During this
long incubation, bacteria would utilise initially labile constituents that could
be changed by UV radiation. Thus, initially labjle DOM was not involved in
their experiments despite the fact that they are important fractions of algal
DOM.

The classification of organic solutes by several researchers has suggested
that the HiB and HiA fractions consist mainly of protein-like and carboxylic
acid-like DQM, respectively (Table 1). Although the specific organic com-
pounds of the HiB fraction were not identified in this study, the fluorescence
at 270/350 nm of excitation/emission, used as an index for the protein-like
DOM, supports the decrease in the HiB fraction due to UV radiation (Fig. 5).
In addition, the increase of three carboxylic acids after exposure to UV sup-
ports the increase of the HiA fraction. Several sfudies suggest that the photo-
chemical formation of carboxylic acids is linked to the presence of humic sub-
stances (ALLARD et al. 1994, BErTILssoN & TeaNVIR 1998, WeTZEL 2000), In
this study, on the other hand, the photochemical production of carboxylic acid-
like fractions may be related to the non-humic fractions of algal-derived
DOM. However, the increased HiA fraction may not be linked to the recalcit-
rance of algal DOM caused by exposure to UV, since carboxylic acids are, in
general, easily taken up by bacteria (BErTILSsON & TRaNVIK 1998), and since
the HiA fraction in this study was shown to have high biodegradability after
UV treatment (Fig. 7).

Some studies indicate that labile proteinaceous substrates could be trans-
formed into recalcitrant forms during UV exposure (NAGANUMA et al. 1996),
or only after a long incubation (KEIL & KIRCHMAN 1994). In this study, the
.proportion of HiB increased with aging of the algae (Fig.3), and the decreased
biodegradability of algal DOM was more marked in the older phases (Phasell
and III) than in the exponential phase (Phase D) (Fig.2). Furthermore, the ini-
tially labile, protein-like HiB fraction became increasingly recalcitrant to bac-
terial degradation after exposure to UV (Fig.7). These results indicate that the
protein-like fraction may be important in the decrease of biodegradability of
algal DOM by UV exposure.

- The present study indjcates that algal DOM can be photochemically aktered
in its chemical composition and biodegradability, and the photoalteration may
be more important in older phases than in the exponential growth phase of the
algae. Furthermore, our results suggest that the protein-like HiB fraction may
be important in the formation of recalcitzant DOM. '
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Abstract Analytical methods were developed to determine
the -concentration of total dissolved iron and its chemical
speciation in freshwater using cathodic stripping voltam-
metry (CSV) with 1-nitroso-2-naphthol (NN} at pH 8.1. The
concentrations of total dissolved iron in river water that
iron concentration was certified and in natural water
samples from Lake Kasumigaura were determined success-
fully. The natural iron ligand concentration and the condi-
tional stability constant were determined by ligand
competition between NN and the natural ligands present in

" the sample. In the water samples from Lake Kasumigaura,
the concentrations of total dissolved iron and natural ligand
were 47.8 £ 4.4nM and 80.0 % 19.6nM and the conditional
stability constant (KL, ) was 105" M ™! (n = 3). The value
of Ky, was greater than any reported X, for seawater.
More than 99.9% of the dissolved iron existed as organic
species due 1o the very high value of the conditional stabil-
ity constant. The inorganic iron concentration caiculated
from these results was 107°*M, indicating that the inor-
ganic iron level in Lake Kasumigaura was similar to that in
the open ocean and therefore that iron can be a limiting
factor for algal growth in Lake Kasumigaura. This is the first
report of the complexation of iron{I¥I} and inorganic iron
levels in lake water determined by CSV.
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Introduction

Iron is an essential micronutrient for algal growth, and
cyanobacteria, in particular, have a higher cellular iron re-
quirement than other algae (Brand 1991). Iron may be the
limiting factor for primary production in parts of the open
ocean {Martin and Fitzwater 1988; Martin et al. 1990;
Martin et al. 1994). Although the concentration of dissolved
iron in freshwater is generally greater than that in seawater,
iron can be a limiting factor in the growth of bloom-forming
cyanobacteria: the growth of Microcystis aeruginosa in fil-
trates of water samples from eutrophic Lake Kasumigaura
was stimulated by the addition of FeCl, or ethyle-
nediaminetetraacetic acid (EDTA) (Yagi et al. 1987); addi-
tion of iron was essential for the occurrence of a Microcystis
bloom in outdoor experimental ponds (Aizaki and Aoyama
1995); the ambient level of fulvic acid in Lake Kasumigaura
significantly inhibited the growth of M. aeruginosa in
defined growth media because of complexation of Fe(III)
with fulvic acid (Imai et al. 1999).

Several studies of dissolved irom concentration in
lake water have been reported (Balistrieri et al. 1992;
Achterberg et al. 1997; Inaba et al. 1997), but determining
the concentration of dissolved iron in unpolluted natural
lake water is difficult without preconcentration. Therefore,
there is a need to develop a highly sensitive method requir-
ing minimal sample pretreatment.

It is also important to determine the chemical speciation
of iron as well as 1ts concentration to examine the effect of
iron on algal growth. The free hydrated and hydrolyzed
ferric iron species [such as FeOH™, Fe(OH),", Fe(OH),",
and Fe(OH),”] are thought to be the biologically active
spectes (Hudson et al. 1992). In the oceanic water column,
most of the dissolved iron is strongly complexed with or-
ganic matter {Gledhill and van den Berg 1994; Rue and
Bruland 1995; van den Berg 1995; Boye et al. 2001), suggest-
ing that algal growth is limited not only by the general lack
of iron but also by its low availability. On the other hand,
in lake water, it has long been known that only a small
part of the iren is available to phytoplankton (Hutchinson
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1957). The existence of organic complexes of iron (Perdue
et al. 1976), iron—fulvic acid complexes {Sojo and De Haan
1991), and stabilized colloidal iron (Cameron and Liss
1984) in freshwater has been reported. However, to date, no
studies have been published that report the fraction of
organic and inorganic (bioavailable for algae) iron in natu-
ral freshwater. Thus the methodology has not yet been
established.

Cathodic stripping voltammetry {(CSV) for determina-
tion of low levels of iron in seawater has been developed.
This method relies on the specific adsorption of a complex
of the metal ion with an added chelator onto a hanging
mercury drop electrode followed by a voltammetric scan to
determine the amount of adsorbed metal jon. An important
advantage of this voltammetric method is that it can be used
to determine the chemical speciation of iron as well as
its concentration. A competitive ligand equilibration/CSV
method using the competitive ligand 1-nitroso-2-naphthol
(NN) (Gledhill and van den Berg 1994) or salicylaldoxime
(SA) (Rue and Bruland 1995) has been used to study com-
plexation of iron(III) by natural organic ligands in seawater.
However, it is difficult to study metal complexation by CSV
in lake water that contains a high concentration of organic
matter, part of which is surface active. This organic matter,
especially the surface-active material, is prone to interfere
with voltammetric measurement. During measurement, the
dissolved organic matter shields part of the electrode sur-
face from the samptle, which results in nonreproducible scat-
ter in the data.

In this study, we modified the CSV method using NN
with bromate and determined the dissolved iron concentra-
tion and its speciation in freshwater at pH 8.1. The CSV
method using NN has advantages over that using SA: a
short deposition time with a catalytic effect. with H,0,
(Yokoi and van den Berg 1992) or bromate (Aldrich and
van den Berg 1998) and a large linear range of the CSV
response for iron, which is suitable for freshwater analysis.
pH 8.1 was chosen because it is the appropriate value for
freshwater and the conditional stability constant for the
complexation of iron(Il) by NN (needed for calculation of
iron speciation) can be obtained from the literature
(Gledhiil and van den Berg 1994; van den Berg 1995). Here,
we describe the method in detail and demonstrate its valid-
ity by determining the concentration of dissolved iron and
its speciation in Lake Kasumigaura.

fRethods
Materials

The voltammetric system consisted of & Princeton Applied
Research (PAR; Oak Ridge, Tennessee, USA) 303A static
mercury drop electrode connected to a PAR 394 voltamme-
tric analyzer. The working lectrode was a hanging mercury
drop {medium size), the reference electrode was Ag/AgCl
in 3-M KCl saturated with AgCl and the counter electrode
was a platinum wire. Solutions in the Teflon voltammetric

cell were stirred with a Teflon-coated magnetic stirring bar
driven by a PAR 305 electric stirring motor.

Milli-Q water (M(; Millipore, Billerica, UUSA; resistance
18.3MQ) was used for reagent and sample preparation. A
0.02-M stock solution of I-nitroso-2-naphthol (NN) was
prepared in methanol (Wako, Infinity Pure Grade, Osaka,
Japan). A 1-M stock solution of tris (hydroxymethyl)
aminomethane (Tris) was adjusted to pH & with HCl
(Merck, suprapur grade, Darmstadt, Germany). A 04-M
stock solution of potassium bromate and a 5-M stock solu-
tion of NaCl were prepared in MQ. Iron contaminants were
removed from the Tris, potassium bromate, and NaCl stock
solutions (the potassium bromate and NaCl stock solutions
were buffered at pH 8 with 10-mM Tris) by adding 20 uM
NN and passing the mixture through a Sep-Pak C18 car-
tridge (Waters, Milford, USA; precleaned with methanol,
HCl, and then MQ). Iron standard solutions were prepared
by diluting a 100-ppm-Fe standard (Wako) with MQ and
acidifying to pH 2.5 with HCL

The fresiiwater samples were collected from the center
of Lake Kasumigaura, a shallow, eutrophic lake in Japan
(Lake Kasumigaura is the second largest lake in Japan).
Surface-water samples were collected directly into 250-ml
high-density polyethylene bottles on January 10, 2003. The
samples were immediately cooled in an ice cooler, brought
back to the laboratory, and filtered through a 0.2-um-pore-
size polycarbonate membrane filter (Nuclepore, Whatman,
Brentford, UK). The filtrates were stored frozen (—20°C) in
high-density polyethylene bottles until analysis of the iron
speciation. Separate samples were stored at 3°C in Tefion
vials after acidification to pH 2.5 with HCI for the deter-
mination of total dissolved iron. The high-density polyethyi-
ene bottles were cleaned by soaking in 3-M HC! for 3 days
and then rinsing with MQ, The Teflon voltammetric cells
and Teflon vials were cleaned by soaking in 3-M HCl for 3
days, then soaking in 2-M HNO; for 3 days, and finally
rinsing with MQ.

Determination of total dissolved iron

Samples for the determination of total dissolved iron were
ultraviolet (UV) irradiated prior to analysis to decompose
interfering organic compounds. Samples (10ml) were
placed in acid-washed quartz tubes and then UV irradiated
with a 400-W low-pressure Hg lamp for 60min. Details of
the UV irradiation system were previously described
(Yokoi et al. 1999). UV-irradiated samples were diluted
with an appropriate amount of MQ (usually ten times), and
10-ml aliquots of the diluted solutions were pipetted into
the Teflon vials. Ten microliters of a 0.02-M NN solution
(final concentration 20uM) and 100! of a 5-M NaCl
solution (final concentration 50mM) were added to the
samples. The pH was made approximately neutral using
ammonia solution, and 100ul of 2 1-M Tris solution (final
concentration 10mM) was added (final pH 8.1). The solu-
tion was deaerated by purging for 4min with nitrogen gas,
and 250ul of a 0.4-M potassium bromate solution (final
concentration 10mM) was added prior to the voltammetric



scan. Deposition onto a fresh mercury drop was carried out
for 30s at —0.15V while the solution was stilled. The stirrer
was stopped and 10s later the potential was scanned in the
differential pulse stripping mode (pulse height 20mV)
from —0.15 to —0.7V at a scan rate of 20mVs™", This mea-
surement was repeated with three standard additions of
iron to the sample sufficient to double the peak height, and
quantification was made by the standard addition method.

Determination of iron(III) complexation by natural
organic ligands

The conditional stability constants and complexation ca--

pacities of the natural iron{IIl) complexing ligands in the
freshwater samples. were determined by a competitive
ligand equilibration method (Gledhill and van den Berg
1994). Samples (10ml) were diluted ten times with MQ and
the diluted solutions were mixed with NN (final concentra-
tion 20uM), Tris (final concentration 10mM), and NaCl
(final concentration S0mM). The final pH of the mixture
was 8.1. Appropriate amounts of a 1.79-uM (100-ppb) iron
standard solution were pipetted into the Teflon vials in 9
increments (0-140pl) and 10m! of the mixture was pipetted
into each vial (final added iron concentration increasing
from 0 to 25aM). The added irom, NN, and natural
complexing ligands were allowed to equilibrate overnight
with gentle shaking. At the same time, the voltammetric cell
wasg conditioned in the remaining 10m! of the mixture. The
iron complexed by the added NN was determined by CSV
after purging and addition of potassium bromate (final con-
centration 10mM). The voltammetric procedure was the
same as that described above.

Theory

Ligand concentrations (C,) and conditional stability con-
stants (K}, ) are defined as follows:

K¢y = [FeL]/[Fe* L] (1)

L] - @)

where [Fel] is the concentration of iron complexed by
natural organic ligand, L, and [L'] is the concentration of
ligand L not complexed by iron. We made the assumpiion
that iron is complexed with L in the ratio of one to one.
{Fe**}is directly related to the labile iron concentration ({Fe
labile], the concentration of iron complexed by the added
NN as well as all inorganic iron) as follows:

Cp = [FeL} +

3)

where ay, is the a-coefficient for the inorganic complex-
ation of iron and af,q is the a-coefficient for the complex-
ation of Fe’* by NN (see below).

C, and K§,; were calculated from the slope and the y-axis
intercept of the following equation based on the Langmuir
transformation (Ruzic 1982; Gledhill and van den Berg
1994):

[Fe”] = [Fe labile]/{ak, + ko)

89

[Fe labile]/[FeL] = [Fe labile]/Cy.
+ (tke + o )/ (CLE 1) | (4)

Equation 4 15 given by substituting Eq. 2 and Eq. 3 into Eq.
1. The data were fitted to Eq. 4 by linear least-squares
regression from plotting the ratio [Fe labile}/[FeL] against
[Fe labile]. [Fe labile] is related to the CSV peak height (i p)
via sensitivity S:
[Fe labile] = i,/S (3)
where S is obtained from the slope of the linear part of the
titration curve where all organic ligand L is saturated. [FeL}
was calculated from [FeL] = G, — [Fe labile], where G, is
the total dissolved iron concentration, including the added
and originally present iron.

The value for af, (defined as ap, = [Fe']/[Fe*'], where
{Fe'} is the concentration of inorganic iron) in freshwater is
different from that in seawater. A value for af, of 10 was
calculated for freshwater at pH 8.1 as follows. Because the
inorganic iron in freshwater at pH 8.1 exists mostly as hy-
drolyzed species, the mass balance of inorganic iron (Fe') is
given by: '

Fe'] = [Fe**] + [FeOH™] + [Fe(OH); 6
+ [Pe(on);] + [Fe(om); ] ©

where the multimeric species Fe,(OH); " and Fe,(OH);" can
be neglected because the inorganic iron concentration is
very low (see below); thus af, is expressed by:

ap, = [Fe’ ]/[Fe3+]

= 1.+ [Feom*|/[re’] + [FelOR); o]
+ [Fe(Om))/[Fe] + [Fe(Om); ] [Fe"]
=1+ K /[H]+ ﬁz/[H+] + ﬁa/[H+] + ﬁ“/[ +]4

™

where K|, 5., B; and B, are the stability constants for each
hydrolyzed species and Eq. 7 is solved using the stability
constanis from Turner et al. (1981).

Iron(III) and NN form a complex of the type of Fe(NN)3
Therefore, apgy is described by:

o = [FefNN), }/[Fe"] = K NNT ®

where Kg.yys is the conditional stability constant for com-
plexation of iron(III) by NN and is defined by:

%

A value for ap of 10" was calculated from the NN con-
centration and Ky A value for Kpw; of 10%° was de-
rived using the following equation (Gledhill and van den
Berg 1994):

Ktews = [Fe(NN), |/[Fe][NN]



