unique protein having an extremely high binding constant of hemin (X > 10” M)
(Tolosano, 2002). Crystal structure analysis of the hemopexin-hemin complex revealed
that the hemin is tightly bound by double histidine coordinations to the central ferric ion
and multiple hydrogen-bondings with the amino acid residue (Paoli, 1999).
Nevertheless, the concentration of hemopexin in the plasma is rather low (< 17 uM) and
human serum albumin (HSA) may provide a reserve binding capacity of hemin in
various conditions, for instance, trauma, inflammation, hemolysis, efc. In fact, HSA
binds hemin with a relatively high affinity (K = 10° M) (Adams, 1980). If HSA can
transport O like Hb, it would be of extreme medical importance not only as a blood
replacement composition, but also as an O;-therapeutic reagent.

We have found that a series of super-structured heme derivatives with a covalently
linked proximal-base were incorporated into HSA, and the obtained red-colored
albumin-heme hybrids (Figure 1) can reversibly bind and release O, under physiological
conditions in the same manner as Hb and myoglobin (Mb) (Komatsu, 1999, 2000,
2001a, 2002; Nakagawa, 2004; Tsuchida, 1999). Since recombinant HSA (rHSA) is
manufactured on a large scale by yeast expression, the rHSA-heme hybrid has become
entirely synthetic hemoprotein and absolutely free of infectious pathogens. Cur recent
animal experiments demonstrated that rHSA-heme actually works as an
“oxygen-carrying plasma protein” in the blood stream (Komatsu 2004; Tsuchida, 2000).
Although the NO-binding affinity of tHSA-heme is higher that that of Hb (Komatsu,
2001b), it does not induce unfavorable vasopressor effect at all (Tuschida, 2003). We
suspect that the electrostatic repulsion between the albumin surface and glomelular
basement membrane around the endotherial cell retards the rapid leakage of the
rHSA-heme molecule and quick scavenging of NO. The albumin-heme is now
recognized to be one of the promising materials as a new class of RBC substitute. In this
chapter, we describe the O,-transporting efficacy and preclinical safety of this synthetic

heme-based O,-carrier.
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Figure 1

0.-Binding property and physicochemical characteristics

From the thirty super-structured heme compounds, which were all synthesized by
the authors, we found that the oxygenated rHSA-FecycP showed a high stability against
the autooxidation; the half-lifetime against the ferric form in vitro (9 hrs at 37°C) was
close to that of the native Mb (Komatsu, 2002). We have selected rHSA-FecycP with a
similar psq value (34 Torr at 37 °C) to RBC as the most suitable material for an artificial
Os-carrier. The physicochemical characteristics and shelf-life of the rHSA-heme
solution ([rHSA]: 5 g/dL, heme/tHSA: 4 (mol/mol), isoelectric point: 4.8, COP: 18
mmHg, viscosity: 1.1-1.2 cP, shelf-life: over 2 years) were already reported elsewhere

(Komatsu, 1999, 2002; Tsuchida, 2002)

Blood compatibility in vitro

The viscosity of the rHSA-heme solution (1.2 cP at a high shear rate of 230 sh
was much lower than that of whole blood (4.0 cP) and exhibited Newtonian type shear
rate dependence just like tHSA itself. After the mixing of the tHSA-heme solution into
whole blood at 10~44 % of the volume, the heme concentration in the plasma phase
remained constant for 6 hrs at 37 °C, and no significant time dependence was observed
in the numbers of RBC, white blood cells, and platelets (PLT) (Huang, 2003). The
microscopic observations clearly showed that the shapes of the RBC have not been
deformed during the measurement period. These results suggested that the rHSA-heme
has no effect on the morphology of the blood cell components in vitro. With respect to
the blood coagulation parameters (prothrombin time and activated partial
thromboplastin time), the coexistence of rHSA-heme had only a negligibly small

influence. Moreover, it was also shown that the rHSA-heme solution has no influence to



the complement factors (CH50, SC5b-9) and the PLT activation. Although more
functional assay is necessary to firming establish the biocompatibility of tHSA-heme

with whole blood, we can conclude that it has a good compatibility with blood cells.

Change of blood pressure after the administration

The administration of extracellular Hb-based Oj-carriers often elicits an acute
increase in blood pressure by vasoconstriction. At the beginning of this study, our
concern was that the small THSA-heme molecules (8 x 3 nm) injected into the blood
vessels would be eliminated from the circulations, and contributes to the significant
consumption of NO in the interstitial space between the endothelium and vascular
smooth muscle. In fact, rTHSA-heme strongly binds NO; the NO-binding affinity (psoNO
= 1.8 x 10°® Torr) is 9-fold higher compared to the Hb’s and enough to react 1 pM NO
in the wall of the vasculator (Komatsu, 2001b). In order to clarify the hemodynamic
behavior after the administration of this entirely synthetic Oz-carrying hemoprotein, we
tested a top-load dose of the tHSA-heme solution in anesthetized rats (Tsuchida, 2003).
Contrary to our expectations, only a negligibly small change in the mean arterial
pressure (MAP) was observed after the administration of the rHSA-heme solution (5
g/dL, 300 mg/kg) [Figure 2(a)]. If anything, the difference from the baseline (AMAP)
slowly decreased to -6.8 + 3.4 mmHg within 20 min and remained constant during the
monitoring period. The response is completely the same as observed following infusion
with an equivalent volume of tHSA (5 g/dL) in this experimental setup. In contrast, the
administration of extracellular Hb solution elicited an acute increase in blood pressure
(AMAP: 16 + 1.9 mmHg), followed a graduated decrease throughout the 60 min period
of observation (Tsuchida, 2003). Why does THSA-heme not induce the hypertension?
The answer probably lies in the negatively charged molecular surface of the albumin
vehicle. One of the unique characteristics of serum albumin is its low permeability

through the muscle capillary pore, which is less than 1/100 that for Hb due to the



electrostatic repulsion between the albumin surface and the glomerular basement
membrane around the endothelial cells. In the blood vessels, rHSA-heme presumably
circulates for a longer time compared to Hb without extravasation. The heart rate (HR)
responses after the rHSA-heme injection were also negligibly small [Figure 2(b)].
Visualization of the intestinal microcirculatory changes clearly showed that the widths

of the venule and arteriole are fairly constant (Tsuchida, 2003).
Figure 2

Exchange transfusion into acute anemia rat model after 70% hemodilution
The physiological responses to a 30% exchange transfusion with rHSA-heme
solution after 70% hemodilution with 5 g/dL rHSA were investigated using anesthetized
rats (Komatsu, 2004). First, the isovolemic 70% hemodilution was carried out using 5
g/dL rHSA solution. The blood withdrawal via the common carotid artery (2 mL) and
the rHSA infusion from the femoral vein (2 mL) (each 1 mL/min} were repeated for
nine cycles until Het was reduced to 13.6% (32% of the initial Hct value: 42.6%). After
10 min, a 30% volume of the circulatory blood was withdrawn, producing severe
hemorrhagic shock state. The same volume of the samples was then intravenously
injected. As negative- or positive-control groups, the rats were infused with the 5 g/dL
rHSA solution (rHSA group) or the shed rat blood ([heme]=5.3 mM, whole blood
group). The circulation parameters, blood parameters, renal cortical pO, [ptO,(R)] and
muscle tissue pO; [ptO,(M)] were carefully monitored for 60 min after the injection.

By administration of the 5 g/dL tHSA solution, the MAP, HR, respiration rate,
PtOy(R), ptO2(M), arterial blood Os-pressure (pa0O3), venous blood O,-pressure (pvOy),
and arterial blood CO;-pressuren (paCO,) did not recover, leading to death within 32
min (Figure 3). In contrast, the infusion of the whole blood irnj:roved these values to

their initial levels except for ptO,(M). In the rHSA-heme group, the animals survived



over 60 min after the infusion, and the HR, respiration rate, ptOa(R), and pvO, showed
similar recoveries as observed in the whole blood group (Komatsu, 2004). MAP,
ptOx(M), pa0O,, pH, and pCO, also significantly returned. We are certain that the
albumin-heme solution has the potential to resuscitate the hemorrhagic shock, stabilize

the blood circulation, and transport oxygen throughout the body.
Figure 3

Preclinical safety

In order to evaluate the preclinical safety of this synthetic O,-carrier, we
performed a 20% exchange transfusion with tHSA-heme into anesthetized rats and
measured the time courses of the circulation parameters (MAP, HR, respiration rate) and
blood parameters (paO;, pvO2, pH, blood cell numbers) for 6 hrs, which is adequate
time to know an acute toxicity (Huang, 2004a). After stabilization of the animal
conditidn, the 20% exchange transfusion was performed by 1 mL blood withdrawal via
the common carotid artery and 1 mL rHSA-heme infusion from the femoral vein (each 1
mL/min) with four repeating cycles.

The appearance of the all animals showed absolutely no change for 6 hrs afler the
exchange transfusion. The physiological responses of the blood circulation, gas
equilibria and blood cell numbers in the rHSA-heme group were almost the same as
those of the control group (only surgery treatments without infusion) and rHSA groups
(Figure 4) (Huang, 2004a). MAP and HR did remain constant after the injection of the
rHSA-heme, suggesting again that the albumin-based O,-carrier does not induce the
vasoconstriction. It is also noteworthy that the autooxidation of the ferrous tHSA-heme
to ferric state was retarded in the blood stream; the half-lifetime of the oxygenated
rHSA-heme in vivo was ca. 4-fold longer than that in vitro (Tsuchida, 2000). It has been

found that autooxidated rHSA-hemin was certainly reduced in the whole blood



suspension. A physiological concentration of ascorbic acid continuously provided by
RBC probably rereduces the ferric hemin, leading to the apparent long lifetime of the

oxygenated species.
Figure 4

Furthermore, 20% exchange transfusions with tHSA-heme into anesthetized rats
were followed by blood biochemical tests of the withdrawn plasma and histopathology
observations of the vital organs for 7 days (Huang, 2004b).

In the albumin-heme group, a total of 30 analytes by the blood biochemical tests
showed almost the same values as those observed in the reference rHSA group,
implying that no significant toxicity by the exchange transfusion with rHSA-heme
(Huang, 2004b). Histopathology observations implied that the administration of
rtHSA-heme did not produce any negative side-effect on the vital organs. All these

results showed the preclinical safety of the rHSA-heme solution.

Future researches

As described in this chapter, the results showed the Op-transporting efficacy and
initial clinical safety of the rHSA-heme solution, which allows us to undergo further
advanced preclinical testing of this synthetic O,-carrying plasma protein. Exchange
transfusion with rHSA-heme into beagles is now under investigation.

Furthermore, rHSA-heme as a monomolecular O,-carrier was tested for its ability
to Increase O tension in the hypoxia of the solid tumor rat model. By the direct
administration of the rHSA-heme solution (10 mL/kg) into the ascites hepatoma LY 80
tumor on the femur, the O, tension of the hypoxic region immediately increased to 3.45
+ 1.43 Torr, which corresponds to a 2.4-fold increase compared to that of the baseline

value (Kobayashi, 2003). These high O, levels continued for 300 s after the infusion.



While more research is required to consider how rHSA-heme behaves in the tumor
blood vessel and is related to the increase in the O, partial pressure, the present results
obviously indicate that THSA-heme led to an increased O,-release in the hypoxic region
in the solid tumor. Experiments of a combined treatment with the rHSA-heme

administration and radiation therapy are currently underway.
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Figure Legends

Figure 1 Super-structured heme derivatives for the albumin-heme hybrids and the

red-colored rHSA-heme solution ({THSA}=5 g/dL).

Figure2 Changes of (a) MAP and (b) HR in anesthetized rats before and after
infusion of rHSA-heme solution (n=5) (®; rtHSA-heme group and O; Hb group). MAP
is represented as change from the basal value (AMAP) just before the infusion with
mean = S.EM. (n=5) (basal value is 90.1 = 3.0 mmHg). HR was shown as mean +

S.E.M. (n=5). (Ref. Tsuchida, 2003}

Figure 3  Time courses of (a) Hct, (b) MAP, (¢) HR, (d) pH, (e) pvO; and (f) ptO,(R)
in anesthetized rats after 70% hemodilution with tHSA and 30% exchange transfusion
with THSA-heme solution (n=6) [®; rHSA-heme group, O; whole blood group, A;
rHSA group]. MAP, HR, pvO; and ptO,(R) are represented as percent ratios of the basal
values with mean + S EM.. Het, HR and pH were shown as mean + S.EM.. HD:
hemodilution, B: bleeding, I: sample injection. *p<0.05 vs. rHSA group. *p<0.05 vs.
whole blood group. (Ref. Komatsu, 2004)

Figure4  Time courses of (a) Hct, (b) MAP, (c) HR, (d) pH, (¢) pa0O; and (f) pvO, in
anesthetized rats after 20% exchange transfusion with rHSA-heme or rHSA solution
(n=6) [0; control group (only surgery treatments without infusion), A; rHSA group, @;
tHSA-heme group]. MAP, HR, paO, and pvO; are represented as percent ratios of the
basal values with mean + S.E.M.. Het, HR and pH were shown as mean + S.E.M.. (Ref.

Huang, 2004a)
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Development of Totally Synthetic Artificial Oxygen Carrier
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Abstract
Development of an innovative and original artificial oxygen carrier, albumin-heme, which consists of recombinant human serum

albumin (rHSA) and synthetic heme derivative, has been promoted in our company. Albumin-heme, in which maximally eight
molecules of synthetic heme are incorporated into albumin molecule, has a suitable colloidal osmotic pressure itself and also do
not have side effects such as hypertension due to depletion of nitric oxide (NO). Large-scale production process has already
been established. Characteristics of albumin-heme are described in this paper. Furthermore, the exchange transfusion
experiments in rats revealed that albumin-heme had oxygen carrying properties.

We also have been developing a hemoglobin vesicle as another type of artificial oxygen carrier in collaboration with Oxygenics
Inc. This type of oxygen carrier is the most promising preparation close to clinical use. However, some risks of infection and
uncertainty of stable blood supply still exist because of use of donated human blood as raw material. So, we decided to develop
recombinant human hemoglobin (rHb). A purified rlIb has already been obtained by our original expression method. At the
present, we have been preparing for large-scale production facilities in our pharmaceutical factory in Japan to produce these

artificial oxygen carriers as mentioned above.

Keywords
synthetic oxygen carrier, albumin-heme, synthetic heme, hemoglobin vesicle, recombinant human hemoglobin, recombinant

human serum albumin
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Fig. 1. Two types of artificial oxygen carrier under developing in NIPRO.
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Fig. 2. Stereo view of albumin-heme
Mazximally, 8 molecules of synthetic heme ¢an be incorporated into
albumin molecule.
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Fig. 3. Molecular structures of synthetic hemes.
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Fig. 4. Qutline of manufacturing process of albumin-heme.

Table 1. Physico-chemical characteristics of albumin-heme.

S
[rHSA] (g/dL) 5
[heme] (mM) 36
heme/rHSA (mol/mo!) 4-8
P (Torr) 28-38
rHSA pl 4.8
rHSA -helix content (%3) 67
Stretching vibration of coordinated O, (cm™) | 1158
Stretching vibration of Fe-0;, (cm™) 561
Met-heme (%3) <3
Viscosity (cP at 230s) 1.1
Specific gravity (g/em?) 1.01
Crystal osmotic pressure (mQOsm) 300
Colloidal osmotic pressure (Torr) 19
pH{37°C) 7.4
Endatoxin (EU/mL) ‘ <0.2

Preservative O * O
stabillty
Need of
oxygenation No No Yes

Fig. 5. Comparison of preservative stability and need of prior oxygenation
among 3 forms.



