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OBJECTIVES

BACKGROUND
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CONCLUSIONS

‘We examined the cellular and ionic mechanism for QT prolongation and subsequent Torsade
de Pointes (T'dP) and the effect of verapamil under conditions mimicking KCNQI (I, gene)
defect linked to acquired long QT syndrome (LQTS).

Agents with an Iy -blocking effect often induce marked QT prolongation in patients with
acquired LQTS. Previous reports demonstrated a relationship between subclinical mutations
in cardiac K" channel genes and a risk of drug-induced TdP.

Transmembrane action potentials from epicardial (EPI}, midmyocardial (M), and endocardial
(ENDO) cells were simultaneously recorded, together with a transmural electrocardiogram, at a
basic cycle length of 2,000 ms in arterially perfused feline left ventricular preparations.

The I, block (E-4031: 1 pmol/1) under control conditions {n = 5} prolonged the QT interval
but neither increased transmural dispersion of repolarization (TDR) nor induced arthythmias.
However, the Iy, blocker under conditions with I, suppression by chromanol 293B 10 pmol/l
mimicking the KCNQ1 defect {n = 10) preferentially prolonged action potential duration (APD)
in EPI rather than M or ENDO, thereby dramatically increasing the QT interval and TDR.
Spontaneous or epinephrine-induced early afterdepolarizations (EADs) were observed in EPI,
and subsequent TdP oceurred only under both I, and Iy, suppression. Verapamil (0.1 to 5.0
pmol/l} dose-dependently abbreviated APD in EPI more than in M and ENDO, thereby
significantly decreasing the QT interval, TDR, and suppressing EADs and TdP.

Subclinical Iy, dysfunction could be a risk of drug-induced TdP. Verapamil is effective in
deereasing the QT interval and TDR and in suppressing EADs, thus preventing TdP in the
model of acquired LQTS. (J Am Coll Cardiol 2005;45:300-7) © 2005 by the American
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The long QT syndrome (LQTS) is characterized by a
prolongation of ventricular repolarization and recurrent
episodes of atypical polymorphic ventricular tachycardia
known as Torsade de Pointes (TdP) leading to sudden
cardiac death (1-3). The molecular basis of congenital
LQTS is attributed to defects in several ion channel genes
encoding delayed rectifier K™ or Na* currents. On the
other hand, agents that block rapidly activating delayed
rectifier potassium current (Iy,) often induce marked QT
prolongation with an inverted T wave in patients with
acquired LQTS. Recent studies indicate that some cases of
drug-induced L.QTS can be associated with silent muta-
tions and common polymorphism in genes responsible for

the congenital LQT'S (4), such as KCNQT encoding slowly
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activating delayed rectifier potassium currents (I) (5=7).
However, it remains unclear why subclinical I ¢, dysfunction
is a risk of drug-induced LQTS.

Both early afterdepolarization (EAD)-induced triggered
activity and increased dispersion of repolarization have been
suggested as important in the genesis of ventricular arrhyth-
mias in congenital and acquired LQTS. Moreover, vera-
pamil, an L-type Ca®* channel blocker, suppressed EADs
and TdP in patients with LQT'S (8,9). In the present study,
we hypothesized that: 1) addition of Iy, block to I,
dysfunction markedly prolongs action potential duration
(APD) and induces TdP by producing EADs and/or
increases transmural dispersion of repolarization (TDR);
and 2) verapamil suppresses TdP by preventing EADs and
decreasing TDR. In arterially perfused feline left ventricular
wedge preparations, we demonstrated that subclinical I,
dysfunction, mimicking KCNQI defect, could be a risk of
drug-induced TdP, and verapamil successfully suppressed
TdP in the medel of acquired LQTS.

METHODS

Arterially perfused wedge preparations and electrophysi-
ologic recordings. All animal care procedures were in
accordance with the position of the American Heart Asso-
ciation research animal use (November 11, 1984). The
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Abbreviations and Acronyms
APD,, = action potential duration measured at 90%
repolarization

BCL = basic cycle length

EAD = carly afterdepolarization

I = delayed rectifier potassium current

Ix, = rapidly activating delayed rectifier potassium
current

Iy, = slowly activating delayed rectifier potassium
current

LQTS = long QT syndrome
TdP = Torsade de Pointes
TDR = transmural dispersion of repolarization

methods used for isolation, perfusion, and recording of
transmembrane activity from the arterially perfused feline
left ventricle have been detailed in a previous study (10) and
are similar to methods reported using canine or rabbit
wedge preparations (11-15). Briefly, a transmural wedge
was dissected from the anterior wall of the left ventricle,
cannulated via the left descending coronary artery (or the
first branch of the left circumflex), and placed in a small
tissue bath arterially perfused with Tyrode’s solution. The
temperature was maintained at 37 * 1°C and perfusion
pressure maintained between 40 and 60 mm Hg. Ventric-
ular wedges were stimulated with bipolar electrodes applied
to the endocardial surface. We recorded a transmural
electrocardiogram (ECG) (epicardial, positive pole) using
Ag-AgCl electrodes, and transmembrane action potentials
{(APs) simultaneously from the epicardium, midmyocardium
(M), and endomyocardium using three separate intracellular
floating microelectrodes. The epicardial and endocardial
APs were recorded from the epicardial and endocardial
surfaces, respectively, at positions approximating the trans-
mural axis of the ECG. The M-cell's AP was recorded from
the transmural surface, mainly at the subendocardium, along
the same axis.

An Iy, blocker, E-4031 1 pmol/l, was used in control
condition (n = 5) or under condition with Iy, suppression
by chromanol 293B 10 pmol/l, mimicking KCNQ! defect
(n = 10). The effects of an L-type Ca?* channel blocker,
verapamil, were evaluated at 0.1, 1, 2.5, and 5 pmol/l under
the Iy, and Iy, suppression (acquired L.QTS condition).
Epinephtine 0.5 pmol/l was used to mimic increased
sympathetic activity in the absence and presence of vera-
pamil under the acquired LQTS condition. The spontane-
ous or epinephrine-induced EADs and subsequent TdP
were evaluated under each set of conditions.

Data using E-4031, 293B, 293B + E-4031, and addi-
tional verapamil on top of 293B + E-4031 were collected
for a period of 30 min starting 30 min after applying the
above compounds to the perfusion. The APD was measured
at 90% repolarization (APDygo). The TDR was defined as
the difference between the longest and shortest repolariza-
tion times (activation time + APDy,) of the APs recorded
across the wall. The QT interval was defined as the time
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interval between the QRS onset and the point at which the
line of maximal downslope of the positive T wave and the
line of the maximal upslope of the negative T wave crossed
the baseline.

Whole-cell patch-clamp experiments. Epicardial, M, and
endocardial cells isolated from the feline left ventricle were
voltage-clamped using whole-cell configuration of the
patch-clamp technique (16). Patch electrodes were pulled
from borosilicate glass capillaries, heat-polished, and had a
tip resistance of 2.0 to 3.0 MQ) when filled with standard
pipette solution containing (mmol/l): 70 potassium aspar-
tate, 50 KCI, 10 KH,PO,, 1 MgSO,, 3 Na,-ATP, 0.1
Li,-GTP, 5 EGTA, and 5 HEPES (pH adjusted to 7.2
with KOH). Membrane currents were recorded from the
epicardial, M, and endocardial cells superfused at 34 to 36°C
with normal Tyrode’s solution containing (mmol/i): 140
NaCl, 5.4 KCl, 1.8 CaCl,, 0.5 MgCl,, 0.33 NaH,PO,, 5.5
glucose, and 5.0 HEPES (pH adjusted to 7.4 with NaOH).
In all current measurements, nisoldipine (0.4 umol/l) was
added to normal Tyrode’s solution to abolish I, ;. The cell
membrane capacitance (C,,) was calculated for each cell by
fitting the single exponential function to the decay of the
capacitive transient elicited by a 5-mV step hyperpolariza-
tion applied from 2 holding potential of —50 mV (17).
Simulation study. Isolated epicardial, M, and endocardial
cells were simulated using a Luo-Rudy dynamic cell model
modified by varying the maximum conductance (density) of
I, and Iy, (Gk, and Gg,) as described previously (18), in
which the Gy /Gy, in the epicardial, M, and endocardial
cells were 23, 17, and 19, respectively. The transient
outward potassium current (I,,) was incorporated into the
model using the formulation of Dumaine et al. (19), in
which the maximum conductance of I, (G,,) was set to 0.5,
0.25, and 0.05 mS/uF in the epicardial, M, and endocardial
cells, respectively.

Statistics. Statistical analysis of the data was performed
with a Student # test for paired data or analysis of variance
coupled with Bonferroni’s test, as appropriate. Data are
expressed as mean values = SD except for those shown in
the figures, which are expressed as mean = SEM. Signifi-
cance was defined as a value of p < 0.05.

RESULTS

The QT iaterval, APD, and TDR under an acquired
LQTS condition with or without epinephrine. Figure 1
shows transmembrane activity recorded simultaneously
from the epicardium, M, and endocardium together with a
transmural ECG at a basic cycle length (BCL) of 2,000 ms.
E-4031 (1 pmol/l) alone significantly, but homogenously,
prolonged APD of the three regions, causing no major
change in TDR (Fig. 1B). Chromanol 293B {10 pmol/T)
alone did not significantly increase the QT interval, APD of
the three regions, and TDR (Fig. 1C). The additional
E-4031 to 293B, mimicking acquired LQTS, preferentially
prolonged epicardial APD, thus dramatically increased QT
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Figure 1. Transmembrane action potentials simultaneously recorded from the
epicardial (Epi), midmyocardial (M), and endocardial (Endo) regions and a
transmural electrocardiogram (ECG) at basic cycle length of 2,000 ms under
each study condition, (A) Control, (B) E-4031 (1umolA). (C} Chromanol
293B (10umolA). (D) 293B + E-4031 (acquired long QT syndrome [LQTS]
condition). (E) Epinephrine infusion {Epine: 0.5umol/l) under acquired
LQTS condition. (F) Addition of verapamil (Verap) 2.5 pumol/1 under
acquired LOQTS condition. {G) Further addition of Epine in the continued
presence of Verap under acquired LQTS condition. Numbers at bottom of
each ECG denote transmural dispersion of repelarization {ms).

interval and TDR (Fig. 1D). Epinephrine infusion (0.5
pumol/1) further prolonged epicardial APD associated with
induction of EADs, but did not prolong M or endocardial
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Figure 2. Spontancous early afterdepolarization and subsequent Torsade
de Pointes under the acquired long QT syndrome condirion (293B 10
wmol/l + E-4031 1 pmol/1). Basic cycle length = 3,000 ms. Recordings
and abbreviations as in Figure 1.

APD, resulting in further QT prolongation and increasing
TDR (Fig. 1E).

The composite data of the QT interval, APDy, of the
epicardium, M, and endocardium, and TDR at a BCL of
2,000 ms are shown in Table 1. E-4031 under control
significantly, but homogeneously, prolonged APDy,, resulting
in neither change of TDR nor induction of arrhythmia.
Chromanol 293B under control did not significantly increase
APDy, of the three regions, resulting in no major change in
QT interval and TDR. Whereas additional E-4031 to 293B
markedly prolonged QT interval as evidenced by preferential
prolongation of the epicardial APDgy compared with M and
endocardial APDy,, thus dramatically increased TDR. Epi-
nephrine further prolonged the epicardial APDy, but short-
ened the M region APDy, resulting in further prolongation of
the QT interval and increasing TDR.

Neither E-4031 alone nor 293B alone produced any
EADs or TdP. However, additional E-4031 to 293B
(acquired LQTS condition) induced spontaneous EADs
from the epicardium in 5 of 10 preparations, including two
preparations with spentaneous TdP (Fig. 2), but not from
the M or endocardium. Further epinephrine infusion (n =
8) induced EADs from the epicardium in all preparations,
including four preparations with subsequent TdP, but EADs
from the M region were seen in only one preparation.

Effect of verapamil on the QT interval, APD, TDR, and
induction of arthythmias under an acquired LQTS con-
dition. Under the acquired LQTS condition, verapamil
dose-dependently (0.1 to 5 pwmol/1} abbreviated APD of

Tahle 1. Effect of I, Block With or Without Pretreated I, Block on the QT Interval, APD,g, and Transmural Dispersion of

Repolarization
APD,,

QT Epi M Endo TDR
Control (n = 5} 283+ 15 227 *x16 259 =8 246 =13 31x10
E-4031 (1 pM) (n = 5) 446 + 42* 373 £ 307 408 + 28* 374 + 25° 44
Control {n = 10} 279 * 12 230 £ 16 253+ 14 237 £19 24*5
293B (10 uM) (n = 10} 298 £ 34 252+ 26 275+ 33 253 £ 16 24+9
293B (10 uM) + E-4031 (1 pM) (n = 10} 793 = 183 723 * 1564° 596 = 131* 545 = 78* 175 = 68*
293B + E-4031 + Epine (0.5 uM) (n = 8) 866 * 251 801 * 217 506 =123 525 > 118 191+ 75
293B + E-4031 + Verap 2.5 pM) (n = 7) 557 +178% 503 * 1714 483 +135¢ 516 = 154 3537
2938 + E-4031 4 Verap + Epine (n = 6} 445 > 113% 403 + 117¢ 399 £ 93% 411 = 98% 30 £ 124

*p < 0.001 vs. control, Tp < 0.05 vs. 293B + E-4031; #p < 0.01 vs. 293B -+ E-4031 by analysis of variance with Bonferroni's test.
APDy, = action potential duration at 90% repotarization; Endo = endocardium; Epi = epicardiurm; Epine = epinephring; I, = slowly activaring delayed rectifier potassium current;
1. = rapidly activating delayed rectifier potassium current; M = mid-myocardium; QT = QT interval, TDR = transmural dispersion of repolarization; Verap = verapamil.
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Figure 3. Dose-dependent effect of Verap (0.1 to 5 pmol/l) on transmembrane and ECG activity under acquired LQTS condition {293B 10 gemol/l +
E-4031 1 pmol/). (A) Superimposed action potentials recorded simultaneously from the epicardial and M regions together with a transmrural ECG. (B)
Composite data of the effect of Verap on QT interval (solid squares), action potential duration measured at 90% repolarization (APD.,) of Epi {open
triangles} and M (open circles) regions and transmural dispersion of repolarization (TDR) (solid diamonds). Basic cycle length = 2,000 ms. *p < 0.05
vs, 2938 + E-4031; tp < 0.01 vs. 2938 + E-4031; Yp < 0.05 vs. M region by analysis of variance with Bonfarroni’s test. Abhreviations as in Figure 1.

the epicardial and M regions as well as the QT interval
(Fig. 3A). Figure 3B shows composite data of the
dose-dependent effect of verapamil on the QT interval,
APDy, of the epicardial and M regions, and TDR under
the acquired LQTS condition (n = 6). A 5-pmol/l dose
of verapamil under the acquired LQTS condition pref-
erentially abbreviated the'epicardial APDy, (761 + 99 ms
to 469 * 95 ms; p < 0.001) compared with the M region
APDy, (615 + 83 ms to 512 = 146 ms; p = NS),
resulting in a significant decrease in TDR (146 * 46 ms
to 26 = 28 ms; p < 0.01). The change in QT interval
paralleled the decrease in the epicardial APD,,,

As shown in Figure 1F, 2.5-umol/l verapamil preferen-
tially abbreviated the epicardial APDyg rather than the M or
endocardium, thus significantly abbreviated QT interval and
TDR. Moreover, verapamil completely prevented the influ-
ence of epinephrine in inducing EADs and TdP as well as
increasing the epicardial APDy,;, QT interval, and TDR
(Fig. 1G). The composite data of the effect of verapamil on
the QT interval, APD, and TDR with or without epineph-
rine are shown in Table 1. Thus, verapamil totally sup-
pressed EADs and TdP under the acquired LQTS condi-
tion with or without epinephrine.

Measurement of Iy, and I, in epicardial, M, and
endocardial cells. Figure 4A represents the dose-
dependent inhibition of Iy, by 293B in an epicardial cell.
Figure 4B illustrates the concentration-response relation-

ships for the inhibition of Iy, tail current. The data points
were reasonably well described by a Hill equation with the
following parameters: ICsy = 6.39 = 1.17 umol/], ny =
1.23 * 0.05 (epicardial cells: n = §); IC;, = 5.71 = 1.32
pmol/l, nyy =125 £ 0,12 (M cells: n = 5}, IC,, = 5.73 *
0.94 pmol/l, ny; = 1.07 % 0.19 (endocardial cells: n = 5).
There are no significant differences in IC,, and nyy values
among the epicardial, M, and endocardial cells (analysis of
variance with Bonferroni’s test), thus indicating that Iy, in
these three cell types represents a similar sensitivity to
inhibition by chromanol 293B.

Figure 5 represents the sensitivity of I to blockers of I,
and Iy, (E-4031 and 293B, respectively). After the Iy
reached a practically steady level (control, trace 1), applica-
tion of E-4031 (3 pmol/l) markedly reduced the amplitude
of I tail current (trace 2), and further addition of 293B (30
pmol/l} almost completely abolished the Iy tail current
(trace 3). Table 2 summarizes densities of I, and I, in the
epicardial, M, and endocardial cells, determined as E-4031-
and 293B-sensitive tail currents normalized with reference
to C,.. In each cell type, the density of Iy, was significantly
smaller than that of Iy,. The density of I, was almost
equivalent among the three cell types, whereas Iy, density
was significantly smaller in M cells compared with that in
the epicardial and endocardial cells.

Computer simulations, To understand why EAD devel-
oped from the epicardium under the acquired LQTS
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Figure 4. Sensitivity of Iy, in the epicardial (Epi), midmyocardial (M), and endocardial (Endo) cells to inhibition by chromano! 293B. (A)
Representative superimposed current traces clicited by 3-s depolarizing voltage-clamp steps applied from a holding potential of —50 mV to +50 mV
in an epicardial cell, before (control) and during exposure to 293B at a concentration of 0.1, 1, 5, 10, and 30 pmol/l. The I, inhibitor E-4031 (3
gmol/l) was present throughout. Tail currents were demonstrated on an expanded scale. (B) The percent block of Iy, in the Epi {open circles}), M
(open squares), and Endo {open triangles) cells. The degree of I, inhibition was measured as the fraction of the tail current reduced by each
concentration of 293B with reference to the control amplitude of the tail current, Smooth curves through the data points represent a least-squares
fit of a Hill equation: percent block = 100/(1 + (IC;,/[293B1™Y), yielding the concentration required for the half-maximal block {ICso) and the
Hill coefficient (n;,). pA = pico (X 107'%) Ampere.

condition, we simulated APs of the three cell types using a
Luo-Rudy model at a BCL of 2,000 ms. As shown in Figure
6A, the epicardial APD was shorter than the M cells under
the control condition (dotted line). However, suppression of
both Iy, and Iy, (70% and 80%, respectively) (solid line),
simulating the condition of acquired LQTS, developed

EAD (arrow} from the epicardial cell but not from M or
endocardial cells. Moreover, Figure 6B shows that the
reactivation of Ca?* current through the L-type channel
(Icar) was responsible for the development of epicardial
EAD under the acquired LQTS condition. Furthermore, a
decrease in I, density changed by G,, from 0.5 to 0.05

+30 mV 1: control
21 E-4031 (3gM)
-50 J L_____ 3: E-4031 + chromanol 293B (30xM)
pA . pA pA
n
500 - Epl 500 - M 500 - Endo
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: \‘:"""\—m
Ll
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\""‘2—*\-‘- " 3 ::.‘i‘::mc
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Figure 5. Detection of I, and Iy, in the epicardial (Epi), midmyocardial (M}, and endocardial (Endo) cells. Depolarizing test pulses {to +30 mV for 300
ms) were repetitively applied (every 2 s) from a holding potential of —50 mV to activate I, and membrane currents were recorded from the Epi, M, and
Endo cells, before (trace 1), and ~2 min after exposure to 3 pmol/l E-4031 {trace 2), and ~2 min after further addition of 30 pmol/] 293B in conjunction
with 3 wmol/l E-4031 {trace 3). pA = pico (X 107'%) Ampere.
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Table 2. Transmural Heterogeneity of Iy, and Iy, in Feline Left
Ventricle

Epi (n = 10) Mn =9} Endo(n=7)
I, 0.35 + 0.26" 0.13 = 0.09"% 0.30 = 0.09"
I, 1.34 = 0.51 1.10 * 038 1.17 = 0.30

*p < 005 vs. Iy tp < 0.05 vs. Epi and Endo by analysis of variance with
Bonferroni's test. Mean * SD, (pA/pF). Current densities of I, and I, measured as
E-4031- ard chromanol 293B-sensitive tail currents at —50 mV.

Abbreviations as in Table 1.

mS/uF decreased the net charge entry carried by the I,
during the AP, resulted in suppressing EAD as well as
abbreviating APD.

DISCUSSION

Genetic and ionic substrates of acquired LQTS. Ac-
quired QT prolongation and TdP arrhythmias usually
require multiple risk factors, such as bradycardia, hypoka-
lemia, female gender, and mostly agents with an Iy~
blocking effect. Recent genetic studies suggest some forms
of acquired LQTS can be associated with silent mutations
in the LQTS-related genes (4), such as KCNQI encoding
I, (so-called forme fruste type of congenital LQTS) (5-7).
Roden (20) hypothesized “reduced repolarization reserve” as
a potential mechanism underlying susceptibility to drug-
induced LQTS. According to his hypothesis, Iy, dysfunc-
tion could be potentially compensated by other K™ currents,
mainly Iy, thereby the repolarization defect is tolerated,
and agents with Iy block could induce acquired QT
prolongation and TdP.

Vos et al. (21~23) suggested a high incidence of EADs
and TdP by d-sotalol in dogs with chronic complete
atrioventricular block as a result of a significant down-
regulation of Iy, and Iy, Moreover, other experimental
studies using canine and rabbit wedge showed combined Iy,
and Iy, block caused a high incidence of EADs most likely
arising from the epicardium (14,15). Burashnikov and
Antzelevitch (24) suggested that the abundant Iy, in the
epicardium and endocardium compared with the M region
under normal conditions contributed to the increase in
TDR but protected against development of EADs in the
epicardium and endocardium in dogs. Thus, Iy, is critically
important for the repolarization reserve in the epicardium
and endocardium,

Although I, in the feline heart is far smaller than that in
other species (25,26), our result from a whole-cell patch-
clamp study suggested that a 10-pmol/l 293B used in the
wedge preparation reduced about 70% of I, in the three cell
types, which is consistent with degree of Iy, blockade caused
by a silent mutation or common polymorphism in human
KCNQ1 gene (6,7). We also showed that I, block with
E-4031 in control conditions prolonged the QT interval but
did not increase TDR and developed neither EADs nor
TdP. However, combined I, block with 293B further
prolonged the QT interval and inverted T wave, which, in
turn, increased TDR and induced EADs and TdP. There-
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Figure 6. Effect of both I, and I, suppression on the simulated action
potentials from the epicardial (Epi), midmyocardial (M}, and endocardial
(Endo) cells. (A) Superimposed action potentials simulated under baseline
condition {dotted lines) and after both Iy, and Iy, suppression {70% and
80%, respectively) {solid lines). (B) Effect of maximum conductance of I,,,
(G,..) on the simulated epicardial action potential (Vm), I, 1. magnitude,
and the net charge entry calculated by integration of the I 1 under the
condition of both Iy, and Iy, suppression. Basic cycle length = 2,000 ms.
EAD = early afterdepolarization.
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fore, the feline heart is appropriate for a model of forme
fruste LQT'S. Our data also suggested that subclinical Iy,
dysfunction may become a genetic substrate, and additionat
Ik, suppression may unmask marked QT prolongation and
TdP in acquired form of LQTS.

Role of I, 1, in increasing TDR and inducing EADs and
TdP in acquired LQT'S. Several clinical and experimental
studies have suggested that EADs and triggered activity
were important in the genesis of QT prolongation and TdP
in LQTS (8,9,11-15,22-24). Induction of EADs generally
requires an initiation or conditioning phase controlled by
the sum of membrane currents present at the plateau AP
(inward depolarization current and outward repolarization
current). January and Riddle (27) suggested that the time-
and voltage-dependent I, ; within its “window” was im-
portant in the induction and block of EADs. Luo and Rudy
(28) suggested that EADs resulted from a secondary acti-
vation of the I, | during the plateau of AP. However, the
mechanism responsible for a high incidence of EADs
(especially from the epicardium) and subsequent TdP under
conditions of severely eliminated outward K% current,
mimicking acquired LQTS, has not been mechanistically
defined.

Qur data indicate that accentuation of I,y during the
AP plateau preferentially prolonged APD and triggered
EAD:s in the epicardium. This was based on the effect of
verapamil on the epicardium. However, it is still unclear
whether a larger I, 1, in the epicardial cell compared with
the M or endocardial cells contributed to the development
of EADs. Recently, Bényész et al. (29) reported in their AP
voltage clamp experiments that the epicardial cell had a pool
of Ca?™ channels sufficient for a second activation, whereas
the endocardial cells did not. Cordeiro et al. (30) also noted
that the presence of spike-and-dome AP waveform in the
epicardial cells resulted in a greater magnitude of I, y.
Moreover, several simulation studies demonstrated a strong
coupling between I, and I, (31,32). Our simulation
study also suggested that larger I, in the epicardial cell
caused larger I, y, developing EADs under the acquired
LQTS condition. In the feline left ventricle, it has been
reported that I, is larger in the epicardium compared with
the endocardium (33). Therefore, larger I, | secondary to
I,,-mediated spike-and-dome AP configuration in the epi-
cardial cell might be responsible for the high incidence of
EADs from the epicardium., This does not necessarily
exclude the possible mechanisms of other ionic currents
such as Iny,c, and Ca®* release from sarcoplasmic reticulum,
which may contribute to the prolonged AP as well as to the
development of EADs under calcium-loading conditions
(34).

Effects of catecholamines and verapamil in acquired
LQTS. Treatment of drug-induced TdP begins with im-
mediate withdrawal of any potential drugs and risk factors.
Sanguinetti et al. (35) suggested that an increase of heart
rate by isoproterenol was an effective therapeutic strategy in
patients with acquired LQTS, because beta-adrenergic
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stimulation with isoproterenol abbreviates repolarization
not only by increasing heart rate, but also by directly
increasing the magnitude of Iy, However, our experimental
data shows that epinephrine further prolonged APD in the
epicardium and induced EADs and TdP probably due to
augmentation of I,y in the acquired LQTS condition.
Thus, beta-adrenergic stimulation could be arthythmogenic
even in conditions of acquired LQTS when subclinical Ty,
dysfunction is present and heart rate is not fully increased.

Cosio et al. (8) used intravenous verapamil to treat three

patients with TdP during an atrioventricular block. Shimizu
et al. (9) reported that verapamil suppressed spontaneous or
epinephrine-induced EADs and TdP in patients with
congenital LQTS. Experimentally, Kimura et al. (36) re-
ported that verapamil (2 pmol/l) suppressed cocaine-
induced EADs in the myocytes isolated from feline left
ventricle. Taken together with the data in the present study,
I, 1 block with verapamil may be a therapeutic choice for
TdP in patients with acquired LQTS as well as congenital
LQTS.
Study limitations. We assumed the activity recorded from
the cut surface of the perfused wedge preparation repre-
sented cells within the respective layers of the wall through-
out the wedge. Such validation was provided in previous
studies that used the wedge preparation (10~15).

Pharmacologic block of Iy, with 293B is not a complete
surrogate for KCNQ1I defect. However, our feline model
closely mimicked the degree of Iy, inhibition and pharma-
cologic features of acquired LQTS. Therefore, we believe
these qualitative similarities validate 293B as a surrogate for
forme fruste LQTS.

We simulated APs of the three cell types using a
Luo-Rudy medel, but it does not completely represent
feline ventricular APs. However, the phenomenon that
EAD frequently developed from the epicardium under the
acquired LQTS condition was observed not only in cats but
also in dogs and rabbits (14,15); thus, this simulation may
support our speculation about the mechanism of this phe-
nomenon.

Finally, the concentration of verapamil mainly used in
this study (2.5 umol/l = 1,250 ng/ml) was considerably
higher than a typical clinical dose. However, verapamil was
effective in suppressing EADs and decreasing TDR even at
the lowest dose used in this study (0.1 pmol/l = 50 ng/ml),
which is close to plasma concentration of verapamil after a
5-mg bolus injection (below 200 ng/mi).
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Response of beat-by-beat QT variability to sympathetic
stimulation in the LQT1 form of congenital long QT

syndrome
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OBJECTIVES The purpose of this study was to test the hypothesis that the lability of beat-by-beat QT
variability is prominent during sympathetic stimulation in LQT1 patients. We analyzed beat-by-beat QT
variability using a newly developed program and applied cross-correlation methods in LQT]1 patients
before and after epinephrine infusion.

BACKGROUND Studies suggest that cardiac events associated with sympathetic stimulation are more
common in the LQT1 form than the LQT2 and LQT3 forms of congenital long QT syndrome (LQTS).
Although beat-by-beat alternation of T-wave morphology is observed in LQTS. its objective estimation
is difficult because of complicated T-wave morphclogy.

METHODS Twelve-lead ECG was recorded under baseline conditions and during epinephrine infusion
(0.1 pg/kg/min) in 14 LQTI and five control patients. We measured beat-by-beat QT interval by 2
cross-correlation technique. Mean of successive changes in RR (ARR), QT (AQT), standard deviation
of ARR (SD-ARR), AQT (SD-AQT), and QTI (QT/ RR) before and after epinephrine were compared
between the two groups.

RESULTS No significant differences in any parameters were observed between the two groups under
baseline conditions. AQT, SD-AQT, and QTI were increased in LQT1 but not in control patients during
epinephrine (LQT1: AQT 2.3-4.2 ms, SD-AQT 2.2-4.1, QTI 0.10-0.22, P < 005 vs baseline;
Control: AQT 2.5-2.4 ms, SD-AQT 1.9-2.1, QTI 0.08-0.09: P = NS vs baseline).

CONCLUSIONS Beat-by-beat QT variability analyzed by the cross-correlation method was greater in
LQT! patients during epinephrine infusion, suggesting sympathetic stimulation accentuates beat-by-
beat alternation of repolarization in LQT1 patients.

KEYWORDS Long QT syndrome; Epinephrine; Sympathetic activity; QT interval; T-wave alternans

(Heart Rhythm 2005;2:149-154) © 2005 Heart Rhythm Society. All rights reserved.

Introduction

The congenital long QT syndrome (LQTS) is a hereditary
disorder associated with prolonged ventricular repolariza-
tion and the life-threatening polymorphic ventricular tachy-
cardia torsades de pointes (TdP).!? Genetic studies have
shown that congenital LQTS is a primary electrical disease

Dr. Shimizu was supported in part by the Vehicle Racing Commem-
orative Foundation; Ichiro Kanahara Foundation; Mochida Memorial
Foundation for Medical and Pharmaceutical Research; Health Sciences
Research Grants from the Ministry of Health, Labor, and Welfare; and
Research Grants for Cardiovascular Diseases (15C-6) from the Ministry of
Health, Labor and Welfare, Japan.

Address reprint requests and correspendence: Dr. Wataru Shimizu,
Division of Cardiology, Department of Internal Medicine, National Car-
diovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.

E-mail address: wshimizu@hsp.ncve.go.jp.

{Received July 21, 2004; accepted November 1, 2004.)

1547-5271/% -see front matter © 2005 Heart Rhythm Society. All rights reserved.

caused by mutation in specific ion channel genes.>* Seven
forms of congenital LQTS have been identified.

Among the seven forms, cardiac events associated with
sympathetic stimulation are more common in the LQT1
form than in the other forms of congenital LQTS.

T-wave alternans (TWA), an ECG phenomenon charac-
terized by beat-by-beat alternation of the morphology, am-
plitude, and/or polarity of the T wave, often is associated
with congenital LQTS. TWA is an important prognostic
indicator because it is commonly observed just preceding
episodes of TdP3~ Although beat-by-beat alternation of
repolarization somewhere in the heart is presumed to un-
derlie TWA, its objective estimation is difficult because of
complicated T-wave morphology.

The present study used a novel method “‘cross-correla-
tion technique™ to assess beat-by-beat QT variability. The
aim of the study was to test the hypothesis that the lability

d0i:10.1016/), hrthm,2004.11.010
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Figure 1  Algorithm of QT measurement by the cross-correla-

tion method. See text for details.

of beat-by-beat QT variability is prominent during sympa-
thetic stimulation in LQT1 patients in whom cardiac events
often occur during sympathetic stimulation.

Methods

Study population

Fourteen LQT1 patients with KCNQ! mutation and five
healthy volunteers used as controls were included in the
study. The five healthy volunteers had no symptoms, and no
abnormal T-wave morphologies were observed on 12-lead
ECG. LQTS-affected individuals were noted based on the
ECG diagnostic criteria of Keating et al.® The criteria in-
clude corrected QT (QTc) =470 ms in asymptomatic indi-
viduals and QTc >440 ms for men and >460 ms for women
associated with one or more of the following: (1) stress-
related syncope, (2) documented TdP, or (3) family history
of early sudden cardiac death. Genotyping of LQTS was
reviewed and approved by the Ethical Review Committee.
Written informed consent was obtained from all patients.

Recording of standard 12-lead ECG

Standard 2-lead ECG was recorded using an FDX6521
{Fukuda Denshi Co., Tokyo, Japan) with the patient in the
supine position without antiarrhythmic medications, includ-
ing beta-blockers. ECG data were digitized using analog-
to-digital converters at a sampling rate of 1,000 samples/
second per channel.

ECG measurements

We measured QT interval beat by beat in the most stable
lead to analyze T-wave morphology among precordial
leads. The beat-by-beat changes of the QT interval were
assessed during the latter half of T wave (Figure 1),

Specifically, the steps involved in analyzing a digitized
ECG record included the following. (1) The operator se-
lected a lead to analyze and the beginning and the end of the
template T wave as an average of consecutive five beats, (2)
The time of each R wave was identified using an automated
peak detection algorithm. (3) For each of the other new
beats, the time lags between the new beat and the template

were calculated for comparison with the templates of QT
morphology by a cross-correlation method. The templates
were resampled as successive five beats before the newest
analyzed beat.

We also analyzed beat-by-beat QT interval using a semi-
automated digitizing program simultaneously. QT interval
was defined as the time interval between QRS onset and the
point at which the iscelectric line intersected a tangential
line drawn at the maximal downslope of the T wave (tan-
gential method),

Epinephrine administration

The epinephrine test was conducted as part of the clinical
evaluation of LQTS.

A bolus injection of epinephrine 0.1 pg/kg was followed
immediately by continuous infusion at 0.1 ug/kg/min,
Twelve-lead ECG was recorded continuously during sinus
rthythm under baseline conditions and usually for 5 minutes
after start of epinephrine infusion. The effect of epinephrine
on RR and QT intervals usually reached steady-state con-
ditions 2 to 3 minutes after epinephrine was started. Epi-
nephrine infusion for more than 5 minutes was avoided.
ECG monitoring was continued for another 5 minutes afier
finishing epinephrine infusion to detect any occurrence of
TdP. ECG data were collected under baseline conditions
and at steady-state epinephrine effect 3 to 5 minutes after
epinephrine was started.

Analyzed parameters

The following five ECG parameters were calculated
from all RR and QT intervals recorded for 30 seconds
during baseline conditions and at steady-state epinephrine
conditions and then compared between the two groups
(Figure 2): (1) ARR, the average of successive RR interval
changes; (2) AQT, the average of successive QT interval
changes; (3) SD-ARR, the standard deviation of RR inter-
val; (4) SD-AQT, the standard deviation of the QT interval;
and (5) QT index (QTI), the rate of change of QT interval

Electrocardiographic Parameters

ARR (msec) : Average of successive RR interval changes
AQT (msec) : Average of successive QT interval changes
SD- ARR:standard deviation of RR interval
SD-AQT: standard deviation of QT interval

QTI: AQT/ ARR
QTI ]% ' ‘
ARR=(RR2.RRIPHAR3. RR?& *HRRa-RRp-1)  AQT={OT2.QTIM(QTI QTN *HOTn QTs 1}
a
Figure 2 Five ECG parameters calculated in the present study.

See text for details.
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Table 1  Baseline ECG characteristics
T LaT (n = 14) Control (n = 5)

Age 28 + 20 29 =10
HR (bpm) 71 £ 10 68 + 7
QT (ms) 454 * 59* 387 13
QTc (ms) 504 *+ 76* 410 + 36
Toeak-ena (MS) 102 = 16 91 > 19

D (ms) 71 + 25* 45 + 11

Values are reported as mean * 30,

HR = heart rate; QTc = corrected QT interval; T . eng
between T, and T,,; QTD = QT dispersion (maxQT-minQT).
*P < .05 vs control.

= interval

to RR interval, defined as the beat-by-beat value of AQT
divided by ARR.

We examined the relationship between QT variability
(AQT, SD-AQT) analyzed by cross-correlation methods and
QT interval or heart rate before and after epinephrine infu-
sion.

Statistical analysis

Data are expressed as mean = SD. Paired and unpaired
t-tests were used for couple observation. Correlation be-
tween continuous variables was tested by linear regression.
For all tests, P < .05 was considered significant.

Results

Table 1 lists baseline ECG characteristics. No significant
differences were observed regarding age and baseline heart
rate between the LQT1 and control groups. The baseline QT
and QTc intervals and QT dispersion, which were analyzed
by the tangential method, were all significantly greater in
the LQT1 group than in control group.

Beat-by-beat T wave variability before and after
epinephrine

Figure 3 illustrates representative examples of superim-
posed QT complexes before and after epinephrine. The
consecutive 10 beats of eight-lead ECGs were drawn tem-
porally. In the control patient, no significant difference of
beat-by-beat T-wave morphology was observed before and
after epinephrine. In contrast, more significant beat-by-beat
lability of the T wave was recognized after epinephrine in
the LQTt patient, although no significant change of beat-
by-beat T-wave morphology was observed under baseline,

Beat-by-beat QT variability

The analyzed ECG leads were lead V in three controls
and six LQT! patients, lead Vg in two controls and five

vé v_,/'\ /'\.,.._..__., i i P i, ,,__.._./“&...
Baseline Epinepkrine Baseline Epinephrine
Figure 3 Representative example of superimposed QT com-

plexes before and after epinephrine. The consecutive 10 beats of
eight-lead ECGs are drawn temporally. In a control patient, no
difference of beat-by-beat T-wave morphology is observed before
and after epinephrine. However, more significant beat-by-beat
alternans of T wave and change to biphasic T-wave patlern were
observed after epinephrine in an LQT1 patient.

LQTI1 patients, and lead V;, V5, and V, in each of the
remaining LQT1 patients.

Figure 4 illustrates beat-by-beat change of the RR, QT,
and the ARR and AQT in a control patient. The RR interval
was decreased afler bolus infusion of epinephrine, and re-
mained decreased less than before epinephrine at the steady
state condition. The ARR, which is heart rate variability,
became small following the start of epinephrine. The QT
interval was prolonged when the RR was decreased after
bolus epinephrine, however the QT interval was slightly
shortened compared before epinephrine at steady-state. The
AQT was not changed before and after epinephrine infusion.

msec
1200

RR

300 MW'TW
Epincplorme

400
200

00 € tangerinl

QT 8 Cross-comrdation —0sse_
400 iy o
ol =
M_ X o A iy,
300
30 . .
memA QT imeanAQT}
A§ fheseme) § AQT (:é“pmwm o
L

Figure 4 Beat-by-beat change of RR, QT, ARR, and AQT in a
control patient. RR interval was decreased after bolus infusion of
epinephrine and remained decreased less than before epinephrine
at the steady-state condition. ARR became small afier epinephrine
was started. QT interval was prolonged when RR was decreased
after bolus epinephrine but was slightly shortened compared with
before epinephrine at the steady-state epinephrine effect. AQT was
not changed before and after epinephrine infusion.
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Figure 5 Beat-by-beat change of RR, QT, ARR, and AQT in an
LQTI1 patient. RR interval was decreased following bolus infusion
of epinephrine and remained decreased at steady-state condition.
ARR became small after bolus infusion of epinephrine. QT interval
was prolonged after bolus infusion of epinephrine and remained
prolonged at steady-state epinephrine effect compared with before
epinephrine. Of note, AQT was significantly increased at steady-
state epinephrine effect compared with before epinephrine.

B N ¥ T e e et

Figure 5 illustrates beat-by-beat change of RR, QT,
ARR, and AQT in an LQT! patient. Similar to the control
patient, the RR interval also was decreased following bolus
infusion of epinephrine and remained decreased at steady-
state epinephrine effect in the LQT1 patient. ARR became
small after bolus infusion of epinephrine. QT interval was
prolonged following the bolus infusion of epinephrine and

remained prolonged at sieady-state epinephrine effect com-,

pared before epinephrine. It is noteworthy that AQT was
significantly increased at steady-state epinephrine effect
compared with before epinephrine.

Table 2 lists composite data of the five ECG parameters
before and at steady-state epinephrine effect in the LQT1
and control groups.

No significant differences in ARR, AQT, SD-ARR, SD-
AQT, and QTI were observed between the two groups under
baseline conditions. Epinephrine increased AQT (2.3 £ 0.3
042 *23ms, P<.005),SD-AQT (22 +*191w104.1 =
2.2 ms, P < .005), and QTI (0.10 = 0.06 1o 0.22 * (.16,

P < .005) in LQT1 group but not in control group (AQT
25*151024x05ms, SD-AQT1.9*+091c2.1 0.6
ms, QTI 0.08 = 0.02 to 0.09 = 0.06, P = NS) (Figure 6).

AQT and SD-AQT showed significant correlation with
QTc after epinephrine (r = 0.61; P << 05 andr = 0.65; P
< .05, respectively) but not before epinephrine. On the
other hand, the values were not correlated with heart rate
either before or after epinephrine. No significant differences
in the five ECG parameters were observed between patients
with (n = 8) and patients without {n = 6) a history of
syncope or cardiac arrest.

Discussion

Quantification of ventricular repolarization

Several methods have been proposed to quantify abnor-
malities of repolarization”'%; however, few of the tech-
niques are suitable for routine clinical use. Thus, assessment
of ventricular repolarization still is based largely on QT and
QTc measurements and on qualitative description of mor-
phologic alterations such as presence of notched, bifid, or
biphasic T waves. A setl of new morphologic ECG param-
eters proposed by Merri et al,'" Benhorin et al,'? and Priori
et al'? could provide a better description of repolarization
and be more reproducible than QT interval duration, but
these parameters have not yet obtained widespread applica-
tion in clinical practice.

RT interval, the duration between the peak of R and T
wave, was used to analyze the repolarization period to
minimize the observer bias in manual acquisition of data.'*
Experimental studies'>'® using arterially perfused canine
left ventricular wedges suggest both the peak and the end of
the T wave on the ECG are coincident with repolarization of
epicardial and maximal M-cell action potentials, respec-
tively, so that the interval between the T,y and T4 reflects
transmural dispersion of repolarization. The transmural dis-
persion of repolarization, the latter part of the T wave, is
linked to ventricular arrhythmias such as TdP under long
QT conditions. Therefore, the RT interval cannot detect the

Table 2 ECG parameters before and after epinephrine in LQT1 and control groups

LQT1 (n = 14) Control {(n = 5)

Baseline Epinephrine Baseline Epinephrine
ARR 33+ 23 36 * 39 39 = 20 34 * 25
AQT 2303 4.2 * 2.3%.1 25 *+15 2.4 0.5
SD-ARR 23 £ 18 27 x 27 30 = 17 36 = 27
SD-AQT 2.2 *19 41 * 2.2%¢% 1.9 =09 21 * 0.6
QTI 0.10 * 0.06 0.22 * 0.16*.} 0.08 = 0.02 0.09 + 0.06

Values are reperted as mean * SD.
*P < .05 vs haseline,
{P < .05 vs control.
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O Baseline
0 Epinephrine
AQT SD-AQT QTI
(ms) (ms)
12 12 P<00%
08 P<0.05

P<0.03

<o.
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P<0.05
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tilufheililc

Control LQT1 Control LQT1

Figure 6 Comparison of AQT, SD-AQT, and QTI before and
after epinephrine infusion between LQT1 and control groups. No
significant differences in AQT, SD-AQT, and QTT were observed
between the two groups under baseline conditions. Epinephrine
increased AQT, SD-AQT, and QTI in the LQT1 group but not in
the control group.

L

[

important part of the T wave and may underestimate a
repolarization abnormality in patients with LQTS.

Our novel method, the cross-correlation method, ana-
lyzed beat-by-beat “time-lag” comparing the template of the
latter part of the T wave, thus better description of QT
interval could be assessed independently of complicated TU
wave morphology. Beat-by-beat T-wave and QT variability
measured by the cross-correlation method is not synony-
mous with T-wave alternans and could be analyzed more
stably than with the standard tangential method even during
epinephrine infusion in the two patient groups (Figures 4
and 5).

Variability of repolarization in LQT1 syndrome

Physical exercise and strong emotion precipitate syncope
and sudden cardiac death in patients with congenital
LQTS.? Experimental models!”!® of LQTS and clinical
studies'® suggest catecholamine-enhanced early afterdepo-
larization and triggered activity play a pivotal role in the
genesis of QT prolongation and TdP.

TWA is a well-known ECG phenomenon often associ-
ated with the development of cardiac arrhythmias,?® partic-
ularly in the setting of acquired and congenital LQTS.%7
The phenomenon previously was described as QT interval
variability or T-wave lability by the pronounced changes in
T-wave morphology.?"*? The mechanism underlying cate-
cholamine-provoked T-wave lability is unclear. It also is
clearly different from microvolt {xV-TWA). The uV-TWA
shows no definite periodicity of the T-wave changes on
surface ECG. Exercise-induced uV-TWA was not signifi-
cantly different between genotype carriers and noncarriers
in a study involving a large single kindred with LQTS. 2!

An experimental study by Shimizu and Antzelevitch’
suggested that TWA observed at rapid rates under long QT
conditions largely results from alternation of the M-cell

action potential duration, leading to exaggeration of trans-
mural dispersion of repolarization during alternating beats
and thus the potential for development of TdP. Their data
also suggested that unlike transient forms of TWA that
damp out quickly and depend on electrical restitution fac-
tors, the steady-state electrical and mechanical alternans
appears to largely result from beat-to-beat alternans of in-
tracellular calcium cycling.

Our study showed that beat-by-beat QT variability was
accentuatcd by epinephrine infusion only in LQT1 patients,
indicating that variability of repolarization is made pro-
nounced by sympathetic stimulation in patients of LQT1 but
not in normal controls. Qur result supports the clinical
manifestation that life-threatening arrhythmia, such as TdP,
often is observed under increased sympathetic activity in
LQTS, especially in LQT1 patients.?®

However, the numbers of families and individuals in the
present study were small and limited the number of LQTI
patients. Therefore, our data may be limited to LQTI1 and
not applicable to LQTS patients with other genotypes.

Relationship among QT variability, QT interval,
and heart rate

In the present study, QT variability after epinephrine was
correfated with QTc interval after epinephrine but not with
heart rate. The wV-TWA is a highly heart rate-dependent
parameter and can be assessed invasively by arterial pacing
or noninvasively by exercise. Heart rate threshold for in-
duction of the uV-TWA was reported at 110 bpm in healthy
adults.** No relationship between QT variability and heart
rate after epinephrine was observed in this study, probably
because of the lesser increase in heart rate in both groups.

Conclusion

Our data showed that beat-by-beat QT variability ana-
lyzed by the cross-correlation method was greater in LQT1
patients during sympathetic stimulation, suggesting that
sympathetic stimulation accentuates beat-by-beat alternans
of repolarization in the LQT1 syndrome,
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