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EAEFBREREREDE (BERL - EREBEEL X275 b ) —P A = REHRER)
SRR EE

CYP3A OBETLE L ABEIZET AR
SHFRE TE B TEREREREE

MEEE

FRR 16 £EIX, AFRAE BRATEDOITHEBRE BV, CIP344+2, CYP344*5, CYP344%6,
CYP345*3 BEHNRBIEEIL 52 DR B NER THB L7, CYP344 B LT CYP345 DE
BAZHTIX. PCR-RFLP ¥:33 X (% denaturing HPLC #1Z X V4TV, CYP3A (2 X 5 B RHE
MET testosterone (TS) 6 8 -hydroxylation & midazolam (MDZ) 1’3 & T} 4-hydroxylation {Z & ¥
BB LT, CYP3A4%2, CYP3A4%5 IR 2T oW ThOFRAIZ LD bhviah o,
CYP344%6 D~F a iR AR AREiz—FlRH X, £0 TS6 B -hydroxylation &Ik HA
ANDOEAFRIOEHEDI 1/3 OE[EERLE, —H, BFA, BAFETXTOFIZ7a Y
— LR DT, CYP345*1/%] DBREFEZEFEORENE LEV MDZ KEMLIEEEZR L.
1’-hydroxylation FEHEIZ DN T ik CYP345*3 & DA HLBRIBABR 22 gene-dose effect 233O 5
iz, THBDEEIT. CYPIA4%6 & CYP3AS*3 B MFI 27 u ) —AiZBIiT5 CYP3ATE
HOEAZERRETIEELRERO—>THAMHEEZHITFRTIbOLEE X LR,
L L. CYP344* DIEEIZTE OO TEWI &, CYP345*3 OEERBVWAERALBAR
MICHEEOERRNVWL D, Tho0ERTFEERIIAFANLBABROAEZDOFRER L
RAEEEEEVWb D LE L I,

A BFEB® CYPIA EMEDANEELZ X DR L5 HH
CYP3A i, Z<0EERKORBITEER ZBAHTETHS,

gl % R34 CYP subfamily THY, VIEEEIL, CYP3AL BEETFD 5- LIEOE
CYP3A4,CYP3A5,CYP3AT,CYP3A43 D44y RTHD CYPIA4*IB OHFBHELEIN T
FEMNLRD, SNOOHTFROPCEREE LK), AFECERTSS /L0, BA
ORBITHRLEEARDOIX CYPIAL THY, . BAE, BFRAO—KN2EBEATH
CYP CRHEZZTAHEMD 50%LL LIz B L 2R L, FEEIX. CYPAM D
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BIZHOWTHEFESALOTH), HEARL YLz, SEEEIEEAALBEBAEORA
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BEERRITL. AT T2ZEICID,

- 23 -



B. BFEEEE
CYP344 33 L TR CYP345 DEBEFEEITIX.

PCR-RFLP #:35 & (R denaturing HPLC (51T &
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TPCR %217\, 851 7-PCR EMEEhEN
Syl &5 Wid Clal THIIREERQE DL
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. Ti%. PCR-RFLP & denaturing HPLC %
WAL HETDNA 7T 7 AV MEITEICX
DERMT LTz, THhbH, FAR T Hinfl
Iz vl A hievizd, denaturing HPLC
ity ru<w 57 ECE—YY—2 ¢
LTRHEIhSDIzH L, CYPU6eERE
T, Zo0v—7 L L THRHENSZ L
WESWTHIE L, Testosterone (TS) 6 8
-hydroxylation &%, midazolam (MDZ) 1’5
X U* 4-hydroxylation f&¥EIL, HPLCIZ XL Y
HE L,

C. R FR

BAAB L CAAEOFERBRS
2 DNA IZ9WT CYP3A4 DEEBETFD
BERPRARTRER, CYP344%2 B LT
CYP344*5 iX. BT L7=BEAN 19 ik B
FTUOBAAE 36 REDETITBWTREHE
o tz, —J, CYP344%6 iZBA LTIk,
BAERBTRHINZNSToOIXT L,
AAEATIE 1 ABA~TFeiE LTRSS,
Z @ TS6 B -hydroxylation & t£i% 0.086
nmol/mg protein/min & BARADEFLERDIE
EIE (0.2310.13 nmol/mg protein/min) D)
1/3 DIEEETRLE, L L, ZOKREEZER
W= BZE A 15 D TS6 B -hydroxylation
E o EHME (023 £012 nmo/mg
protein/min) ¥ E ARE 21 KRR D IEEE(0.23
#+0.19 nmol/mg protein/min) & O H TZH3FE
HoHNeholz,

—F. BEABICAAROITHEREER
A ) ADNAIZOWT CYP345*3 DA A
~RfEER BAAD 0.81, BATEN 0.85 T
HY, shETo@EL X< —BLLESR
Bbonk, . BEREA Q1 ERE) 2BV
TIZBFAER CYP345*] TUVAERETHD
B (CYP345*1/4]) IREREh b

Dizxt L, AR (G0 RE) Tid 141 (HHLG)
mWh b, FORED TS 6 -hydroxylation
Ei, eREPRLBVWEEZTRL, £
DEIAANEOEHFEEOH4ETH-
7o WIZ, MDZ KER(LIEHEIZEE LT,
4-hydroxylation T& D 8 E (200 u M)ZBR
g, -, KB eV TR ORI 20T
CYP345*] ZHRETHRETIREEEAR
ORET TR LEWEEERLE, S5
1’-hydroxylation FEHEIZ DWW T, BEHER
EEQ00 M), EEHBEQ.Sy MOWTH
IZoWNWTh, CYP345*1/*3 DIEHEIL*3/43 O
EHEIVLEMEEZTRL, HEBHARR
gene-dose effect ZxL7%, LL. TS
6B-hydroxylation {&E{% & BB E Q00 M)D
MDZ 4-hydroxylation &Iz 2V T,
CYP345%1/%3 L *3/%3 ORIZHA LM REX
Bhbhizhsalz,

D. % -

T IVE TIT CYP344*6 D heterozygote DX
BHEHELY i vivo 123817 2 EHRORBIREDR
15%ICETRIPTHIEVNWIBEREDL D
(Usieh et al., 2001), LML, 4EIAWEE
iz CYP3A44*6 @ heterozygote (GHL29) O
in vitro {23 3 TS 6B-hydroxylation {E# 1
O 1 BETH -7, CYP344*61E 1
HMERAILLIY ZL—AY 7 FREZY,
ZFORER, AbhyFa Rrye2ERT5d, £
D7, CYP3A4*6 % hetérozygote & L THf
SEETCIRESRSBEOH 12 BEITET
TA3b0LFHENS, Lo T, 40,
BonEEREOTHRLIEE—EKTEH
DThotc, LML, CYP3A4*6 DEREIX
EbHTEL, HEEToEERTHRAR
A 149 A1 A heterozygote & L THIH X
NTEOARTEH-T, o T, CYP344%6
X EEARBITS CYP3A4 OFEHETI—
BELETAMERIZIILOO, RENSE
b TEWED, BERALBAREIZRITS
CYP3A BEDOANBELZUHATIEERE
H i35 EEENbo L Bbhi,

—J5. CYP3Asubfamily D—FHTH B
CYP3AS5 IZ{EEIZ & o TiX CYP3A4 LFAIER
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EEBRBLTWAZ L bHD, &DIC
CYP3A4 LHELLEBEHRRELRTIL
HH Y, CYPIATFEIL—BFELTWSH
BEENEH I TVWS, ThETIZ, #E8
ZRBIUE PFIZ v Y—2% Aok
iz b, CYP3AS @ TS 6 B-hydroxylation {&
P43 CYP3A4 SV EVWHAIVIIRABRETH
BLNHPERENEWIRENH D
L= REZIXELNT WY, LrL, MDZ
1°-hydroxylation FEHEIT-DOVVTiL CYP3AS @
FEPED CYP3A4 X D EWEWIHIRENEL.,
12 MDZ 4-hydroxylation {§PEiZ, CYP3A4
EVHEVWHRABRETHI LWHIBRENS
VW, SEIOKRIINLOBREL I —&K
LTHEH., CYP3A {EHEIZIX CYP3A4 &
CYP3A5 DORAFNRFLELTWEINREDOES
IRERICL ¥RV, MDZ U-hydroxylation
THE b & <. MDZ 4-hydroxylation &
testosterone 6 B-hydroxylation T iX MDZ
1’-hydroxylation & ¥ b4i&EW7 o MDZ
1>-hydroxylation CiiHEHBE. EEHR
EOWTRICOVWT S CYP345%3 1T HEH
BARR 72 gene-dose effect /R L 7Dz L,
MDZ 4-hydroxylation IEHEIT DWW TIHERE
D1 L, TS6B-hydroxylation FEHEIZ DV T
IXBARRE7: gene-dose effect A3EB® L/2d
skbnrEZLNRE, EE., MDZ
4-hydroxylation FEHEIZ OV TIIRBERIT
BWT CYP3A4 IEE L BV Z R TL &
TRV, BEEE DO MDZ 4-hydroxylation {&
MEGIT *1/%3 L *3/*%3 IKENTH IR
ol WHSREIDF/ERE LILK—ETDH LD
EEZ LN,

E. ¥
CYP3A4*61%. BARANITEIT S CYP3A4

OEHETIC—RFET 2 EEIHD b
oD, BARA. BARBIZBIT EENED
BHTEW= D, TAREIZBIT S CYP3A G
DAHEZZHATHIEERERLIZI2VE
b Bbhi, EhizxtL CYP345
* JTIEEEMNE < CYP3AS OFERNFHWIE
HORBHOBAZITIEERERE 2D L
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CYP2C9 and oral anticoagulation therapy
with acenocoumarol and warfarin:
Similarities yet differences

Harumi Takahashi, PhD, Grant R. Wilkinson, PhD, DSc, Roberto Padrini, MD, and
Hirotoshi Echizen, MD Tokyo, Japan, Nashville, Tenn, and Padova, Italy

Interindividual variability in drug metabolism pre-
sents a major challenge to optimizing therapy for a
particular patient. Much effort has gone into identifying
the sources of such variability, and in recent years,
attention has focused on possible genetic determinants
that alter the expression or function of involved en-
zymes. With the cytochrome P450 (CYP) superfamily
of enzymes, genetic polymorphisms such as those with
CYP2C19 and CYP2D6 are well established, but their
overall clinical importance is debatable except in lim-
jted instances. However, with CYP2C9, there is now
considerable evidence that genetic variation may be of
more practical significance and importance in optimiz-
ing drug therapy. This situation is primarily based on
several retrospective studies with warfarin in which
drug dosage and adverse events, during both induction
and maintenance phases of anticoagulation, have been
shown to be associated with the CYP2C9 genotype; the
presence of CYP2C9*2 and, to a far greater extent,
CYP2C9*3 alleles results in greater difficulty and prob-
lems in anticoagulation than in wild-type (CYP2C9*1/
*1) homozygotes.!
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Warfarin is mainly prescribed in North America and
Asia, whereas acenocoumarol is more commonly used
in several European countries. These 2 drugs are struc-
turally related, have a mechanism of action similar to
that of vitamin K antagonists, and exhibit a marked
difference in dosage requirements (up to 10-fold) and
unpredictable interindividual variability in anticoagula-
tion response. Furthermore, their metabolism involves
CYP2C9,** from which it might be presumed that in
the case of acenocoumarol the genetic variability in this
enzyme would, as with warfarin, affect the drug’s clin-
ical effect. Indeed, 2 articles®” in this issue of the
Journal demonstrate this; however, they also indicate
that the genetic factor is less important than with war-
farin despite the similarities between the 2 drugs.

Morin et al® describe an association between several
genetic polymorphisms of the CYP2C? gene and the
immediate anticoagulation response, 24 hours after a
single oral dose of acenocoumatrol by healthy subjects,
as compared with homozygous CYP2C9*1/*1 patients.
In addition to coding region variants (CYP2C9*2,
CYP2C9*3, and CYP2C9*3), single nucleotide poly-
morphisms (SNPs) in the —2.1-kb promoter region
were also investigated. The haplotype containing the
CYP2C9%3 allele was the only one having a statistically
significant, atbeit limited (14%), contribution to the
overall interindividual variability of the anticoagulant
response, as measured by a reduction in plasma factor
VII activity. Schalekamp et al,” in contrast, studied
patients during their initial 3 to 6 months of anticoag-
ulation therapy and concluded that the CYP2C9*3 al-
lele was associated with a lower stabilization dose and
a higher risk of overanticoagulation and that it took
longer to reach a state of stabilization. In addition, they
also noted that the international normalized ratio (INR)
value measured 4 days after initiation of therapy was
significantly but modestly higher in CYP2C9*3 carri-
ers. In neither study was anticoagulation associated
with the CYP2C9*2 allele. These CYP2C9 genotype—
anticoagulant response data are different from those
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with warfarin, for which both the CYP2C9*2 and
CYP2C9*3 alleles have much more pronounced
effects.!”> We will comment in brief on this and related
issues.

Like warfarin, acenocoumarol is administered as a
racemic mixture of R- and S-enantiomers. However,
there are substantial differences in the pharmacokinetic
and pharmacodynamic characteristics between the 2
drugs. With acenocoumarol, the anticoagulation poten-
cies of the R- and S-enantiomers are essentiatly com-
parable, as indicated by the area under the effect curve
(AUEC) of prothrombin time normalized to the area
under the plasma concentration-time curve (AUC) of
the respective enantiomers (ie, AUEC/AUC) calculated
on the basis of previously reported data.®® Further-
more, the mean oral clearance of S-acenocoumarol in
homozygous wild-type (CYP2C9*1/*1) subjects is 13-
fold greater than that of R-acenocoumarol (19.8 L/h
versus 1.56 L/), and its elimination half-life is far
shorter (1.0 hours versus 8.8 hours).'® As a result, the
overall anticoagulation response in individuals of this
genotype is attributable largely to R-acenccoumarol.
By contrast, the anticoagulation activity of the
S-enantiomer of warfarin is 3 to 5 times greater than its
antipode.!" However, its oral clearance in
CYP2C9*%1/*1 subjects is only 40% greater than that of
R-warfarin (0.25 L/h versus 0.18 L/h),'? and the asso-
ciated elimination half-life (32 hours versus 43 hours)
is sufficiently long to produce an anticoagulant re-
sponse throughout the usuval once-daily dosing interval.
Thus the intrinsically more potent S-warfarin is essen-
tially responsible for the anticoagulant responses to
racemic warfarin.

CYP2C9 is almost exclusively involved in the me-
tabolism of the S-enantiomers of both acenocoumarel
and warfarin through 6- and 7-hydroxylations.** On
the other hand, other enzymes besides CYP2C9 (eg,
CYP1A2, CYP2C19, and CYP3A4) mediate the me-
tabolism of the R-enantiomers of both anticoagu-
lants.** Accordingly, the genetic polymorphisms of
CYP2C9 would be predicted to have a greater influence
on the metabolism and pharmacodynamic. response of
warfarin compared with acenocoumarol, and this would
be more apparent with CYP2C9*3 than with
CYP2C9*2 because of the considerably lower meta-
bolic activity of the former.!* Indeed, patients with the
CYP2C9*1/*3 genotype have an approximately 50%
lower mean oral clearance of S-acenocoumaro! than
CYP2C9*i/*] homozygotes (10.9 L/h versus 19.8
L/h),"° resulting in 2-fold higher steady-state
S-acenocoumarol plasma concentrations in such pa-
tients relative to those of the homozygous wild-type
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genotype. The pharmacokinetics of R-acenocoumarol is
only modestly affected in CYP2C9*I1/*3 heterozy-
gotes'®; accordingly, the steady-state concentrations of
this enantiomer would be minimally different from
those in the CYP2C9*1/*] genotype, and, therefore, its
plasma coneentrations would still far exceed (>6-fold)
those of the S-enantiomer. Accordingly, the overall
anticoagulation effect (INR) in such heterozygotes is
attributable to the sumn of the plasma concentrations of
R- and S-acenocoumarol, but this would be similar or
only modestly increased compared with wild-type ho-
mozygotes.'® The data of Morin et al® are consistent
with these pharmacokinetic considerations, in that sub-
jects with the CYP2C9*1/*3 genotype showed only a
15% greater INR value and a 53% greater reduction in
factor VII coagulant activity at 24 hours afer a single
oral dose of the drug. In the single CYP2C9*3/*3
homozygote, the increased effects were still quite mod-
est, consistent with the still dominant role of
R-acenocoumarol, because it has been estimated that
the clearance of the S-enantiomer in such individuals is
about 20% of that in homozygous wild-type subjects.'”
Nevertheless, Schalekamp et al” observed that, in pa-
tients treated with acenocoumaro! for 3 to 6 months, the
CYP2C9*3 allele was associated with greater difficul-
ties in empirically determining an optimal anticoagula-
tion dose than in wild-type patients and cartiers of the
CYP2C9*2 allele. In addition, the stabilized dose re-
quirement for CYP2C9*3 patients was 20% less than in
CYP2C9*1/%1 individuals. With warfarin, however, the
reduced metabolic activity of the CYP2C9*2 and
CYP2C9*3 variants also primarily affects only the
S-enantiomer, which in this case i{s also the isomer
responsible for almost all of the anticoagulation effect,
especially in patients carrying these mutations. Thus a
50% lower clearance in CYP2C9*1/*3 patients is asso-
ciated with a 2-fold reduction in warfarin’s mainte-
nance dose compared with that in wild-type homozy-
gotes, and even in CYP2C9*2 carriers, the dose is
lower.!*!* In CYP2C9*3/*3 homozygotes an even
greater dose reduction {5-fold) is required.'*'*

Morin et al® also investigated SNPs in the —2.1-kb
5'-flanking region that putatively might affect CYP2C9
expression. As noted previously,'®'” a number of these
were found to be in linkage disequilibrium with com-
mon functional SNPs in the coding region, and, there-
fore, haplotype associations rather than single SNP
analyses are, in principle, probably more appropriate
for genetic analysis. Morin et al note that just 4 major
haplotypes accounted for 97% of the white population;
2 of them were linked with either CYP2C9*2 or
CYP2C9*3, and in the case of the latter haplotype, the
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Fig 1. Relationships between unbound oral clearance (CLpo,u) for S-warfarin and daily doses of
warfarin in white (Caucasian; a) and Japanese (b) patients of different genotypes: CYP2C9*1/*1
(open circles), CYP2C9*2 (*1/*2 or *2/*2) (gray circles), CYP2C9*1/*3 (gray triangles),

CYP2CO*3/*3 or CYP2CO*2/*3 (black triangles), and CYP2C9*1/*11 (black diamond).

consequence of the impaired reduction in the encoded
enzyme’s activity far exceeded any effect on expres-
sion, if it was present. In fact, no 5'-flanking region
variants through —2.1 kb that up-regulate CYP2C9
expression have yet been identified.'®!” Whether these
exist in more distal regions remains to be determined,
but such information would possibly provide insights
into yet unresolved questions.

Fig 1, for example, shows the relationship between
the empirically established daily maintenance doses of
warfarin and the unbound clearance of S-warfarin ob-
tained in white patients (n = 47) and Japanese patients
(n = 126) in our previous studies'®>?® and in white
patients (n = 93) reported by Scordo et al."* In this
figure, variability on the abscissa and ordinate repre-
sents that in the phamacokinetics and pharmacody-
namics of warfarin, respectively. Despite significant
differences in target INR value (2 to 3 in white patients
versus 1.5 to 2.5 in Japanese patients) and body size
(76.5 * 16.6 kg in white patients versus 56.7 + 11.3 kg
in Japanese patients), a significant relationship linked to
CYP2C9 genotype exists. Given that the dosing rate
reflects clearance at steady state and S-warfarin’s clear-
ance is predominantly CYP2C9-mediated, this is not
too surprising; that is, patients who require higher doses
of warfarin possess greater CYP2C9 activities. How-
ever, it is noteworthy that there is considerable vari-
ability within the overall pharmacckinetic and pharma-
codynamic relationship and within any particular
genotype. Similar interindividual variability in the war-
farin dosage requirement among CY¥P2C9*1/*! ho-
mozygous patients, who constitute the majority of all

populations studied to date, has also been reported by
Daly and King."” Furthermore, Morin et al® observed
marked differences in acenocoumarol’s short-term
pharmacodynamic response. Because factors such as
age, body size, sex, diet, and vitamin K status do not
fully account for such apparently non-CYP2CY-
associated variability,?"*? this strongly suggests that
other, currently unknown environmental determinants
or possibly unidentified genetic variants may be in-
volved, especially in the 5-flanking region or the tran-
scriptional regulatory receptors of the gene.”> These
considerations also apply to the significantly greater
unbound clearance of S-warfarin in CYP2C9*1/*] ho-
mozygotes of Japanese descent compared with white
patients.?® In addition, the possibility of genetically
determined variability in the various proteins involved
in the anticoagulant effect, such as vitamin K-depen-
dent coagulation factors,”® which may contribute to
differences in warfarin and acenocoumarel dosage re-
quirements, is a largely unexplored area with regard to
interindividual variability in responsiveness.

Finally, the current reports,*’ along with additional
findings regarding warfarin, acenocoumarol, and other
CYP2C9 substrates,?*? clearly indicate that genotype
contributes to variability in these drugs’ overali phar-
macodynamic responses. The critical question, how-
ever, is whether this factor is sufficiently determining
that knowledge of an individual’s CYP2C9 genotype
before prescribing a drug dose would lead to improved
optimization of therapy, including a reduced risk of
bleeding episodes. Given the implied and possibly sig-
nificant involvement of nongenetic determinants in
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warfarin’s anticoagulant effects (Fig 1 and Verstuyft et
al*®), for example, the answer to this question is not
self-evident. It is even less apparent for acenocoumarol.
An appropriately designed, large, multicenter clinical
trial will be required to test this hypothesis and could
serve as a bellwether study for the future of genetically
based, personalized drug therapy involving interindi-
vidual variability in drug metabolism. The design,
funding, implementation, and evaluation of such a trial,
including pharmacoeconomic issues, for drugs such as
warfarin and acenocoumarol, whose patents will have
expired, will be difficult; the development of alternative
and safer anticoagulants such as direct thrombin inhib-
itors also complicates the issue. In the absence of such
a study, there is the possibility that, as with CYP2C19
and CYP2D6, genetically determined variability in
CYP2C9 activity may simply remain an interesting
scientific phenomenon with limited clinical application
except to explain observations in a limited number of
situations.

None of the authors has financial or personal relationships that
counid be perceived as conflicts of interest.
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Brief report

S’A-P'lanking region polymorphisms of CYP2C9 and their relationship to
S-warfarin metabolism in white and Japanese patients

Harumi Takahashi, Ichiro leiri, Grant R. Wilkinson, Gail Mayo, Toshitaka Kashima, Sosuke Kimura, Kenji Otsubo, and Hirotoshi Echizen

White and Japanese patients require dif-
ferent warfarin dosages to achieve thera-
peutic anticoagulation, but this can be
only partly explained by genetic varlabii-
ity in the coding reglon of CYP2C9—a
critical enzyme in the drug’s metabolism.
Accordingly, analysis of the —2.1-kb 5'-
flanking reglon of CYP2C9 was under-
taken In 22 white and 38 Japanese pa-
tients whose unbound oral clearance of
S-warfarin had been previously deter-

mined. Thirteen single nucleotide poly-
morphisms (SNPs) were identified, some
of which were in linkage disequilibrium
with functionally defective coding region
varlants. Those 5'-flanking patterns linked
with at least one CYP2C9'3 allele or
CYP2C9*2/*3 were associated with re-
duced CYP2C9 activity and warfarin dose.
Japanese patients possessing the wild-
type promoter and coding sequences had
significantly (P < .01) greater CYP2C9 ac-

tivity than white patients with the corre-
sponding genotype. In conclusion, either
unidentified polymorphisms further up-
stream in the promoter region or environ-
mental factor(s) account for the differ-
ences in the warfarin doses between
whites and Japanese. (Blood. 2004;103:
3055-3057)
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Introduction

Population differences in the drug-metabolizing enzymes are
important in bridging therapeutic doses and safety profiles of drugs
from one population to another. Warfarin is a widely used oral
anticoagulant and its effect is largely atiributable to the pharmaco-

logically more active S-enantiomer.! Recently, we observed that-

Japanese patients receiving warfarin therapy had a significantly
greater body weight-normalized plasma unbound clearance
(CLpo,u} of S-warfarin than white patients,® which is predomi-
nantly reflective of CYP2C9-mediated hepatic metabolism.? At
present, 11 coding region variant alleles of the gene have been
reported.® Becanse whites have greater allelic frequencies than
Southeast Asians’ of the 2 most common functionally defective
variants (CYP2C9¥2 and CYP2C9*3), it is possible that the
population differences in S-warfarin metabolism may be attributed
to this distribution difference. However, in our previous study a
difference in S-warfarin metabolism was noted even when the 2
populations were matched with respect to the homozygous wild-
type CYP2C9 genotype (CYP2C9*1/*1).2 This indicates that such a
coding region polymorphism cannot fully account for the popula-
tion differences in the CYP2C9 activity. Recently, Shintani et alf
reported 7 single nuclectide polymorphisms (SNPs) in the 5'-
flanking region of CYP2C9 in Japanese subjects, some of which
were associated with an altered level of gene transcription.
Accordingly, we investigated SNPs within the —2.1-kb promoter
region of CYP2C9 in white and Japanese patients receiving
warfarin and assessed their contribution to the variability of in vivo
CYP2C9 activity within and between the 2 populations.

Study design

The promoter region analysis was performed jn the participants of an earlier
investigation,2 22 white (9 men and 13 women) and 38 Japanese patients
(25 men and 13 women), whose DNA samples were available. Details of the
study have been reported.2 Briefly, the subjects were recruited at Vanderbilt
University Hospital (Nashville, TN), and the International Medical Center
of Japan. All patients received a constant otal dose of racemic warfarin once
daily for at least 1 month before blood sampling, None had impaired hepatic
function. Informed consent was obtained from each patient and the study
protocol was approved by the institutional review boards at both institu-
tions. Blood samples were obtained from patients at approximately 16
hours after oral administration of the last dose of warfarin. These samples
were analyzed for the separate R- and S-enantiomers of warfarin, along
with the extent of their plasma binding, resulting in estimates of the plasma
unbound concentration (Cu) and unbound clearance (CLpo,u) of
S-warfarin,’®

Variants in the 5'-flanking region of CYP2C9 up to —2137 bp were
analyzed according to the method of Shintani et alS using DNA previously
collected from the patients.? Coding region SNPs (CYP2C9*2, CYP2C9+3,
CYP2C9%4, CYP2C9*5, and CYP2C9*6) were analyzed as previously
described.

Population differences in the mean values were compared using an
unpaired Student ¢ test. Multiple comparisons for the mean CLpo,u for
§-warfarin and other parameters obtained from different genotypes within
each population were performed by analysis of variance followed by the
Tukey-Kremer test. A P value of less than .05 was considered statistically
significant.
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