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Figa. 5. Stimulatory effect of extracelular sodium and glutarate on
the uptake of 2.4-dichlorophenoxyacetate by the brush border
membrane of the bovine CP, Vesicles contained 100 mM mannitol,
100 mM KCI, 1 mM MeSO,, 20 mM Tris-HEPES, pH 7.4. They
were diluted 10-fold with transport buffer containing 10 nM
[*H12 4-dichlorophenoxyacetate and either 100 mM NaCl (O) or
100 mM NaCl plus 20 pM plutarate (@), The effect of 500 pM
probenecid was tested in the presence of 100 mM NaCl plus 20 pM
glutarate in the external butfer (A ). Means S E.. n=3. Taken from
Pritchard et al. [142].

and glutarate at the BBM of the CP. Therefore, an
outward concentration gradient of dicarboxylate pro-
duced by a sodium-dependent dicarboxylate trans-
porter can serve as a driving force for the transporter
responsible for 2,4-D uptake by the CP. 24-D is
poor substrate of rOat3 [60], but whether rOat3
accounts for the uptake of 2,4-D by the isolated CP
remains to be examined.

The transporter involved in the basolateral excre-
tion of hydrophilic organic anions remains unknown.
Breen et al. [143] have characterized the subsequent
basolateral excretion mechanism of fluorescein using
confocal microscopy. They quantified the amount of
fluorescein associated with the intracellular compart-
ment and the basolateral side and demonstrated that
substitution of K* for Na™ reduced the accumulation
of fluerescein in the basolateral compartment without
affecting the amount associated with the intracellular
compartment, indicating a reduction in the basolateral
excretion clearance by this treatment. Since perturba-
tion of the K* gradient directly or pharmacologically
causes depolarization of the membrane voltage, the
basolateral excretion of fluorescein is likely to be

membrane voltage-dependent. The substrate specific- -

Somion v3

-
-
-~ =i

ity and molecular characteristics of this transporter
remain unknown,

5. Efflux transport mechanism for organic cations
in the choroid plexus

Miller and Ross [144] measured the extraction of
NMN in vive using the ventriculocisternal perfusion
technique. The extraction of NMN during perfusion
from the lateral ventricles to the cisternal magna was
greater than that of inulin and was reduced by the
addition of mepiperhenidol to the perfusate, suggest-
ing involvement of an organic cation transporter in the
extraction [144]. Other organic cations, such as
cimetidine, choline, and TEA, typical substrates of
renal organic cation transporters, have been shown to
undergo carrier-mediated uptake at the brush border
surface of the CP. The transporters for organic cations
expressed in the CP are illustrated in Fig. 6.

hydrophilic organic cations

choline
CSF-side TEA TEA
e @
?
ADP+Pi

etoposide
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ADP+P
Mrp1
Blood-side \V/

Fig. 6. Schematic diagram of the efflux transpoh systems for
organic cations in the CP. The uptake of choline at the BBM of the
CP has been suggested to be mediated by QOct2, although its
expression in the CP is controversial. In addition, Oct3 mRNA was
shown in the CP, but its membrane localization in the CP remains
unknown. P-glycoprotein shows vesicular compartment localization
in the CPT, especially in the subapical region and jts role in the CP
remains unclear. The excretion mechanisms across the BLM remain
unknown. Mrpl has been suggested to be involved in the excretion
of etoposide across the basolateral membrane. Oatp2 accepts type 1]
organic cations as substrates, as well as amphipathic organic anions,
and it may be involved in their uptake/excretion across the BLM.
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5.1. Cimetidine

Cimetidine 1s a histamine H, receptor antagonist
and a weak base. It is a bi-subsirate, which is
recognized by both organic anion and cation trans-
porters. Ullrich et al. {145] examined the inhibitory
potency of a series of compounds on the renal uptzke
of PAH and NMN using the stop-flow peritubular
capillary microperfusion method and found that Hs
receptor antagonists, such as cimetidine, famotidine,
and ranitidine, inhibit both organic anion and cation
systems. It has been shown that saturable a mecha-
nism accounts for the CSF elimination of cimetidine
after i.c.v. injection [146]. Suzuki et al. [147]
demonstrated saturable uptake of cimetidine by the
isolated rat CP (K, 53 uM). Organic anions, such as
PAH and benzylpenicillin, produced a significant
inhibition as did organic cations, such as histamine,
creatinine, quinidine and quinine, while compounds,
such as NMN, choline or TEA, had only a minimal
effect even at 20 mM (Fig. 7) [147]. These results
suggest the involvement of an organic anion trans-
porter, rather than an organic cation transporter, as far

(a)
%
100 |- ] %
— -
[=] i ':['
= !
[
(o] =
(5] 4
o i
o ¥
£ s | - g
(= s -
> ﬂ{.‘ ﬂ
IS
0—S 2o nco % %
0 o 9t O 4 O %
%05% S BR 99 % 0T Y
% % S % %, 9, % % 2%
o] % % % g % T * %%
? %y | ® % %
Y
— o] ‘@j {zomn}

1755

as the uptake of cimetidine by the CP is concerned.
Taking into consideration the fact that other H»
receptor antagonists, such as famotidine and raniti-
dine, have been classified as bisubstrates [145], their
uptake by the CP may be accounted for by the same
transporter. Since cimctidine is a good substrate of
rOat3 with a X value similar to its K, previously
determined in the CP [55,57,147), rOat3 is one of the
candidates.

5.2, Tetracthviammonium and choline

Villalobos et al. [14§] examined the involvement of
a transporter in the uptake of TEA by isolated and
primary cultured CP through the BBM of the CPE.
The uptake of TEA by the isolated rat CP and primary
cultured CPE was inhibited by tetrapentylammonium
(TePA) (Fig. 8). Furthermore, the uptake of TEA by
primary cultured cells was saturable with a K|, value
of 350 uM and inhibited by NMN, darstine, choline
and cimetidine, but not by PAH (Fig. 9). A preloading
of unlabeled TEA into the cells prior to starting the
uptake experiment stimulated the uptake of TEA by
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Fip. 7. Effect of organic cations and anions on the uptake of cimetidine by the isolated rat CP. [*H]Cimetidine was incubated with various
inhibitors at the concentrations indicated for 3 min at 37 “C. Although cimetidine is & weak base, it has been shown to be a bisubstrate which is
recognized by both organic anion and cation transporters. The uptake by the isolated CP was inhibited by organic anions, such as PAH and
benzylpenicillin, suggesting an involvement of an organic anion transporter, but minimal inhibition by TEA suggests a minor contribution of an
organic cation transporter.  Each bar represents the meanzS.E. of three independent experiments. **P<Q.0[; *P<0.05, by
student’s 7-test. S-HIAA, S-hydroxyindoleacetate; HVA. homovanillic acid. Taken from Suzuki et al. [147].
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primary cultured cclls, suggesting that the transporter
responsible for TEA uptake is characterized by its
bidirectional nature.

Villalobos et al. [149] characterized the uptake
mechanism using primary cultured CPE, in which a
saturable uptake of choline was observed with a K,
valuc of 50 uM. It has been suggested that the
transporter résponsible for cholinec uptake in the
primary cultured rat CPE also accepts NMN and

(a)

150

-t
N
13,

-
L=
o

TEA Uptake
(pmol/mg dry wt)
g d

25

0 15 30 45 60 75 90
Time {min)

(b)

1500

1250

-
[~
L=
o

TEA Uptake
(pmol/mg protein)
]

-4

0 15 30 45 60 75 90

Time (min)
Fig. 8. Effects of TePA on the time-dependent uptake of TEA by
isolated rat choroid plexus and primary cultures of rat choroid
plexus epithelial cells. Isolated CP was incubated with 10 uM
["*CITEA in the presence (@) or absence of tetrapentylammonium
(TePA) (O, 100 uM). Similarly, cultured cells were incubated with
10 uM [MCITEA in the presence or absence of TePA (O, 1 mM).
#P<(.05 vs. uptake in the absence of TePA. Taken from Villalobos
et al, [T48],
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Fig. 9. Effects of organic ions on the 30 min TEA uptake by primary
cultures of rat choraid plexus epithelial cells grown on a solid
support. Cells were incubated with 10 M ["*CJTEA in thc absence
(control) or presence of each inhibitor (1 M), *P<0,05 vs. control
uptake. TePA: tetrapentylemmonium. Token from Villalobos et al,
[148].

TEA as substrates, since the preloading of primary
cultured cells with NMN and TEA stimulated the
uptake of choline 1.5-fold (frans-stimulation). The
organic cation, hemicholinium-3, is a moderate
inhibitor for choline uptake and NMN showed a weak
inhibition. The choline transporter in the CP has been
suggested to be a facilitative transporter, which
depends on the membrane voltage. The uptake of
choline was not affected by extracellular Na™, whereas
increasing the K concentration markedly reduced the
uptake, causing depolarization of the intracellular
potential from —70 to —15 mV. This K™ effect was
further supported by the results that treatment of the
primary cultured CPE with Na*/K* ATPase (ouabain)
or K channel inhibitor (Ba®"), causing perturbation
of K™ gradient pharmacologically, reduced the choline
uptake to a degree similar to that produced by a high
K” buffer.

Sweet et al. [71] carried out further characterization
of choline uptake in the CP. According to the RT-PCR
analysis by Sweet et al., both rOct2 and rOct3 mRNA
are expressed in the CP, while Choudhuri et al. [26)
could observe expression of rOct] and rOct3 mRNA
in the CP. Choline uptake was only observed in rOct2-
expressing oocytes with a K,,, value of 440 uM and
not in rOct3-expressing oocytes. The K, value of
choline for rOct2 was greater than the previously
reported value by Vallalobos et al. (50 pM), but
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comparable with the K,,, value for choline uptake by
the tsolated rat CP, which was determined to be 180
uM in this report [7]1]. 1Oct2 may be a candidate
transporter for choline uptake in the CP. Further
studies are neccssary to identify the localization of
rOct3 in the CP and, if it is expressed at the BBM of
the CP, the contribution to the uptake of hydrophilic
organic cations, such as TEA, should be examined.

6. Discussion and future aspects

The present review summarizes the current status
of the efflux transport mechanisms for organic ions in
the CP. The many published studies have provided
molecular insights into the uptake systems operating
at the BBM of the CP. Due to limitations in method-
ology, the excretion process for organic ions has not
been fully characterized yet and the molecular
characteristics of the transporters involved in this
process remain unknown. ABC transporters, such as
MRPs and/or alternatively membrane voltage-sensi-
tive mechanisms, are current candidates to account for
this process for organic anions, while OCTNs may be
involved in the excretion of hydrophilic organic
cations as proposed in the kidney [82.90]. Gene
knockout of the candidate gene will give us insight
into the basolateral excretion of organic ions.

Evidence from many studies has shown that the
primary cultured CPE retains the efflux transport
systems for organic anions and cations. In addition,
Kitazawa et al. have developed an immortalized cell
line of rat CPE which is prepared from a transgenic
rat harboring the temperature-sensitive SV40Q large T
antigen [24,150,151]). These models will allow us to
investigate the transport mechanisms for small
compounds across the monolayer of the CPE. It is
necessary to compare the expression levels of trans-
porter genes in these models with those in freshly
isolated CP in future studies. RNA interference has
been developed and shown to efficiently suppress
target genes even in mammalian cells [152]. This
new methodology will help us to investigate the
transport mechanisms in the CP from a genetic
viewpoint.

Once a transporter involved in the efflux transport
has been identified, ¢cDNA-transfectants expressing
human transporters serve as a screening system for the

1ol

selection of drugs with suitable pharmacokinetic
propertics. Recently, Sasaki et al. [153] and Cui ¢
al. [154] established double transfectants, which
express uptake and cfflux transporters (OATP-C or
OATP 8, and MRP2, respectively) in the basal and
apical membrane of MDCK 11 cells, respectively. The
basal-to-apical transport of their common substrates is
greater in QATP-C/MRP2 or OATP8/MRP2 than that
in control or single gene transfected cells and this
transport mimics the hepatobiliary transport in
humans [153.154]. The same approach can be used
as an in vitro model of the CPE after the transporters
involved in the uptake and efflux have been identified.
Further studies are necessary to discover whether
human orthologs of the transporters identified in the
rodent CP are expressed in the human tissues.
Furthermore, the interindividual differences in the
transport activities due to up- or down-regulation in
disease states and genetic polymorphisms are impor-
tant topics which also need to be investigated in future
studies.
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ABSTRACT

Breast cancer resistance protein (Berp/Abcg2) is a new efflux
transporter found at the blood-brain barrier (BBB) of humans
and pigs. Since it has been hypothesized that Bcrp may act as
a new type of efflux transporter at the BBB, we investigated the
involvement of Berp in the efflux transport of typical substrates,
dehydroepiandresterone sulfate (DHEAS) and mitoxantrone,
across the mouse BBB. The expression of Berp in mouse brain
capillaries was confirmed by quantitative polymerase chain
reaction, Western blot, and Immunchistochemical analysis. The
role of Berp as an efflux transporter was evaluated using the in
situ brain perfusion method in wild-type and P-glycoprotein
{P-gp} knockout mice with or without treatment with GF120918
(Elacridar), an inhibitor of both Berp and P-gp. The increased
brain uptake of [PHJDHEAS and [PH]mitoxantrone by GF120918

in wild-type and P-gp knockout mice suggested the existence
of a GF120918-sensitive and P-gp-independent efflux trans-
porter for DHEAS and mitoxantrone across the BBB. However,
the brain uptake of PH|DHEAS in Berp knockout mice was
comparable with that in wild-type mice, and the effect of
GF120918 was still observed in Berp knockout mice. In addi-
tion, the brain uptake of [*H]mitoxantrone was also similar in
wild-type and Berp knockout mice. These results suggest that
although BCRP Is expressed at the BBB it plays a minor role in
active efflux transport of DHEAS and mitoxantrone out of brain
and that one or more GF120918-sensitive efflux transporters
distinct from BCRP or P-gp contributes to the brain efflux of
DHEAS and mitoxantrone.

It is well known that the transport of compounds from the
circulating blood into the central nervous system is restricted
by the blood-brain barrier (BBB), which is formed by the
brain capillary endothelial cells that are characterized by
highly developed tight junctions and a paucity of fenestra
and pinocytotic vesicles. In addition to these characteristics,
efflux transporters expressed in the brain capillaries play an
important role in the elimination of endogencus waste prod-
ucts and xenobiotics from the brain and prevent their accu-
mulation in the central nervous system (Kusuhara and Sug-
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iyama, 2001; Sun et al, 2003). Breast cancer resistance
protein (BCRP/ABCG2) is a unique ABC efflux transperter
that accepts sulfoconjugated organic anions as well as hydro-
phobic and amphiphilic compounds as substrates. Berp has
been shown to restrict the intestinal absorption and fetal
penetration of its substrates, such as mitoxantrone and to-
potecan (Allen et al., 1999; Jonker et al., 2002; Kruijtzer e

al., 2002). BCRP has also been found at the luminal side o
human and porcine brain capillary endothelial cells (Cooray
et al., 2002; Eisenblatter and Galla, 2002; Zhang et al., 2003).
Overexpression of human BCRP in immortalized rat brain
endothelial cells resulted in enhanced vectorial transport of
mitoxantrone, fluorescein, and rhodamine-123 in the ablumi-
nal-to-luminal direction (Zhang et al., 2003). Recently, over-
expression of Berp in multidrug-resistance (Mdr)la P-glyco-
protein (P-gp) knockout mice has also been reported
(Cisternino et al.,, 2004). However, it is unclear whether

ABBREVIATIONS: BBB, blood-brain barrier; BCRP, breast cancer resistance protein; Mdr, multidrug-resistance; P-gp, P-glycoprotein; DHEA,
dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; OAT, organic anion transporter(s); OATP, organic anion-transporting polypep-
tide: GF120018, Elacridar; RT-PCR, reverse transcriptase-polymerase chain reaction; HPRT, hypoxanthine phosphoribosyl-transferase; Mrp,
multidrug resistance-associated protein; TBST, Tris-buffered saline/Tween 20; PBS, phosphate-buffered saline; Glut, glucose transporter; BSA,

bovine serum albumin; ANOVA; analysis of variance.
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BCRP. plays a role as an efflux transporter at the luminal
membrane of the brain capillaries in vivo, together with P-gp
{Schinkel et al., 1994, 1996).

-’As " a neurosteroid, dehydroepiandrosterone  sulfate
(DHEAS) and its unconjugated form (DHEA) modulates neu-
yotransmission in an excitatory or inhibitory manner via
jpﬁi'gated channels involving N-methyl-p-aspartate receptors
and y-aminobutyric acid receptors (Schumacher et al., 1997).
In rodents, DHEAS and DHEA are also synthesized locally in
the brain, and these neurosteroids can be interchanged via
sulfotransferase and sulfatase (Baulieu, 1996; Stoffel-Wag-
ner, 2001), and the level of DHEAS is much higher than that
of DHEA in the brain and plasma of rats {Corpechot et al,
1981); At least in rodents, a compartmental barrier is known
to exist for DHEAS between the brain and circulating blood
(Biggio and Purdy, 2001), and in humans, the concentration
of DHEAS in brain is known to be much lower than that in
bicod (Weill-Engerer et al., 2002).

“ DHEAS is a substrate of several transporters, including
N?:—taurocholate cotransporting polypeptides, organic an-
ion-transporting polypeptides (Oatp/OATP), and organic an-
jon. transporters (0at/OAT) (Kullak-Ublick et al., 1998,
Hagenbuch and Meier, 2003; Hasegawa et al., 2003). In par-
ticular, Oatp2 (Slcola4, OATP1ad) has been reported to be a
candidate efflux transporter for DHEAS at the BBB (Asaba
et al., 2000). Interestingly, Asaba et al. also suggested the
existence of primary active efflux transportexr(s) for DHEAS
in a conditionally immortalized cell line established from
mouse brain capillary endothelial cells (TM-BBB4). The net
uptake of DHEAS by TM-BBB4 was increased under ATP-
depleted conditions (Asaba et al., 2000). This efflux transport
system is expected to account for the compartmentalization
of DHEAS between brain and the circulating blood and also
to be one of the mechanisms of inactivation of DHEAS in the
brain to regulate its activity on neurons.

. Qur previous study using membrane vesicles prepared
from BCRP overexpressed P-388 cells clearly showed that
DHEAS is an endogenous substrate of BCRP {Suzuki et al.,
2003). Therefore, we hypothesized that BCRP plays a role in
the luminal excretion of DHEAS at the brain capillaries as an
unidentified primary active efflux transporter(s) predicted by
Asaba et al. (2000). This hypothesis was partially supported
by the results of Jonker et al. They showed that GF120918
(Elacridar), an acridine derivative known to be an inhibitor of
P-gp and BCRP, increased the in vivo oral bioavailability and
fetal penetration of topotecan even in Mdrla/lb P-gp knock-
out mice, suggesting a function for BCRP in the intestinal
barrier and maternal-fetal barrier (Jonker et al.,, 2000). In
the present study, the expression and localization of Berp at
the mouse BBB was investigated by real-time quantitative
RT-PCR, Western blot analysis, and immunohistochemical
staining. The brain uptake of DHEAS was determined using
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the in situ brain perfusion method, and the effect of
GF120918 on brain uptake was examined. The brain uptake
of mitoxantrone, a typical substrate of Berp, was also inves-
tigated in the same manner. Finally, the involvement of
mouse Berp in the efflux of DHEAS and mitoxantrone across
the BBB was evaluated directly using the recently estab-
lished Berp knockout mouse (Jonker et al., 2002).

Materials and Methods

Reagents and Animals. PH)DHEAS was purchased from
PerkinElmer Life and Analytical Sciences (Boston, MA). [**C]Su-
crose and [*H]mitoxantrone were purchased from Moravek Bio-
chemicals (Brea, CA). GF120918 was a gift from GlaxoSmithKline
{Uxbridge, Middlesex, UK). USP grade propylene glycol was pur-
chased from Sigma-Aldrich (St. Louis, MO). All other chemicals used
in the experiments were of analytic grade.

Male Mdrla/lb P-gp knockout mice and age-matched wild-type
control mice were purchased from Taccnic Farms (Germantown,
NY), and male Berp knockout mice and age-matched wild-type mice
of a comparable genetic background were produced as reported
{Jonker et al., 2002). All mice (8 ~ 29 weeks) were maintained under
standard conditions with a reverse dark/light cycle. Food and water
were available ad libitum. :

Isolation of Mouse Brain Capillaries. A brain capillary-en-
riched fraction from the mouse brain (BBB-enriched fraction} was
jsolated according to the repor‘_t'e'd pri_)_t_:gdure with slight modification
{Dallaire et al., 1991; Ball et al,, 2002). Briefly, large brains were
dissected from the heads after perﬁ‘isi_on with 0.9% saline and ho-
mogenized using a Polytron homogenizer in a 0.32 M sucrose solu-
tion and centrifuged at 4°C at 2200g for 10 min. The pellet was
further purified according to the procedures suggested by Datlaire et
al. (1991) and used as a BBB-enriched fraction. All reagents as well
as the tissue should be kept on ice or as close to 4°C as possible
throughout the isolation process to minimize degradation.

The purity of the isolated BBB-enriched fraction was checked by
the enhanced alkaline phosphatase activity in the brain homogenate
and BBB-enriched fraction (Dallaire et al., 1991; Ball et al., 2002).
Isolated brain capillary-enriched fraction from mice contained tan-
gled skeins of microvessel, which was confirmed under light micros-
copy. The alkaline phosphatase activity in the BBB-enriched fraction
was 18.6-fold greater than that in the brain homogenate. This BBB-
enriched fraction was used for further analyses: Western blot and
real-time quantitative PCR.

Quantification of Transporter mRNA in the Brain Homog-
enate and the BBB-Enriched Fraction. To quantify the expres-
sion of Berp at the mouse BBB, real-time quantitative PCR was used.
Total RNA was isolated from the BBB-enriched fraction and brain
homogenate from wild-type FVB mice using an RNeasy mini kit
(QIAGEN, Valencia, CA) and was converted to cDNA using random
primer and avian myeloblastosis virus reverse transcriptase. Real-
time quantitative PCR was performed using a QuantiTect SYBR
Green PCR kit (QIAGEN) and LightCycler system (Roche Diagnos-
tics, Mannheim, Germany) according to the manufacturer’s instruc-
tions. The primers used in the quantification are listed in Tablel. All
primers were designed based on the published full sequence of each

TABLE 1
Nucleotide sequences of the primers used in quantitative PCR
Forward Primer Reverse Primer A?;I;zig:nﬁco.

HPRT GCTTTCCCTGGTTAAGCAGTACA CAAACTTGTCTGGAATTTCAAATC J00423
Berp AMAATGGAGCACCTCAACCTG CCCATCACAACGTCATCTTG NM_011920
Mdrla TCATTGCGATAGCTGGAGTG CAAACTTCTGCTCCCGAGTC NM_011076
Mrpl AGCCTGGAGCTAAGGAGGAG CAGCCATGGAGTAGCCAAAT NM_008576
Mrp4 GGTTGGAATTGTGGGCAGAA TCGTCCGTGTGCTCATTGAA XM _139262
Qatp?2 ATAGCTTCAGGCGCATTTAC TTCTCCATCATTCTGCATCG NM_030687
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protein, Hypoxanthine phosphoribosyl-transferase (HPRT) was used
as & housekeeping gene for the internal standards, and Mdrla was
used as a positive control gene for putative transporter at the brain
microvessel (Ball et al.,, 2002). An external standard curve was
generated by dilution of the target PCR product, which was purified
by agarcse gel electrophoresis. The absolute concentration of exter-
nal standard was measured by PicoGreen dsDNA Quantitation Re-
agent {(Molecular Probes, Eugene, OR). To confirm amplification
specificity, PCR products were subjected to a melting curve analysis
and gel electrophoresis. All gene expressions in each reaction were
normalized by the expression of HPRT in the same sample (Ball et
al., 2002).

Besides Berp, the mRNA of Mdrla, multidrug resistance-associ-
ated protein 1 (Mrpl), Mrp4, and Oatp2 in total brain cortex of
wild-type and Berp knockout mouse were also measured by real-time
quantitative PCR. These transporters have been reported to be ex-
pressed in the mouse brain, and this result was used to show the
relative expression of these transporters in the wild-type mouse
brain and to examine the possibility of up- and/or down-regulation of
these transporters in the brain of the Berp knockout mouse.

Western Blot Analysis. The lysates of the BBB-enriched fraction
and brain homogenate were subjected to electrophoresis on a 7.5%
SDS-polyacrylamide gel. Proteins were transferred to nitrocellulose
membranes (Immobilon; Millipore Corporation, Bedford, MA) which
were blocked with Tris-buffered saline containing 0.05% Tween 20
(TBST) and 5% skim milk for 2 h at room temperature. After wash-
ing with TBST, membranes were incubated with anti-BCRP mono-
clonal antibody (40-fold diluted BXP-53 antibody; Signet Laborato-
ries, Dedham, MA) in TBST overnight at 4°C, and proteins were
detected using the ECL system (Amersham Biosciences Ine., Arling-
ton Heights, IL}.

Immunocytochemical Analysis of the Expression of Berp at
the Mouse BBB. Brain samples from the wild-type mouse and Berp
knockout mouse were fixed in 4% phosphate-buffered formalin, em-
bedded in paraffin, sectioned at 4 um, and stained with hematoxylin
and eosin according to standard procedures. For immunchistochem-
istry, tissues were deparaffinized in xylene and rehydrated. Endog-
enous peroxidase activity was blocked by 3% (v/v) H,0, in methanol
for 10 min. Before staining, paraffin sections were pretreated hy
heat-induced epitope retrieval. Slides were incubated with §% nor-
mal goat serum/PBS for 30 min, and subsequently, sections were
incubated overnight with a 1:400 dilution of BXP-53 at 4°C. Mono-
clenal antibody immunoreactivity was detected by the streptavidin-
biotin immunoperoxidase (sABC) method by using biotinylated goat
anti-rat IgG (Dako, 1:100) as a secondary antibody and diaminoben-
zidine substrate for visualization. After counterstaining with hema-
toxylin, slides were mounted. To investigate the localization of Berp
in brain mierovessels, double immunostaining with antibodies of
P-gp (luminal expression) and glucose transporter 1 (Glutl, luminal
and abluminal coexpression) was also performed using cryostat sec-
tions of wild-type mouse brain (10-pm thick) (Cooray et al., 2002).
Brain sections without fixation were incubated overnight at 4°C with
primary antibody at the following concentrations: Bxp-53 (Berp, 1:40
dilution in 1% BSA/PBS), C219 {P-gp, 1:40 dilution in 1% BSA/PBS;
Signet Laboratories), and anti-Glit1 (Glutl, 1:40 dilution in 1% BSA/
FPBS; Santa Cruz Biochemicals, Santa Cruz, CA). After washing with
PBS, sections were incubated with appropriate Alexa Fluor second-
ary antibodies (Molecular Probes) and Topro3 (DNA dye; Molecular
Probes, Hilversum, Netherlands) for 1 h and mounted in Vectashield
mounting medium (Vector Laboratories, Burlingame, CA) and visu-
alized under a Zeiss confocal fluorescence microscope.

In Situ Brain Perfusion to Determine the Brain Uptalke of
Berp Substrates. The right cerebral hemisphere of the mouse was
perfused using the reported method (Takasato et al.,, 1984, Dagenais
et al., 2000; Murakami et al., 2000} with minor modification. In brief,
the mouse was anesthetized by intraperitoneal injection of 10 mg/kg
xylazine (Sigma-Aldrich) and 100 mg/kg ketamine (Sarkyo Co., To-
kyo, Japan). The right common carotid artery was exposed and then

catheterized with polyethylene tubing (0.2 mm i.d. ¥ 0.5 mm o.d;
Natsume, Tokyo, Japan) filled with heparinized saline. The right
hemisphere of the brain was perfused with Krebs bicarbonate buffer
(pH 7.4 with 85% O, and 5% CO, containing 10 mM D-glucose) at a
flow rate of 1 ml/min (Murakami et al,, 2000}, The thorax of the
mouse was opened, and the cardiac ventricle was severed immedi-
ately before perfusion. [PHIDHEAS or [*H]mitoxantrone was added
to perfusate at a concentration of 1 uCi/ml with carbon-labeled
sucrose as a vascular volume marker. Perfusion was terminated by
decapitation at selected times (1 and 2 min, for *H]DHEAS; 1.5 min
for [*H)mitoxantrone). The right hemisphere of the brain was re-
moved from the skull and weighed. Aliquots of the perfusion fluid
also were collected to determine tracer concentrations in the perfus-
ate. Brain samples were digested in 2 ml 1 N NaOH at 55°C, and the
dual radioactivity associated with the brain was measured in a liquid
scintillation counter (LS 6000SE; Beckman Coulter, Fullerton, CA).

In all perfusion experiments, the brain vascular volume (V.5
microliter per gram) was estimated from the tissue distribution of
[(**Clsucrose, which is known to diffuse very slowly across the BBE,
using the following equation {Dagenais et al., 2000}):

VV!IC = S\IWDIJCIIKI’UIC ( 1)

where X, .. (disintegrations per minute per gram) is the amount of
sucrose measured in the right brain hemisphere and C,erose {disin-
tegrations per minute per milliliter) is the concentration of labeled
sucrose in the perfusion fluid, V.., is the brain vascular distribution
volume of substrate used to check BBB integrity during the experi-
ments (Dagenais et al.,, 2000). '

Brain distributional volume of substrate (V... microliters per
gram)} is calculated as;

. Vbrlin = aninlcluhllruu 2

where X, ;. is the ainount of substrate in the brain (disintegrations
per minute per gram) corrected for vascular contamination (X, =
Vinae X Coubatrate! 308 Cyubatrats 15 the concentration of substrate in
the perfusate {(disintegrations per minute per milliliter) (Dagenais et
al,, 2000).

The uptake clearance of substrate (CL,,, microliters per gram) is
calculated as the slope of the plot of time versus V..

CLup = Xbrnin/T/Clubutnte (3)

where T is the perfusion time (min) {Dagenais et al., 2000).

Effects of Berp and P-gp on the Brain Uptake of [FH]DHEAS
and [*H]Mitoxantrone. As an inhibitor of Berp, GF120918 (10 or
20 mg/kg, dissolved in a 3:2 mixture of propylene glycol/water) was
injected intravenocusly to mice (125 pl/25g mice) at 10 min before the
in situ perfusion of FH]DHEAS and [*H]mitoxantrone (Hyafil et al.,
1993, Cisternino et &l., 2001). Because GF120918 inhibits both P-gp
and Berp (Allen et al., 1999), the role of Berp on the brain uptake of
substrates was investigated by comparing the brain uptake in wild-
type control mice and P-pg knockout mice with or without treatment
with GF120918, respectively, to exclude any confounding effects of
P-gp inhibition (Jonker et al., 2000). The role of Berp on BBB trans-
port was also examined directly by comparing the brain uptake of
[*H)DHEAS and PH)mitoxantrone in Berp knockout mice and wild-
type control mice (Jonker et al., 2002). Control groups received only
vehicle solution in all experiments.

Statistical Analysis, Data are presented as the mean * standard
error for 3 to 10 animals unless specified otherwise. Student's two-
tailed unpaired ¢ test and one-way ANOVA followed by the Newman-
Keuls multiple comparison test were used to identify significant
differences between groups when appropriate. Statistical signifi-
cance was set at p < 0.05,

Results

The Expression of Berp at the Mouse BBB. The ex-
pression of Berp at the BBB was suggested by comparing

B gty = s e
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Fig. 1. Expression of Berp at the BBB. A, ‘Western blot
of brain homogenate and the BBB-enriched fraction
with anti-mouse BCRP monoclonal antibody (BXP-53).
Approximately 70 kDa of Berp band in BBB-enriched
fraction was clearly detected (lanes 4—6), whereas only

L

mRNA expression. between brain homogenate and capillary-
enriched fraction by real-time quantitative PCR. The concen-
tration of Berp mRNA, which was normalized by that of
HPRT, was 5.6-fold higher in the BEBEB-enriched fraction than
that in brain homogenate (5.6 = 1.3, mean = S.D.), whereas
that of Mdrla mRNA was enriched 12-fold in the BBB-en-
riched fraction (12 = 2, mean * S.I0.).

The protein band (70 kDa) of Berp in the BBB-enriched
fraction was clearly detected by Western blot analysis using
monoclonal antibody BXP-53, whereas only weak staining
was observed in the brain homogenate, suggesting that the
primary localization of Berp is at the BBB (Fig. 1A). Further-
more, immunohistochemical analysis of brain sections of
wild-type and Berp knockout mice showed Berp expression
only in the brain capillaries of the wild-type mouse (Fig. 1B).
Although the absolute staining level does not appear to be
very high, Berp-related staining of blood capillaries through-
out the mouse brain was clearly observed, whereas it was
completely absent in Berp knockout mouse brain (Fig. 1B).
Double immunostaining of Berp with P-gp and Glutl clearly
showed that Berp is expressed at the luminal side of brain
microvessels (Fig. 1C). The Berp signal was completely su-
perimposed on that of P-gp expressed at the luminal side of
the brain microvessels. However, the Berp signal only par-
tially overlapped with that of Glutl expressed at the ablumi-
nal and luminal side of the brain microvessel.

. The Effect of Pretreatment with GF120918 on the
Brain Uptake of [PHIDHEAS and [*HIMitoxantrone.
The time-dependent brain uptake of FHIDHEAS in mice is
shown in Fig. 2. The brain uptake increased linearly, and the
uptake clearances could be calcnlated from the slope of the
plot of V,,an versus time (Dagenais et al., 2000). The brain
uptake clearance of [FHIDHEAS was 18.0 pl/min/g of brain
(Fig. 2). Pretreatment of wild-type mice with GF120918 (10
mg/kg) increased the brain uptake clearance of PHIDHEAS

faint bands were observed in brain (lanes 1-3). Lane 1,

4£(25 pg of protein); lane 2, 5 (50 pg of protein); lane 3,

6 (100 pug of protein). B, immunohistochemical detec-

tion of Berp in brain sections from wild-type (left) and

Berp knockout mice (right). A consistent staining of
blood capillaries for Berp (brown) throughout the

mouse brain was cbserved, suggesting moderate Berp

expression in wild-type brain capillaries, whereas it

was completely absent in the Berp knockout mouse

brain. C, double immunostaining of Berp with P-gp

and Glutl. P-gp was used as a marker of luminal

expression and Glutl was used as a marker of luminal

and abluminal coexpression: green, Berp; red, P-gp
(eft) or Glutl (right); blue color indicates nuclei
stained with Topro3. The Berp and P-gp signals were
completely superimposed, whereas the Berp signal
only partially overlapped with Glutl signals, suggest-
ing luminal expression of Berp in brain capillaries.’
Scale bar = 10 pm.

'Berp
Glutg

about 2.1-fold (approximatély estimated, 38.6 wl/min/g of
brain). Increasing the dose of GF120918 (20 mg/kg) showed a
further increase in the brain uptake of ["PHIDHEAS by 3.0-
fold (approximately estimated, 54.0 ul/min/g of brain) (Fig.
9). The V,,un of PHIDHEAS at 2 min was increased 2.0- and
2.8-fold by pretreatment with GF120918 10 and 20 mg'kg,
respectively (Fig. 2; *, p < 0.05).

The brain uptake of PHIDHEAS (Fig. 3A) in Mdrla/lb
P-gp knockout mice was comparable with that in wild-type
mice. However, GF120918 (10 mg/kg) increased the hrain
uptake of FH]DHEAS even in the Mdrla/lb P-gp knockout
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Fig. 2. Time-dependent and GF120918-sensitive brain uptake of FHID-
HEAS. Brain uptake is expressed as brain distribution volume, Vi, 20d
uptake clearances could be calculated by the slope of plot of Vi, versus
time profile. ®, control, CL,, = 18.0 pl/min/g of brain; O, +GF120918, 10
mg/kg, CL,, = 38.6 ul/min/g of brain; ¥, +GF120918, 20 mg/ke, CL,, =
54.0 pl/min/g of brain (n = 3 ~ 10 per point; #, statistically different with
control, p < 0.05).
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mice (Fig. 3A). The V,_,;, of CHIDHEAS at 2 min was in-
creased 2.6-fold by pretreatment with GF120918 (10 mg/kg)
in Mdrla/1b P-gp knockout mice compared with that in the
nontreated group.

The brain uptake of [*Hlmitoxantrone in wild-type mice
and Mdr1a/lb P-gp knockout mice, with or without pretreat-
ment with GF120918, is presented in Fig. 3B. The brain
uptake of [PHlmitoxantrone was increased in Mdrla/lb P-gp
knockout mice {1.8-fold) and wild-type mice following pre-
treatment with GF120918 (10 mg/kg, 2.4-fold). GF120918 (10
mg/kg) also increased the brain uptake of [*Hhmitoxantrone
in Mdrla/lb P-gp knockout mice (1.6-fold). The inhibitory
effect of GF120918 was found to be more potent in Mdrla/lb
P-gp knockout mice for PH)DHEAS (Fig. 34, wild-type +
GF120918, 10 mg versus Mdrla/lb P-gp knockout +
GF120918, 10 mg; p < 0.05 Newman-Keuls multiple compar-
ison test), although the reason was unclear. In the case of
[*H]mitoxantrone, no significant difference was noted be-
tween the wild-type + GF120918 10-mg group and the
Mdrila/1b P-gp knockout + GF120918 10-mg group.

Effect of Berp Gene Knockout on the Brain Uptake
of FH]DHEAS and [*H]Mitoxantrone. The impact of Berp
on the transport of PH]DHEAS and [*H)mitoxantrone across
the BBB was evaluated directly using the Berp gene knock-
out mouse (Fig. 4, A and B). The brain uptake of [PHIDHEAS
in Berp knockout mice was not different from that in wild-
type mice (Fig. 4A). Pretreatment with GF120918 (10 mg/kg)
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increased the brain uptake of [PHJDHEAS even in Berp
knockout mice. The Vy, ., of PHIDHEAS at 2 min was in-
creased about 1.8- and 2.2-fold by GF120918 (10 mg/kg) in
wild-type and Berp knockout mice, respectively.

In addition, the brain uptake of PHlmitoxantrone in Berp
knockout mice was no different from that in wild-type mice
(Fig. 4B). The V,,.n of *Hlmitoxantrone at 1.5 min was
144 = 3 pl/g brain (n = 3) in the wild-type mouse and 161 *
18 pVg brain (n = 3) in the Berp knockout mouse, respec-
tively, and there was no statistical difference between the
two groups (unpaired Student'’s ¢ test, p > 0.05).

Assessment of BBB Integrity. In all experiments, the
physical integrity of the BBB was assessed by [**Clsucrose,
which serves as a brain vascular space marker. The brain
vascular space under each set of experiment conditions was
not changed by knockout of the Mdrla/lb gene and pretreat-
ment with GF120918 (Table 2). A similar brain vascular
space was also observed between Berp knockout mice and
their wild-type controls suggesting that the BBB integrity
was not adversely affected by these experiments.

Relative Expression of Transporters in Mouse Brain.

To estimate the relative expression of these transporters in

the wild-type mouse brain and to examine the possibility of
up- and/or down-regulation of these transporters in the brain
of the Berp knockout mouse, mRNA quantification of known
transporters such as Mdrla, Mrpl, Mrpd, and Oatp2 was
carried out using ¢cDNA prepared from mouse brain homog-
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R
enate (Table 3). Each value represents the mRNA level in the
1 brain homogenate from one single mouse normalized by the
mRNA level of HPRT in the same sample. Except for Oatp2,
“MmRNA levels of other transporters in wild-type mouse brain
were comparable (p > 0.05, one-way ANOVA followed by the
Newman-Keuls multiple comparison test). The mRNA levels
-of Oatp2 were statistically different with those of other trans-
porters (p < 0.05, one-way AN OVA followed by the Newman-

TABLE 3
The expression of Berp, Mdrla, Mrp

All mRNA levels were measured by real-time guantitative PCR and
wild-type and Berp knockout mice, respectively (n = 8 ~ 4, mean
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Keuls multiple comparison test). The mRNA levels of all
transporters in the brain of the Berp knockout mouse were
similar to those in the brain of the wild-type mouse, except
for the case of Berp. It is interesting that Mrp4 shows abun-
dant expression in the brain homogenate, as much as Mdrla.
Furthermore, the concentration of Mrp4 mRNA was 4.7-fold
greater in the BBB-enriched fraction than in the brain ho-
mogenate.

1, Mrp4, and Oatp?2 in brain homogenate
normalized by the concentration of HPRT. These were results from independent cDNA samples from three
+ §.1D., ratio to HRPT). BCRF KO and ND represent Berp knockout mice and not detected, respectively.
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Berp Mdria Mrpl Mrp4 Qatp2
: Wild-type 18.1 = 2.3 269+ 5.9 174 =11 277 %22 408176
H Berp KO ND 284 =33 19.1=76 269 = 1.9 442+ 172
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Discussion

In the present study, we examined the involvement of Berp
in the efflux transport of DHEAS using the in situ brain
perfusion method to examine the hypothesis that BCRP acts
as a functional efflux transporter at the BBB for sulfoconju-
gated organic anions. In addition, the role of BCRP at the
BBB was also investigated using another typical BCRP sub-
strate, mitoxantrone.

Quantitative real-time PCR showed that the concentration
of Berp mRNA in the brain was comparable with that of ABC
transporters which are expressed in the mouse brain, such as
Mdrla, Mrpl, and Mrp4 (Table 3) and that Berp mRNA was
enriched in the BBB-enriched fraction similar to Mdrla P-gp
mRNA. Western blot analysis revealed that Berp was clearly
detectable in the BBB-enriched fraction, and the band den-
sity was greater in the BBB-enriched fraction than in the
brain homogenate (Fig. 1A). Furthermore, immunohisto-
chemical analysis revealed that Berp was localized at the
luminal side of mouse brain capillaries (Fig. 1, B and C). All
these results indicate that Berp is expressed and localized at
the BBBR, suggesting the possibility the Berp may play a role
in the efflux of its substrates at the BBB.

Involvement of Berp in the transport of DHEAS and mi-
toxantrone at the BBB was investigated by examining the
effect of GF120918 on their brain uptake determined using
the in situ brain perfusion technique in the mouse. Because
GF'120918 inhibits both P-gp and Berp (Allen et al., 1999},
the P-pg knockout mouse was used in conjunction with the
wild-type mouse to exclude any confounding effects of P-gp
inhibition (Jonker et al., 2000). Time-dependent brain uptake
of [°H]DHEAS was observed up to 2 min, and treatment with
GF120918 increased the brain uptake of [PH]DHEAS in a
dose-dependent manner (Fig. 2), whereas it did not affect the
distribution volume of sucrose (Table 2). This suggests that
the effect of GF120918 is not due to a nonspecific effect, such
as the destruction of the BBB by opening the tight junctions,
but to inhibition of efflux transport at the BBB. Since
GF120918 is an inhibitor of both P-gp and Berp (Allen et al.,
1999), the brain uptake of [PHIDHEAS was also determined
in the Mdrla/lb P-gp knockout mouse to exclude the possi-
bility that the effect of GF120918 is due to inhibition of P-gp
at the BBB (Fig. 34). The brain uptake of [FHIDHEAS in
Mdrla/ib P-gp knockout mice was comparable with that
in wild-type mice, and the increased brain uptake of
PHIDHEAS by GF120918 was still observed in Mdrla/lb
P-gp knockout mice (Fig. 3A). In the case of another typical
substrate of Berp, mitoxantrone, GF120918 treatment in-
creased the brain uptake of {*Hlmitoxantrone similar to that
of PHJDHEAS (Fig. 3B). Since the brain uptake of [*H]mi-
toxantrone was increased in Mdrla/1b P-gp knockout mice
compared with that in wild-type mice (Fig. 3B), the effect of
GF120918 is partly accounted for by inhibition of P-gp. How-
ever, GF120918 was still effective in wild-type and Mdrla/1b
P-gp knockout mice (Fig. 3B). Therefore, in addition to P-gp,
it is likely that a GF120918-sensitive transporter other than
P-gp is involved in the efflux of mitoxantrone at the BBB.
Recently, Cisternino et al. (2004) also reported that the brain
uptake of mitoxantrone was linear up to 2 min using the in
situ perfusion method, and its uptake was increased by treat-
ment of GF120918. This is consistent with our results; al-
though, there is a discrepancy in the effect of knockout of
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P-gp on the brain uptake of [*H]mitoxantrone for some, as yet
unknown, reason {Cisternino et al., 2004). ‘
To show that the effect of GF120918 is due to inhibition of

Berp, the brain uptake of PH]DHEAS and [*H]mitoxantrone ;

was determined in Berp knockout mice (Fig. 4, A and B} ¢

et

Surprisingly, the brain uptake of PHIDHEAS and [*H)mitox- !
antrone was found to be comparable and independent of the |
Berp expression (Fig. 4, A and B). Furthermore, treatmenti
with GF120918 still increased the brain uptake of}
PHIDHEAS even in Berp knockout mice (Fig. 4A). To exam- :
ine the possibility of adaptive up- and/or down-regulation of *‘
transporters in the brain of Berp knockout mice, quantitative :
PCR was carried out. The mRNA levels of Mdrla, Mrpl, "
Mrp4, and Oatp2 were similar to those in the brain of wild- -
type mice (Table 3). This suggests that distinct adaptive !
alteration of the expression of transporters may not have
oceurred in the brain of Berp knockout mice as far as these
transporters are concerned. Taking all these results into
consideration, especially the in situ analysis using Berp
knockout mice, the contribution of Berp to the efflux trans-
port of PHJDHEAS and [*H}mitoxantrone at the mouse BBB
was considered to be miner, if it exists at all, and thus it is
suggested that other GF120918-sensitive transporter(s), dis-
tinet from Berp and P-gp, may account for the efflux of
[PH]DHEAS and [*H]mitoxantrone at the BBB, Whether one
and the same GF120918-sensitive efflux transporter affects
[PHIDHEAS and [*H]mitoxantrone remains to be demon-
strated. :

Collectively, the present study could not demonstrate any
involvement of Berp in the efflux transport of the Berp sub-
strates, DHEAS and mitoxantrone, at the BBB, although
Berp is abundantly expressed at the BBB and is likely to play
an important role as a detoxification system in the central
nervous system together with P-gp. This result is also sup-
ported by the recent findings of van Herwaarden et al. (2003).
They reported that the hepatobiliary and intestinal elimina-
tion of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
was significantly reduced in Berp knockout mice; however,
there was no significant change in the brain penetration
between wild-type and Berp knockout mice. The functional
role of Berp at the BBB remains virtually unknown. Mogi et
al. (2003) reported that Akt signaling modulates the side
population cell phenotype by regulating the translocation of
Berp between the plasma membrane and intracellular com-
partment. We cannot exclude the possibility that the function
of Berp at the BBB is also modulated by an unknown mech-
anism and works only under certain conditions. Further in-
vestigation is necessary to elucidate the role of Berp in the
detoxification system in the brain. Cisternino et al. (2004)
also demonstrated that the brain uptake of prazosin and
mitoxantrone was inereased by treatment with GF120918 in
Mdrla single knockout mice. It would be interesting to dis-
cover whether the effect of GF120918 on the brain uptake of
prazosin is also ascribed to the inhibition of Berp-mediated
efflux.

The present study shows the presence of a GF120918-
sensitive efflux transporter for PH)DHEAS and [*H)mitox-
antrone at the BBB. The uptake transporter, Oatp2, is ex-
pressed in the luminal and abluminal membrane of the brain
capillaries. According to the in situ study by Dagenais et al.
{2001}, the brain uptake of [D-penicillamine(2,5))-enkepha-
line, a peptide substrate of Oatp2 in Mdrla P-gp knockout
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. mice was saturable and inhibited by Oatp2 substrates, sug-
- gesting the involvement of Oatp2. Therefore, it is possible
i that Oatp2 accounts for the luminal uptake of DHEAS at the
¢/ Juminal membrane of brain capillaries as well as efflux from
™ {he brain at the abluiinal membrane. Although the physio-
% logical meaning of luminal Oatp2 remains unknown, this
% uptake is also considered to be present in humans since the
t. human isoform of Oatp2, OATP-A, has been shown to exhibit
{¢ similar membrane localization in the brain capillaries (Gao
et al., 1999, 2000). Thus, it may be important to limit Oatp2-
' and OATP-A-mediated DHEAS uptake by the GF120918-
5 sensitive efflux transporter at the BBB in addition to facili-
'y tate the elimination of locally synthesized DHEAS from the
¥ brain to regulate the effect of DHEAS on neuronal function.
i In addition, the efflux transporter may account for the
5 DHEAS compartmentalization between the brain and bleod.
:  Currently no candidate transporter other than P-gp and
Berp has been reported to interact with GF120918 (Hyafil et
al., 1993; Allen et al., 1999; Evers et al., 2000). Interestingly,
quantification of mRNA revealed the abundant expression of
MRP4 (ABCC4), an ABC transporter classified as a member
of the Mrp/MRP (ABCC) family, in the brain compared with
other ABC transporters such as P-gp and Mrpl. Further-
more, Mrp4 mRNA was increased in the BBEB-enriched frac-
tion like Mdrla and Berp. RT-PCR analyses have demon-
strated its expression in primary cultured bovine brain
capillary endothelial ¢ells and the brain capillary-enriched
fraction (Zhang et al., 2000). MRP4 shows broad substrate
specificity for a number of compounds including DHEAS as
well as cyclic nucleotides, methotrexate, estradiol-178-gluc-
uronide, and prostaglandins (van Aubel et al., 2002; Zelcer et
al., 2003). In the revision process of this article, Leggas et al.
{2004) reported that Mrp4 is localized at the luminal mem-
brane of the brain capillaries and decreased the efflux rate of
topotecan from the brain in Mrp4 knockout mice compared
with wild-type mice. These recent results may support our
i speculation, and further investigation is necessary to show
§ that Mrp4 is also involved in the efflux transport of organie
anions at the BBE. .

In conclusion, we have demonstrated that a GF120918-sen-
sitive transporter(s) is involved in the efflux of PHIDHEAS and
[H]mitoxantrone at the BBB, facilitating their elimination
from the brain and limiting their uptake by the brain. Al-
though BCRP is abundantly expressed in blood capillaries
forming the BBB, we did not find any evidence indicating
that Berp is a functionally active efflux transporter at the
BEB.
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