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ABSTRACT

system, which commonly results from nerve
kxown as tactile allodynia. The mechanisms by
have remained largely unknown. We report that

sitivity to innoenous stimuli, a phenomenon
which nerve injury ereates tactile allodynia

protein kinases; dorsal horn: tactile allodynia; neu-

Neuropathic pain is an expression of pathological operation of the nervous

injury and is characterized by pain hypersen-

the development of tactile allodynia following nerve injury requires activation of 138 mito-

gen-activated protein kinase (p3SMAPK),
glia. We found that immunofluorescence

& member of the MAPK family, in spinal miero-
and protein levels of the dually phosphorylated

active form of p38MAPK (phospho-p38MAPK) were increased in the dorsal horn ipsilateral

to spinal nerve injury. Interestingly,
dorsal horn was found exclusively in

microglia,

the phospho-p3SMAPK immunofluorescence in the

but not in neurons or astrocytes. The level

of phospho-p288MAPK immunoflucrescence in individual microglial eells was much higher

in the hyperactive rhenotype in the ipsilateral

dorsal horn than the resting one in the

contralateral side. Intrathecal administration of the p3SMAPK inhibitor, 4 4-fluorophenyl)-
2-{4-met.hylstﬂfonylpheny])—5-(4-p3n‘idyl)—1H-imidazole (SB203580), suppresses develop-
ment of the nerve injury-induced tactile allodynia. Taken together, our results demonstrate
that nerve injury-induced pain hypersensitivity depends on activation of the P3SMAPK

signaling pathway in hyperactive microglia in

injury. e 2008 Wiley-Liss, Ine

the dorsal horn following peripheral nerve

INTRODUCTION

Nerve injury arising from disease or physical trauma
produces long-lasting abnormal hypersensitivity to innoc-
uous stimuli, a phenomenon known as tastile allodynia
(Woolf and Mannion, 1899; Scholz and Woolf, 2002). Tac-
tile allodynia is a hallmark, and the most troublesome, of
neuropathie pain syndrome in humans. It is nearly al-
ways resistant to known treatments such as nonsteroidal
antiinflammatory agents (NSAIDs) or even narcoties
(Woolf and Mannion, 1999; Scholz and Woolf, 2002). The
mechanisms by which nerve injury develops tactile allo-
dynia have remained largely unknown. It is thus essen.
tial to identify the molecular changes that lead to tactile

© 2003 Wiley-Liss, Inc

allodynia in an effort to both understand its mechanisms
and develop new therapies.
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Several lines of evidence have proposed that indue-
tion of tactile allodynia is attributed to central hyper-
active states resulting from multiple plastic alterations
in dorsal horn neurons as well as glia following nerve
injury (Woolf and Mannion, 1999; Woolf and Salter,
2000; Watkins et al,, 2001; Scholz and Woolf, 2002).
Recent models of nerve injury-induced plasticity in the
dorsal horn postulate that induction of the spinal plas-
ticity requires activation of intracellular signaling
events including protein kinases for transcriptional
and posttranscriptional modifications of various pro-
teins such as cell surface receptors (Woolf and Salter,
2000). It is thus expected that protein kinases, includ-
ing protein kinase Cy (Malmberg et al, 1997), in the
dorsal horn must regulate nerve injury-induced tactile
allodynia; however, their remains poorly understood.

We report that development of tactile allodynia fol-
lowing nerve injury depends on p38 mitogen-activated
protein kinase (p38MAPK), one of four subgroups of
the MAPK family (Ono and Han, 2000); activation of
p38MAPK is found in hyperactive microglia, but not in
neurons or astrocytes in the dorsal horn after nerve
injury. Thus, the present study suggests that
p38MAPK in spinal microglia is an essential intracel-
lular protein kinase that regulates pain hypersensitiv-
ity following peripheral nerve injury. Preliminary re-
sults of this study have been reported in abstract form
{Tsuda et al.,, 2002a,b).

MATERIALS AND METHODS
Animals

Male Wistar rats were used in this study: rats weigh-
ing 200-230 g for the biochemical and immunohisto-
chemical experiments, and rats weighing 270~220 g for
the behavioral experiments testing the effect of intra-
thecal treatment with a p38MAPK inhibitor. We have
confirmed that p3SMAPK phosphorylation in the dor-
sal horn following nerve injury is slso observed in both
weight ranges of rats (data not illustrated). Rats were
housed at a temperature of 22 * 1°C with a 12-h
light/dark cyele (light on 8:30 to 20:30) and were fed
food and water ad libiturn. All the animals used in the
present study have been treated in accordance with the
guidelines of National Institute of Health Sciences.

Neuropathic Pain Model

We used the spinal nerve injury model (Kim and
Chung, 1992) with some modifications. A unilateral L5
spinal nerve of rats was tightly ligated and cut just
distal to the ligature under isoflurane (2%) anesthesia.
To assess the tactile allodynia, the calibrated von Frey
filaments (0.4-15.1 g; Stoelting, Woed Dale, IL) were
applied to the plantar surface of the hindpaw frem
below the mesh floor. The 50% paw withdrawal thresh-
old was determined by the up-down method (Dixon,
1880; Chaplan et al., 1994).

TSUDA ET Al

Immunochistochemistry

The rats were deeply anesthetized by pentobarbital
(100 mg/kg, i.p.) and perfused transcardially with 150
ml of phosphate-buffered saline (PBS; composition in
mM: NaCl 157, KC1 2.7, KH,PO, 1.5, NaH,P0, 8.1; pH
7.4), followed by 300 ml of ice-cold 4% paraformalde-
hyde. The L5 segment of the lumbar spinal cord was
removed, postfixed in the same fixative, and placed in
30% sucrose solution for 24 h at 4°C. Transverse L5
spinal cord sections (30 pm) were incubated in a block-
ing solution (3% normal goat serum [NG8]} and then
incubated for 48 h at 4°C in the primary antibody,
anti-phospho-p38MAPK (1:200; Cell Signaling, Bev-
erly, MA), Markers of microglia, OX42 (anti-OX42,
1:100, Chemicon, Temecula, CA), astrocytes, glial
fibrillary acidic protein (GFAP; anti-GFAP, 1:500; Boe-
hringer-Mannheim, Indianepelis, IN); and neurons,
NeuN (anti-NeuN, 1:200; Chemicon) were used to iden-
tify the type of phospho-p38MAPK-positive cells. Fol-
lowing incubation, tissue sections were washed and
incubated for 3 h at room temperature in the secondary
antibody solution (anti-rabbit IgG-conjugated Alexa
Fluor™ 488 or anti-mouse IgG-conjugated Alexa Fluor
548, 1:1,000; Molecular Probes, Eugene, OR). The spi-
nal cord sections were analyzed using a MicroRadiance
Confocal Imaging System {Bio-Rad, Hercules, CA) and
an Olympus IX70 mieroscope (Olympus Optical, Tokyo,
Japan) equipped for epifluorescence. For quantitative
assessment of the immunofluorescence staining of
cells, we randomly selected dorsal horn fields displayed
at high magnification. Microglia, as identified by OX42
immunoflucrescence, were outlined; the immunofluo-
rescence intensity of the phospho-p38MAPK was deter-
mined as the average pixel intensity within each cell.
Background fluorescence intensity was determined
and was subtracted from the value obtained for micro-
glia.

Western Blotting

The rats were deeply anesthetized with pentobarbi-
tal {100 mg/kg, i.p.). The lumbar and sacral spinal cord
was quickly removed and placed on a dish with ice-cold
PBS. We identified the cord from 14 to L6 by the entry
area of the dorsal roots and the shape of the cord under
a microscope and cut at the boundary between L3 and
L4 and between L6 and S1. The spinal cord segments
L4-L#6 ipsilateral to the nerve injury were homogenized
in jee-cold PBS containing a mixture of phosphatase
inhibiters (Sigma-RBI, St. Louis, MO} and protease
inhibitors (Calbiochem, San Diego, CA). The homoge-
nates were incubated with DNase and were sonicated.
The resulting homogenate (20 pg) was subjected to
12.5% sodium dodecy] sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE), and the proteins were trans-
ferred electrophoretically to nitrocellulose membranes.
After blocking, the membranes were incubated with
anti-phospho-p38MAPK antibody (1:1,000; Cell Signal-
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ing) or anti-p38MAPK antibody (1:1,000; Cell Signal-
ing) and then were ineubated with horseradish perox-
idase (HRP)-conjugated secondary antibody. The blots
were detected with a chemiluminescence method
(LumiGLO; Cell Signaling) and exposed to autora-
diography films (Hyperfilm-ECL; Amersham, Arling-
ten Heights, IL). :

Spinal Administration of p38MAPK Inhibitor

Under iscflurane (2%) anesthesia, rats were imn-
planted with catheters for intrathecal injection accord-
ing to the method described previously (Yaksh et al.,
1880). A polyethylene tube (PE-10; 7.5 em) was in-
serted through the atlanto-occipital membrane and to
the lumbar enlergement (close to L4-L5 segiments) and
externalized through the skin. Rats were injected in-
trathecally with 4-(4-fluorophenyl)-2-(4-methylsulfo-
nylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580; 20
nmol/10 pl) (Sigma-RBI) or vehicle [2% dimethylsulf-
oxide (DMSOY10 pl] using a 25-u! Hamilton syringe
with 28-gauge needle. Intratheeal injection of
SB203580 or vehicle was started immediately after
nerve injury (day 0) and given once a day for 14 days.
SB203580 was dissolved in 100% DMSO and diluted by
PBS {final concentration of DMSC: 2%). Behavioral
testing was done 12-14 h after the injection of
SB203580.

Statistical Analysis

Statistical analyses of the results were evaluated
using the Student’s ¢-test, the Student’s paired #-test or
the Mann-Whitney U-test.

RESULTS
p38MAPK Is Activated Exclusively in
Hyperactive Microglia in the Doxrsal Horn
Following Peripheral Nerve Injury

Animals with L5 spinal nerve injury displayed tac-
tile allodynia; the withdrawal threshold of the hind-
paw, ipsilateral to nerve injury, to mechanical stimu-
lation decreased progressively from 15.1 = 0.1 g before
the injury (day 0) to 8.0 £ 0.5 g at day 7 and t0.2.1 =+
0.4 g(n =7) at day 14 (P < 0.001, significantly different
frem the threshold on day 0) (Fig. 1A). In contrast, paw
withdrawal threshold of the contralateral hindpaw was
not changed significantly by nerve injury (Fig. 1A). To
examine whether p38MAPK is activated in the dorsal
horn of the spinal cord in rats that have developed
tactile allodynia, we carried out immunofluorescence
analysis with an antibody targeting the dually phos-
phorylated p38MAPK (phospho-p38MAPK), because
p38MAPK members have a Thr-Gly-Tyr dual phos-
phorylation motif, requiring phosphorylation for its ac-
tivation (Ono and Han, 2000}, In L5 dorsal spinal cord
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Fig. 1. p38 mingeo-nctivated prolein kinase {p3BMAPK) is dra-
natieally netivated in fhe spinal dersa) bnrn lollowing L3 spinn nerve
infary. A: The withdrawal threshold of tactile stimulabion Lo the
ipsilaternl and contralateral hindpaw (PWT) was examined hefure
nerve injury, 3, 7, and 14 days after nerve injury, Kach data point
represents the mean *SEM of paw withdrawal thresheld (in grams)
(**P < 0.01, ***P < 0.001 by Student’s paired i-test, compared with
the threshold on duy 0, n = 7). B,C: Immunirenclivity of phusphn.
PIBMAPK (green) dutecled by an antibody for dual-phospharylated
P38MAPK in L5 dorsal spinal cord 14 duys after nerve injury (B) and
In ihat of nuive rat (C) was visuulized by immuncflusrescence anuly-
&5 veing confocal mierescopy. Highly magnified pictore of the area
(arrowhnad)in B, shown in set of B. D: Tota) protein from tha spina)
cord ipsilalernl Lo the nerve injury on daye O (naive), 7, and 14 wae
subjectod fo Westoru blot, anli{ysis. Tha proteine of phospho-
pIBMAPK and iota]l pIBMAPK were detweted by on antibedy for
dual-phospherylaled and nonphosphorylated PIEMAPK, respectively.
Seale bars « 200 pm in B,C,

sections, at 14 days after nerve injury, we observed
strong and punctate phospho-p38MAPK iminunofiuo-
rescence on the ipsilateral side (Fig. 1B). The punctate
labeling observed at Jow magnification was due to im-
munoflucrescence of individual small eells, as shown
under highly magnification (Fig. 1B, inset), In contrast,
phospho-p38MAPK immunofluorescence was weaker
end much less extensive in the dorsal horn contralat-
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Fip. 2. p38& milogen-activaled protein kinase (p88MAPK) is neti-
vated in individual hyperactive microglia, but not in neurons or as.
trocytes in the dorsal horn following L5 spinal nerve injiry. Immu-
nostaining was carriod ont in L5 dorsal spinal eord sections at 14 days

afler nerve injury, using eonfuca) micrescopy. A=C: Doulle jmmuna-”

usruscent labuls of phosphin-p38MAPK (green) with NouN (4, rod), a
murker of neurons, plial ibrillary acidic proleln (GFAP) (B, red), a
murker of nstrocyles, und OX42 (T, red), u marker of microglia, were
anulyzed, D: The chunge of the level of OX42 imwunofluvrescence
(red) follewing nerve injury was examined v transverse section of Lh
dotsal horn at 14 days after nerve injury, E: The different activation
of pASMAPIK in ipsiloternl (Tpsi, top thres panels) and contrnlatars]
(Contra, buttom three panels) microglin was examined, 0X42, phos-

eral to the nerve injury (Fig. 1B) or in that of naive rats
(Fig. 1C). We further examined the level of phosphor-
ylated p38MAPK protein in homogenates from the spi-
nal cords of naive and nerve-injured rats by Western
blot analysis; we found that the band intensity of phos-
pho-p38MAPK protein in the ipsilateral spinal cord
increased dramatically 7 and 14 days after nerve injury
compared with that in naive rat (day 0) (Fig. 1D). The
bilateral difference in phospho-p3SMAPXK levels paral-
lels the emergence of the tactile allodynia (Fig. 1A).
These results indicate that the pS8MAPK is activated
in the dorsal horn ipsilateral to the nerve injury, which
may correlate with the nerve injury-induced tactile
allodynia. ‘

TSUDA ET AL,

T Centalsterat

pho-p3SMAPYK (p-p38) and merged inmuncfluorescences are shown
in red, grevn, und yullow, respectively. F: Imm unofluorescence inten-
sity of phospho-p3BMAPK in individual microglia was deteymined ae
the average pixel density in the ipsilatora) (1psi; n = 83 OX42-positive
cells) and eontealatoral (Contra; n w 74 OX42-posilive clla) dorsal
Liorn. Ench duta puint ropresents the meun £SEM of immunoflunres-
cence (II) intensity of phospho-p38MAPK (p-p38) per cell {***P «
0.001 by e Mann-Whitney U-test, mm?nted with the value of con-
tralateral dorsal horn), G: Histogram of the perceniage of doxsal horn
microglia displaying ranges of 1F intensity values of phosphu-
PISMAPK in individual microglia. Ipsi, ipsilateral; Contra, contralat-
eral. Seale bars = 25 pm in C; 200 pm io Dy 10 pm in B,

Te identify the type of cell in which p3SMAPK was
phosphorylated after nerve injury, we carried out dou-
ble immunolabeling for phospho-p38MAPK and for cell
type-specific markers: for neurons, NeuN; for astro-
cytes, GFAP; or for microglia, OX42 (Honore et al,
2000). We found that cells showing phospho-p38MAPK
immunoflucrescence were not double-labeled for NeuN
(0%, calculated in 110 cells, representative shown in
Fig. 2A) or GFAP (0%, calculated in 132 cells, repre-
sentative shown in Fig. 2B). Rather, almost all phos-
pho-p38SMAPK-positive celle (89%, calculated in 187
cells) were double-labeled with OX42 (representative
shown in Fig. 20), indicating that activation of
p38MAPK in the dorsal horn is highly restricted to

11
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microglia, hut not found in neurons or astrocytes. 0¥42
recognizes the complement receptor type 3 (CR3), ex-
pression of which is greatly increased in hyperactive
versus resting microglia (Aldskogius and XKozlova,
1998). We found that OX42 labeling was greater in the
dorsal horn ipsilateral to the nerve injury (Fig. 2D,
whereas OX42 labheling in the dorsal horn was low
bilaterally in sham-operated animals (not illustrated).
OX42-positive cells were more numerous (Fig. 2D) and
displayed hypertrophic morphology (Fig. 2E) in the
dorsal horn cn the side of the nerve injury as compared
with the contralateral side (Fig. 2D,E). These results
indieate that nerve injury induced a switch from the
resting to the hyperactive phenotype in the population
of microglia in the dorsal horn. The cells labeled in-
tensely with OX42 showed high levels of phospho-
p38MAPK immmunocfluorescence (Fig. 2E, top panels).
In contrast, resting microglia that showed a low level of
0X42 had no or weak phospho-p38MAPK immunoflu-
orescence (Fig. 2E, bottom panels). The mean level of
intensity of phospho-p38MAPK immunofluorescence
per OX42-positive cell was on average 3.7-fold higher
in the ipsilateral (n = 83 cells) as compared with the
contralateral dorsal horn (n = 74 cells) (P < 0.001; Fig.
2F). The distribution of phospho-p38MAPK immuno-
flucrescence intensities per OX42-positive cell was
skewed to the right (Fig. 2G). We conclude that, in the
dorsal horn following nerve injury, hyperactive micro-
glia are the cell type in which p38MAPK is activated
and that the level of p38MAPK phosphorylation is dra-
matically inereased in individual microglia. As shown
in Figure 2E, subcellular distribution between phos-
pho-p3SMAPK and 0X42 immunoflucrescence is dif-
ferent, but our confocal microscopic Z-series analyses
demonstrated that phospho-p38MAPK signals were
found in the inside of OX42 signals which is known to
localize on the cell surface (data not illustrated).

p38MAPK Activation in the Spinal Cord Is
Required for Development of Tactile Allodynis
Following Peripheral Nerve Injury

We examined whether intrathecal treatment with a
potent inhibitor of p3SMAPK, SB203580, through a
catheter whose tip was positioned near the L4-L5 dor-
sal horn alters the development of tactile allodynia
following nerve injury. Catheterized rats were treated
with vehicle (29 DMSO/10 ul, n = 7) or SB203580 (30
nmol/10 pl, n = 9) once a day for 14 days, beginning on
the day of the nerve injury. Intrathecal vehicle-treated
rats displaved a marked decrease in paw withdrawal
threshold following nerve injury (P < 0.01, signifi-
cantly different from the threshold on day 0)(Fig. 3). In
contrast, intrathecal SB208580-treated rats showed
only a slight decrease in paw withdrawal threshold;
paw withdrawa] thresholds was not significantly. de-
creased except for day 8 (P < 0.01, significantly differ-
ent from the threshold on day 0). Paw withdrawal
thresholds on day 7 and 14 were significantly greaterin
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Fig. 8. Intrathecol administration of ¢ potsnt inhibilor for p38
mitogen-activaied protein kinase (p38MAPK). SB203580, suppressen
development. of tactile allodynia caused by L5 spinal nerve injury.
Raots were injected intrathecnlly with SB203580 (30 nmal/10 ul, n = 9}
ar vohicle (2% dimethylsulfoxide DMS0V10 pl, n = Thunce a day for
14 days. The withdrawnl threshold of toetile elimulation to the ipsi-
laleral hindpaw (PWT') was exomined on duye 0 (before nerve injury),
1,8, 7, and 14 at 12--14 h after intrathecal injection. Each data point
represents the mean = SEM of paw withdrawal threshold (in grams).
P e (0,01 by the Student’s paired -tost, eom pared wilb threshald on
day O; #1IP < .01 #84P < 0.003, by the Mann-Whitney U-test,
eompared with the threshold of vohiclu-treated group,

animals treated with SB203580 (n = 9) as compared
with that in animals treated with vehicle (n = 7) {day
7: P < 0.01, day 14: P < 0.001, significantly different
from the threshold of vehicle-treated group on days 7
and 14, respectively} (Fig. 8). These results suggest
that intratheca] treatment with an inhibitor for
p35SMAPK in the spinal eord, the distribution of which
iz highly restricted in microglia, suppresses the devel-
opment of tactile allodynia following spinal nerve in-

jury.

DISCUSSION

Qur principal eonclusion from the present findings is
that following spinal nerve injury p38MAPK is acti-
vated in individual hyperactive microglia in the dorsal
horn, leading to the development of nerve injury-in-
duced pain hypersensitivity tactile alledynia, a major
functionsl consequence of peripheral nerve injury.
p38MAPK is the first intracellular signaling event, ac-
tivation of which occurs exclusively in microglia, that
regulates pain hypersensitivity caused by nerve injury.
We showed a marked increase in immunofluorescence
and protein Jevels of dual-phosphorylated pA8MAPK in
the dorsal horn after spinal nerve injury, These results
are supporied hy previous findings that phosphoryla-
tion of p38MAPK is increased in response to the dam-
age of the sciatic nerve or dorsal root (Murashov et al.,
2001; Nomura et al, 2001; Kim et al, 2002) that
projects to the dorsal spinal cord. p3SMAPK has been

e
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reported to be expressed in a number of cell types in the
CNS in vivo (Lee et al., 2000; Maruyama et al.,, 2000).
We found thatin the neuropathie pain state, p3SMAPK
activation in the dorsal horn was not ohserved in neu-
rons or astrocytes but, rather, occurred exclusively in
microglia. As shown previously {Aldskogius and Ko-
zlova, 1998), the number of microglia increased in the
dorsal horn on the side of the nerve injury following
nerve injury. We have recently demonstrated that the
number of microglia is on average 2.2-fold greater in
the ipsilateral side of the dorsal horn than in the con-
tralateral side (Tsuda et al., 2008). We also show that
marked phosphorylation of p38MAPK is cbserved in
individual microglia in the ipsilateral dorsal horn (3.7-
fold, as compared with the contralateral side), particu-
larly in byperactive microglia that dramatieally ex-
pressed complement receptor type 3 recognized by
0X42, and displayed hypertrophic morphology. The in-
crease is more striking than the increase in the number
of microglia in the ipsilateral side of the dorsal horn.
Therefore, in the dorsal horn, follewing nerve injury,
hyperactive microglia are the cell type in which
p3SMAPK is activated; in addition to an increase in the
number of cells, the inereased p38MAPK phosphoryla-
tion in individual hyperactive microglia would be one of
the major components of p38MAPK netivation in the
dorsal horn following nerve injury. Moreover, we show
that intrathecal treatment with SB203580, which
binds to the ATP pocket in p38MAPK, and conse-
quently inhibits its enzymatic activity (Tong et al,
1997), led to a statistically significant suppression of
tactile allodynia on days 7 and 14 after nerve injury
when the increase in p38MAPK phosphorylation was
found. It appears that the suppression of tactile allo-
dynia by SB208580 might be related to its inhibitory
effect on the increased p38MAPXK activity in the dorsal
horn after nerve injury, based on the cbservations that
intrathecal administration of SB203580 has no effect
on basal pain responses in naive rats, which have a
very low level of p38MAPK phosphorylation (Watkins
et al,, 1997; Murashov et al,, 2001; Nomura et al., 2001;
Ji et al., 2002; present data). Taking these results
together, we conclude that development of tactile allo-
dynia following nerve injury depends on activation of
the p3SMAPK signaling pathway in hyperactive miero-
glia in the dorsal horn, although we cannot exclude the
possible involvement of p3SMAPK in DRG neurons
{Kim et al., 2002).

p38MAPK activation in microglia is quite different
from that of other MAPKs, extracellular signal-regu-
lated kinases (ERK) and ¢-jun N-terminal or stress-
activated protein kinases (JNE/SPAK), activation of
which is found in dorssl horn astrocytes, but not in
microglia, after peripheral nerve injury (Ma and
Quirion, 2002). Thus, microglial regulation of tactile
allodynia may require activation of p38MAPK, but not
other MAPKs, Several extracellular substances have
been reported to trigger p38MAPXK activaticn in micro-
glia in vitro, thereby regulating miecroglial functions
{Koistinaho and Koistinaho, 2002). Tikka et al. (2001)

have shown that glutamate-evoked proliferation of mi-
croglia and interlenkin-1§ (IL-1B) and nitric oxide re-
lease from microglia in the gpinal cord primary culture
depend on its p3SMAPK activation. We have recently
demonstrated that extracellular ATP activates
p38MAPK in eultured microglia, thereby releasing tu-
mor necrosis factor-w (TNF-o) and IL-6 (Hide et al,,
2000; Shigemoto-Mogami et al., 2001). These cytokines
are increased in the spinal cord following spinal nerve
injury (Sweitzer et al., 2001; Winkelstein et al., 2001)
and are involved in induction of nerve injury-induced
tactile allodynia (Ramer et al, 1998; Sommer et al.,
1998; Sweitzer et al., 2001). Therefore, elucidating
p38MAPK activity-dependent microglial outputs, in-
cluding the production of these cytokines in the dorsal
horn in vivo, would help in understanding the mecha-
nisms underlying the induetion of pain hypersensitiv-
ity following nerve injury.

Nerve injury and peripheral inflammation that pro-
duce neuropathic and inflammatory pain states, re-
spectively, have been known to induce distinct sets of
neurochemical changes in the dorsal horn (Honore et
al., 2000). In contrast to the present findings with
peripheral nerve injury, Ji et al. (2002) have shown
that p38MAPK activation does not oceur in the dorsal
horn under a sustained inflammation by intraplantar
injection of complete Freund’s adjuvant, which pro- .
duces prolonged hypersensitivity to pain. Thus,
p38MAPK activation in dorsal horn microglia would be
a unique intracellular change following nerve injury,
contributing to the development of nerve injury-in-
duced pain hypersensitivity. This approach may pro-
vide a new therapeutic strategy specially targeting
neurcpathic pain. Importantly, in naive animals,
p3SMAPK activation is very weak in the dorsal horn
(Fig. 1), and basal pain sensitivity is not affected by
spinal administration of p3SMAPK inhibitors (Watkins
et al., 1997; Ji et al., 2002). This suggests a therapeutic
benefit of interfering with p3SMAPK activation in the
treatment of neuropathic pain, without affecting nor-
mal pain sensitivity.
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