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FIG. 2. Establishment of HeLa cell lines expressing C protein mutants with a series of charged amino acid substitutions for alanine residues
and their responses to IFN-B. (A) Cells expressing various Cm (Cm2 to Cm8) proteins were established. The expression of individual proteins was
confirmed by both immunoprecipitation of the pulse-labeled cell lysates (top) and Western blotting (bottom). (B) The individual cell lines were
compared for their responses to IFN-B by using VSV as a challenge virus as described in the legend of Fig. 1B. (C) Antiviral activities of IFN-8
(10* IU/ml} in each cell line were analyzed by the inhibition of synthesis of VS8V-specific N, P, and M proteins. C, cells stably expressing the
wild-type C protein; None, the parental HeLa cell line expressing none of the SeV proteins.

CmS5, Cmé6, and Cm8, with substitutions of charged amino
acids for alanine residues at the following positions, respec-
tively, in the C protein: 77 and 80; 114 and 115; 139 and 142;
151, 153, and 154; 156; and 173, 175, and 176. Each of the
mutated proteins could be immunoprecipitated with anti-SeV
C serum after the pulse radiolabeling (2 h) and could also be
detected by immunoblotting with the same antibody (Fig. 2A).
The amount of Cm protein expressed differed among the cell
lines, probably due to the number of plasmids integrated into
the chromosome, but did not differ in the same cell lines
between the two detection methods, i.e., immunoprecipitation
of pulse-labeled protein or immunoblotting of accumulated
protein. These results indicated that the intracellular stability
of each Cm protein did not change dramatically by the respec-
tive charged residue-to-alanine replacements.

Anti-IFN activity of mutated C proteins, As shown in Fig. 2B
and C, the parental HeLa cells were protected from the VSV
challenge by pretreatment with 100 or 1,000 unit of IFN-B per
ml, and no VSV proteins were detected in the cells pretreated
with 1,008 U of IFN-B per m! by immunoblotting with anti-
VSV serum. On the other hand, the cells expressing the wild-
type C protein detached from the bottom of the culture dish

irrespective of IFN pretreatment, and the VSV proteins were
clearly detected in the cells by immuncblotting. The cells ex-
pressing the Cm2, Cm3, Cm4, Cmé, and Cm8 proteins allowed
the growth of VSV and detached from the culture plate even
after treatment with JEN-f at a concentration of 100 or 1,000
U/ml, just as did the cells expressing the wild-type C. Even
though their expression levels were lower compared with the
levels of the other Cm proteins (Fig. 2A), Cm4 and Cmé6 were
almost fully capable of antagonizing IFN (Fig. 2B and C). On
the other hand, in cells expressing the Cm5 protein, IFN was
fully active, greatly inhibiting VSV growth and allowing the
cells to remain attached to the plates even with treatment of
100 or 1,000 U of IFN-B per m! (Fig. 2B). This indicated that
Cm5 lost the capacity for anti-IFN activity. Essentially the
same results were obtained when IFN-o was used instead of
IFN-B (data not shown).

Effect of mutations of SeV C protein on IFN-B-induced
signaling. To clarify the effect of mutated C proteins on
IFN-B-mediated signaling, the levels of the ISG products,
STAT1e/B, STAT2, and PKR, and the IFN-o/B-responsive
luciferase reporter gene expression were examined. In the pa-
rental Hela cells, intracellular levels of STAT1a/B, STATZ,
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FIG. 3. Expression of IFN-responsitle genes in the parental and C-expressing HeLa cells. Induction of ISG products, STAT2, STAT1«/j, and
PKR (A) and stimulation of ISRE-driven luciferase gene expression (B} are shown in cells expressing the various Cm proteins. These were assayed
as described in Materials and Methods and were examined after treatment of the cells with 1,000 IU of IFN- per ml for 0 to 8 h. C, cells stably
expressing the wild-type C protein; None, the parental HeLa cell line expressing none of the SeV proteins. Relative luciferase activities (solid bars)
are indicated as the proportional percentage of the luciferase value {counts per minute) per microgram of protein of C-expressing cells at 0 h.

and PKR (Fig. 3A) and IFN-stimnlated response element
(ISRE)-luciferase reporter gene activities (Fig. 3B) were in-
creased in accordance with the hours of incubation with IFN-j3,
Little or no stimulation of STAT1e/B, STATZ, and PKR syn-
thesis or of ISRE-reporter gene expression was found in cells
expressing C, Cm2, Cm3, Cm4, Cmé, or CmB8. However, in
Cm5-expressing cells, appreciable stimulations of STAT1a/g,
STAT2, and PKR synthesis and of ISRE-reporter gene expres-
sion were observed, indicating that the substitutions at posi-
tions 151, 153, and 134 resulted in the failure to block the
IFN-B-mediated signaling. Thus, the results of this signaling
assay and of the bioassay (anti-VSV action) shown in the
previous section were in very good agreement with each other
and suggested that relatively limited amino acid residues were
critically involved in IFN antagonism of the SeV C protein.
Anti-IFN activity and STAT1 binding, Several studies have
reported a good correlation between anti-IFN activity and the
physical association of SeV C with STAT1 (8, 12). And, in-
deed, in our stable cell lines expressing C, Y1, or Y2 protein,
anti-STAT1 antibody could precipitate STAT1 and C, Y1, or
Y2 protein simultaneously (Fig. 4A). The binding of SeV Cm
proteins with STATI was then studied in the context of anti-
IFN activity. As shown in Fig. 4B, anti-C antibody could pre-
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cipitate both C and STATI, and, conversely, anti-STAT1 could
precipitate STAT1 and C protein. In the parental HeLa cells,
no STAT1 was precipitated by anti-C serum, and no C protein
was precipitated by anti-STAT1 serum. These results showed
the specificity of the immunoprecipitation procedure. How-
ever, none of the Cm proteins could be coprecipitated with
STAT1 by anti-STAT] serum, and, conversely, STAT1 could
not be coprecipitated with any of the Cm proteins by anti-SeV
C serum, irrespective of its anti-IFN activity. Even though the
Cm2, Cm3, Cm4, Cmb, and Cm8 proteins could antagonize
IFNs, they seemed not to bind with STAT].

To confirm the inability of Cm proteins to bind with STATI,
an additional method was used. The cells expressing C, Cm2,
Cm3, and Cm35 were lysed, centrifuged to remove their nuclei,
and fractionated by 5 to 35% sucrose gradient centrifugation.
The recovered fractions were then separated electrophoreti-
cally and immunoblotted with anti-STAT1 and anti-SeV C
serum (Fig. 4C). In the C-expressing cells, STAT1 and C pro-
teins were found both in the light (fractions 4 to 6) and in the
heavy (fractions 14 to 16} fractions. The STAT1 and C proteins
in the light fractions could represent soluble free molecules,
and those in the heavy fractions could be involved in a high-
molecular-weight complex (HMWC) (53). Detectable amounts
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FIG. 4. Association of SeV C protein with STAT1. The parental cells and cell lines expressing the wild-type and Cm proteins were pulse-labeled
with [**S]methionine, and their lysates were immunoprecipitated with anti-STATI or anti-SeV C antiserum (A and B). The STAT1 precipitated
with anti-C and the C protein precipitated with anti-STAT1 are marked with an asterisk () in panel B. The lysates from cells expressing C, Cm?2,
Cm3, and Cm35 were subjected to 5 to 35% sucrose gradient centrifugation, and the fractions (4 to 16) were immunoblotted either with anti-STAT1
or anti-SeV C serum (C). The formation of HMWCs between C or Cm proteins with STAT1 would be indicated by the sedimentation of these
proteins in lower gradient fractions (14 to 16) and was observed only for wild-type C.

of STAT1 and C proteins were also cosedimented into the
intermediate fractions, indicating that several different forms
of complexes might be generated between STAT1 and SeV C
proteins.

On the other hand, in Cm5-expressing cells, which lost anti-
IFN activity, STAT1 and C proteins appeared only in the light
fractions (fractions 4 and 5) and no Cm5 protein or STAT1
sedimented in the heavier fractions, indicating little association
of Cm35 with STATL. These results support the previous find-
ing that 2 C mutant (CF'7%), which did not have anti-IFN
activity, lost the ability to bind with STAT1 (10). However, in
both Cm2- and Cm3-expressing cells, which were representa-
tively used as the mutants retaining anti-IFN activity, STAT1
and the Cm proteins appeared only in the light fractions (frac-
tions 4 and 5). Neither Cm2 nor Cm3 protein nor STAT1
sedimented into the heavier fractions (Fig. 4C). These results
obtained by immunoprecipitation (Fig. 4B) and by sedimenta-
tion (Fig. 4C) suggest that the formation of HMWCs or of
stable complexes of C proteins with STAT1 are not always
required for the anti-IFN activity of SeV C protein.

Anti-IFN activity and the phosphorylation of STAT1 and
STAT2. IFN-o/B signaling is mediated through the JAK-STAT
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pathway (for a review, see references 1 and 50). Briefly, bind-
ing of IFN-a/B to a cell surface IFN-a/P receptor activates the
receptor-bound kinases JAK1 and Tyk2, which subsequently
phosphorylate the tyrosine residue of STAT1 and of STATZ at
positions 701 and 690, respectively. The tyrosine-phosphory-
lated (pY)-STAT1 and pY-STAT?2 are required for forming a
heterodimer and translocation to the nucleus, where they bind
with IRF-% and work as the transcriptional activator of ISGs
(11, 48, 50). Subsequently, pY-STAT and pY-STATZ are de-
phosphorylated in the nuclei to down-regulate the ISG tran-
scriptions.

In the parental Hela cells exposed to IFN-B, pY-STAT!
and pY-STAT2 reached a peak within 60 min, and then pY-
STAT]I decreased quickly at around 240 min posttreatment,
while pY-STATZ decreased gradually and was still detectable
at 480 min posttreatment (Fig. 5). Under these conditions, the
levels of nonphosphorylated STAT? and STAT2 increased
continuously for at least 480 min. In the C-expressing cells,
which did not respond to IFNs, the level of pY-STAT1 in-
creased continuously at least up to 480 min posttreatment,
whereas pY-STAT2 was not detectable at any of the time
points used. Since the levels of STATI and STAT?2 did not



7450 KATO ET AL

None

min.

0
STATI

pY-STATI

STAT2

pY-STAT?2

min.
STATI1
pY-STATI

STAT2

pY-STAT2

1. VIROL.

C
15 30 60240480

Cm5 .
0 15 30 60240480

i

& tﬁ&;‘a qu*l ,;...,::, L

FIG. 5. Effects of the S¢V C protein on tyrosine phosphorylation of STAT1 or STATZ. Parental and the various C-expressing HeLa cells were
treated with 1,000 [U of IFN-B/ml for the indicated time (min). The cell lysates were immunoblotted with anti-STAT, anti-phospho-tyrasin™'-
STATI] (pY-STATI), anti-STATZ, or anti-phospho-tyrosin®**-STAT2 (pY-STAT2).

significantly change in C-expressing cells during the incubation
period, the continuous presence and increase of pY-STATI
can be explained by the increased protein phosphorylation
and/or decreased protein dephosphorylation, and the disap-
pearance of pY-STAT2 can be explained by the negligible or
absent STAT2 phosphorylaticn or its increased dephosphory-
lation in the C-expressing cells. In Cm5-expressing cells, which
could respond to IFNs, the developmental sequences of pY-
STAT1 and pY-STAT2 were essentially the same as in the
parental Hela cells, In Cm2-, Cm3-, and Cm8-expressing cells,
which could not respond te IFNs, the continuous presence of
pY-STATI and the total disappearance of pY-STAT2 were
essentially the same as found in the C-expressing cells. Thus
far, the C mutant proteins retaining IFN antagonism showed
the phosphorylation and dephosphorylation abnormality of
STATI and STAT2.

Effect of mutated C proteins on viral RNA synthesis. The
inhibition of viral RNA synthesis in cells expressing the various
Cm proteins was examined in the context of viral infection by
using the recombinant SeV, rSeV/luci, containing the firefly
Iuciferase gene as a reporter gene. rSeV/luci was inoculated
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into the parental and transfected HeLa cells, the latter express-
ing the wild type or each mutated C protein. Cell lysates were
prepared at §, 2, 4, and 6 h postinoculation for measuring the
luciferase activity and the protein quantity. Potential fluctua-
tions in the cell amounts were normalized by the protein quan-
tity of cell lysate. The reporter luciferase activity in rSeV/luci-
infected cells was well correlated with the amount of luciferase
mRNA in the early stage (<12 h) of infection (25), and, in-
deed, reporter luciferase activity increased linearly and dra-
matically in parental HeLa cells at least up to 6 h postinfection
(Fig. 6A). In contrast, the activities of C protein-expressing
cells were lower than that of the parental cells at every com-
pared time point, indicating the inhibition of SeV mRNA syn-
thesis by SeV C proteins. In Cm3-expressing cells, the reporter
luciferase activities were as strongly inhibited as in the C pro-
tein-expressing cells, but in the other five Cm protein-express-
ing cell lines, ie., Cm2, Cmd, Cm5, Cmé6, and CmS, the re-
porter expressions were scarcely inhibited.

The inhibition of viral RNA synthesis was reconfirmed by
comparing SeV proteins accumulated in the parental cells with
those in the individual Cm-expressing cells. The cell lysates
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FIG. 6. Inhibition of viral gene expressions by various SeV C proteins. Reporter luciferase gene expression from the infecting recombinant SeV
(A} and the expression of the SeV P and N proleins (B) were examined at the indicated hours. The SeV P and N proteins produced in the infected
cells were visualized by immunoblotting with anti-SeV serum. C, cells expressing the wild-type C protein; None, the parental HeLa cell line
expressing none of the SeV proteins. Relative luciferase activitics (solid bars) are indicated as the luciferase value (counts per minute) per

microgram of protein in SeV/luci-infected cells.

prepared at 6 h postinfection were immunoblotted by anti-SeV
serum. SeV N and P proteins were clearly detected in the
parental cells but were detected very weakly in cells expressing
C and Cm3 (Fig. 6B). This indicated that the synthesis of both
the luciferase and SeV proteins expressed from the rSeV/uci
genome was strongly restricted in cells expressing SeV C or
Cm3 protein. In contrast, in cells expressing Cm2, Cm4, Cm5,
Cm6 and Cmg, the amounts of accurnulated SeV proteins were
almost equivalent to those in the parental cells (Fig. 6B), in
good agreement with the data indicating that the Cm2, Cm4,
Cm3, Cms6, and Cm8 proteins greatly reduced their RNA syn-
thesis-inhibiting activities (Fig. 6A).

Quantitative analysis of RNA synthesis inhibitions, The in-
hibition of viral RNA synthesis required a considerably high
level of intracellular quantity of the C protein (3). In the above
studies, cells expressing Cm2, Cm4, CmS5, Cmé6, and Cm8 were
found to hardly inhibit SeV RNA synthesis. However, the
intracellular levels of some mutants such as Cm4 and Cmé6
were obviously lower than those of the others or the wild-type
C (Fig. 2A). Thus, there was clearly a need for more quanti-
tative analyses to reach a conclusion regarding the anti-RNA
synthesis activity of the various C mutants. The expression
levels of C proteins shown in Fig. 2A were quantitatively mea-
sured by image-analyzing software, and the relative expression
levels were indicated by standardizing the wild-type C quantity
as 100. The relative expression levels were calibrated to be 95
(Cm2), 115 (Cm3), 29 (Cmd), 93 (Cms), 40 (Cmé), and 57
(Cm8) and are plotted (Fig. 7A, x axis). The relative inhibition
value of RNA synthesis was calculated by using the reporter
luciferase activities from the rSeV/luci at 6 h postinfection by

standardizing the activities in C cells as 100 and in the parental
HeLa cells as 0. The relative inhibition values were calibrated
to be 34 (Cm2), 124 (Cm3), 0 (Cm#4), 14 (CmS5), 24 (Cmo6), and
17 (Cm8) (Fig. 7A, y axis). When the value ([x, y]: relative
expression level, relative inhibition level), of parental cells
(0,0) was connected with that of C cells {100, 100), the values
of the Y1 and Y2 proteins stably expressed in Hela cells
(inctuding three other independent clones, Y2a, Y2b, and Y2¢)
as established in a previous study (24) and of Cm3 in the
present study could be plotted at points very close to this
diagonal line (Fig. 7A). These results clearly showed that the
Cm3 protein retained the inhibiting activity as did the wild-
type C, Y1, and Y2. In contrast, the Cm2, Cm$, and Cm8
proteins appeared to have greatly reduced RNA synthesis-
inhibiting activities, because they were located well below the
line.

However, in the case of two mutants, Cm4 and Cmé6 (Fig. 2A
and 7A), it was still difficult to assess the inhibiting activities for
viral RNA synthesis because of their low expression levels in
cells. We therefore attempted to obtain cell lines expressing
higher amounts of the Cm4 and Cm6 proteins. The actual
levels of the mutant C proteins and of the SeV-driven lucif-
grase expression in the newly obtained cells are shown in Fig.
7B. The relative expression levels of the four Cm4 clones were
calibrated to be 431 (Cm401), 229 (Cm402), 329 {Cm403), and
184 (Cm406) and those of the four Cmé6 clones to be 852
(Cm606), 629 (Cm607), 364 (Cm609), and 120 (Cm610) (Fig.
7C). The relative inhibition values of RNA synthesis calcu-
lated as above were 38 (Cm406), 47 (Cm402), 68 (Cm403),
74 (Cm401), 26 (Cm610), 44 (Cm609), 59 (Cm607), and 65



KATO ET AL.

A

7452

A
L=

—
[or
(=]

LA
L=

Relative RNA synthesis inhibition

Nofe cma
S Nt

0 50 100
Relative C expression

0

J. VIROL.

C 120
c

.8 oo
B
 gol Cm401
@ Cmd03 A Cm606
8 A e
g 0
& 50 Cm402 Cr:607
< A‘ ®

40t
% Cragg CM609
2 ™
< 20 Cm610
-1

oL

0 200 400 600 800 1000

Relative C expression

9]

SeVC

120000
100000 |
80000 |
60000

40000 T

luciferase activity of SeV/luci

20000 1

0
hours 246 246 246 246 246 246246 246 246 246

o =T N L SR B — T -
= S O O O 9= O
-] ¥ ¢ <& = v @
Z O E & H E E B

o 0 O L O O

FIG. 7. Relationships between SeV RNA synthesis inhibition and the expression levels of Cm proteins. (A) The S5eV RNA synthesis inhibition
levels and intracellular levels of various C proteins including Y1 and Y2 were calibrated by using the luminescent image analyzer and National
Institutes of Health Image software, (B) Four additional clones of Cm4 (Cm401, Cm402, Cm403, and Cm406)- and Cm6 (Cm606, Cm607, Cm609,
and Cm610)-expressing cells were established, and the actual intracellular levels of the mutant proteins (top) and luciferase expression from the
rSeV in these at 2, 4, and 6 h indicated (bottom). (C) Based on the data shown in B, the relationships between the RNA synthesis inhibition and
C protein levels were analyzed as in A, See Results for an explanation of the standardization of values.

(Cm606). The plots of the relative expression levels and inhi-
bition values of the Cm4 and Cm6 proteins clearly showed that
both proteins greatly reduced the RNA synthesis-inhibiting
activities compared to the C protein (Fig. 7C}. The residues
required for anti-RNA synthesis were thus mapped to multiple
regions relevant to Cm2 (mutations at positions 77 and 80),
Cmd (positions 129 and 132), Cm3 (positions 151,152, and
153), Cm6 (position 167), and Cm8 (positions 173, 175, and
176), in contrast to the region responsible for the IFN antag-
onism that was mapped to a single region. Therefore, anti-
RNA synthesis activity appeared to be governed by amino
acids scattered across the carboxyl terminal half of the SeV C
protein.

DISCUSSION

The SeV C protein is a multifunctional protein, playing roles
in viral RNA synthesis inhibition, IFN antagonism, apoptosis
inhibition, and virus assembly (reviewed in reference 37). In
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previous studies (23, 24), the former two functions, viral RNA
synthesis inhibition and IFN antagonism, were not segregated
topologically, being mapped to the carboxyl-terminal 106 aa
(positions 99 to 204) of the C protein. Here, we have generated
cell lines constitutively expressing the various C protein mu-
tants with substitution of charged amino acids for alanine res-
idues and now show a clear dissociation of amino acid residues
critically involved in RNA synthesis inhibition and IFN antag-
onism,

Of the point mutations investigated, only those at 151, 153,
and 154 (Cm5) resulted in the loss of IFN antagonism. A
similar loss of function was caused by a single point mutation
(phenylalanine to serine) at position 170 (C¥'7%%) (8, 9). How-
ever, both the Cm8 protein with nearby substitutions (173, 175,
and 176) and the Cm6 protein with a substitution at an in-
between position (position 156} fully retained anti-IFN capac-
ity. Taken together, these data suggest that particular residues
rather than a particular region play a critical role in IFN
antagonism by the SeV C protein. In contrast, all mutants



VoL, 78, 2004

except Cm3 (substitutions at positions 114 and 115) were
found to be impaired in viral RNA synthesis inhibition. Thus,
RNA synthesis inhibition appeared to be governed by amino
acids scattered across the primary structure of the C protein,
Of those mutants displaying such an impaired phenotype, four
had mutations within the 106-residue C-terminal half, whereas
one (Cm2) had substitutions (at positions 77 and 78) outside
the C-terminal half. The substitution at positions 77 and 78
thus appeared to critically affect the proper conformation of C

protein to exhibit RNA synthesis inhibition, although the N- -

terminal half containing residues 77 and 78 in the natural C
protein was not required for RNA synthesis inhibition (23).

How the SeV C protein inhibits homologous or closely re-
lated viral RNA synthesis has not been fully understood yet.
The specific and quantity-dependent inhibition of C protein for
RNA synthesis is thought to contribute terminating viral tran-
scription and replication and promote encapsidation of virions
in the late stage of viral infection. Paramyxovirus RNA syn-
thesis is mediated by the complex comprising the L and P
proteins (14). Although the detailed biochemistry of RNA
synthesis yet remains to be elucidated, the L protein may act as
a catalytic subunit and the P protein as a regulatory subunit
containing the polymerase cofactor module and the nascent
chain assembly module (reviewed in reference 33). Coauthors
of the present study, Cortese-Grogan and Moyer, previously
examined the binding capacity of the C mutants used here with
the L. protein and found that only the Cm3 retained a binding
capacity as strong as that of the wild-type C, whereas all other
mutants had a significantly reduced binding capacity (14).
Thus, there appears to be a nice correlation between the re-
tention or loss of the L binding capacity described above and
the retention or loss of RNA synthesis inhibition found here, It
therefore appears likely that RNA synthesis inhibition by SeV
C protein involves at least the binding of the C protein with the
L protein. The parallelism of C-L binding and RNA synthesis
inhibition was, however, not as clear as seen here, when RNA
synthesis was measured by using an in vitro RNA synthesis
system (14}); actually, the retention of the anti-RNA synthesis
function of Cm3 was not very clear. The reason for this dis-
crepancy between the in vitro RNA synthesis system and nat-
ural viral infection with a full-length genome is difficult to
explain. The Cm3 protein that should be active in the context
of natural infection might not act in such a way, presumably
because of its accidental transinteractions with some compo-
nents derived from the T7 polymerase-expressing vaccinia vi-
rus used to produce L, P, N, and C proteins for the in vitro
RNA synthesis system.

Our present study further demonstrated the utility of the
various C mutants to address the mechanisms of anti-IFN
action exerted by the SeV C protein. Previous papers showed
that the C, Y1, and Y2 proteins, all capable of blocking IFN
signaling, could bind STAT1, whereas CF*7°%, which was inca-
pable of blocking, failed to do so, suggesting the importance of
the C-STATI1 interaction in IFN antagonism (8, 12). Qur
present study showed that Cm3, Cmd4, Cmé, and Cm8 retained
anti-IFN capacity but did not bind STAT1 stably. In addition,
the formation of HMWCs possessing the C protein and STAT1
as their components was previously suggested to be relevant to
blocking IFN signaling (53) but was not always seen here, with
some C mutants retaining anti-IFN capacity. Thus, a C-STAT1
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interaction strong enough to be coimmunoprecipitated and
HMWC formation were indicated to be events nonessential for
counteracting the antiviral action of IFNs.

On the other hand, when IFN antagonism was retained, both
the inhibition of the phosphorylation of STAT2 (i2) and in-
crease of pY-STAT1 (27, 48) were always observed as also seen
for the wild-type C protein. In contrast, when IFN antagonism
was lost {(Cm5), the patterns of phosphorylation (and dephos-
phorylation) were similar to those seen under normal IFN
signaling in the parental cells. These data, taken together,
suggest that the SeV C protein can induce abnormal phosphor-
ylation and dephosphorylation of STAT proteins so that IFN
signaling is blocked and that for this action a direct interaction
of the C protein with STAT1 may not always be required. The
importance of the inhibition of STAT2 (but not STAT1) phos-
phorylation for SeV C-mediated anti-IFN action was also re-
ported recently (12). There may be an additional host factor(s)
for the C protein to interact with the abnormal phosphoryla-
tion of STATS and the ultimate outcome, IFN antagonism. In
searching for such host molecules, some C mutants described
here will be useful; two-hybrid screening, for instance, using
the wild-type C and Cm3 proteins as baits appears to be worthy
of execution.
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(F3EL). ZofE% 1,000 IU/ml @ IFN- g T1205p01
L, #0% VSV ¥ B84 5 &, Hela B2 T2 IFN @
MY ANAEFEE L CTHABRIERBIZOVTWEH,
C, Y1, Y2 BEMETRIFLIAREIZEVTLE -
(B3TF). SOZERLC, Y1, V2EEEHVTRLMLO
SeV REE DT %41 F I HIRT IFN iy 4 VA%E
BOREMEIET 22 AR E A,

C EHHO YOS ICMIFNICE b 28I EET 5
YL OZENT, RIZT I/ RBEILEFVLERE
BEAVRELLER C EREHBRTERSE, +h
HOPLIFN BEEARAEL 7= (F3%). F0#E, C EHHE
DT I RERERD, £R2047 3 /B0 S b8T I /B

AERK

HeLa € Q2 Cm3 Cmd CmS Cm6 Cm8

“%ff%fi;?fﬁ

ALBBRBR  anti-IFN
Cm2 T80 o]
Cm3 1147115 ©
oy rrTreperre Cmd 120/132 ©
Cm5  I51/153/154 X
o
o]

Crwmgmoeer TS Cmb |57

eI oug 173175176

Hela C Y1 Y2 Y25 Y3 Y4 YBR YR Cm2 Cm3 Cmd4 Cm$ Cm6 Cm8 none

" @ GOOE

none

C000 COOCOSe
OO00E0e

VSV

@3 CEABORS 5 —7 xO-{EREHE

mock

SeV @ C, Y1, Y2 ERHE, BUICERHEDT I /RBRPONRELA Y25, V3, Y4 LRUL 7 VHE L VKRS BHTR
RELZYER, YIR £ BEMICRIT S Hela Mlath 2B L (BB, ). Sheidfluc, HE7I/EBE2T7I=-VicBE
¥z CEHHE, Cm2, Cm3, Cmd, Cmb5, Cmb, Cm8{EH L/ (LB, £). 1,000 IU/ml & IFN- 5 TI2REREALEE L 2o 7, VSV
RS S/ 24 MG OMORERE (FR) 2Rl REETIE Y3 TIERIIFNGEN S 295, Y4, Y8R, Y7R THLE%
LTwiz, 73/ BBRETHCmSHFRIFNETEL LTED, thOBEREINIFNEDOREL T,
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Blo7: Y3 F CIHMIFNREZ #EFF L Twizdt, 1267 3 /B
Blof: Y4 CidEEL TV (F3F). —HAMKF TN
FIGEA G147 3 BEEl - 72 YSR TILIFN g% kv, #
FKEUNKIRAEBROALZ LI TE Lol UEDE
6 CEBHENO»H24FB N7 3 /Bl i RIFNAE
Db EERENLT,

R, CEHEIGETAWET I /B2 75 =~
(Ala) 2B X2 2 L HIFNE L OBZEIZDOWTHREEL
72 (HM3K). 6 2OEBREREEER LAKE, 151,
153, 15407 3 % IR Ala 0B L7- CmS T240
ADHIFNRERHEL TE Y, HEDIST (Cmb) HHiE
173, 175, 176 (Cm8) W ZEEEMA 7/ C EHHEH I IFN
BE ML Tw (F3T) 9. &5, Q2%fcHERED
B (B REALFAE) 3, S458% (KoM %
LLCMK2 #Bfa TREE8E L 22 K- MVCL1RiE, 50% =
ATFER (LDs) %% 1.3x10% 20 & 8.0x10° CIU/ml LA L (=
KLTED, RE(BEESMETLTCVAELRELA
(14,15). T4, ORI, IFN KR T 528D ERWT
Bh, &, POEMLMC EAHPITNEBED 72—
TPt ABELLOTHL I LIRSS,
FAadFLBHEABELTWwWIZ LNERsRD,

CEHHRBEDLICHIFN MRERETION

IFN- 8 & IFN- @ i3, I BUIFN L Ehh i b, A0
FHOLET % —(IFNAR) £#54& L, Jak (Janus kinase)-

R
«

(P4 nA $E 257,

STAT (Signal transducer and activator of transcription)
FERERIEL T, —E® [FN MERBEFORBAZELT
3 (E4) ¥, IFNARIX a & g8 D~AF O 2 BRIETHR S
h, FRLENLOMAEMIZ, Tyk2 (tyrosin kinase 2) &
Jakl &L Twa, [ B IFN #° IFNAR 2642 &,
Tyk2 & Jakl #%) Y ER{E &L, RICEFD) v EBE%
STATIDEHEFE F oL rREE STAT 2 DI0NEEOF
Oy RECEBIYE, ) UE{bE s STATL &
STAT2H, EVWiHEeLT2EFEBHEL, L7y —0
LEEILE., D%, @ 2 BFIZIRF-9 (IFN-regulatory
factor 9; p48) H¥HE & L, EE HFISGF3 (IFN-stimulated
gene factor 3) EEAETHERLT, AT ISRE (IFN-
stimulated responsive element) 7R E£— ¥ —OEE % H
FEE—ED IFN FHARETFORHAFENTWE ([4).
ISRE Ttz b 2N 725 ¥ &0 0TS X
IFEAVEE, FHLOBELHETAZLMNTES,
BE Hela fRA T IFN 2 1A T 6 2~3 BB THEL NV
Y7z 7-EiEMMRBEERA LD, 0BT
FRRIZEY S, LA, MUIFN 82> C EBHER
BT 28R THIFNEMA TOAERL Y 7 2 5 — ¥iEtt
NERBRBHLARWY b, C REMATIE Jak-
STAT EEE N EM AL TWVWAEI IR 2, EERTF
ISGF3 HEEIF R ENTWEIEI 22 B4 T IFN ML
iz 1 B o MBZAmE L A8 ISRE KR 7o -7 L.
LTEMSA (electrophoretic mobility shift assay) %179 &,

EZEFISGFIOER

EMSA
€ Yl Y2 Hela

STATOF o v ) VR

Hela c .. Cms$

- 4 0153060240480 0 153060240480 0O L5 30 60240480
& A, Wi R R A
P+

# AY R
\ o STATI ATl R i . S -.<'.
EFE TSGR #Y-STATI
LT URTMG -=01d 0
oy STAT2 ™= S b ot 0
AGTTE(N),TTTC pY-STAT2 I

IFNRAXR G ¥ DEEE

M4 w2514 21402RCEBEDERAE
IRIFN L 7 H VRO e MR LA (), SeVC ERERTMM T, E5EET ISCRIHsErERsh2y (5
£, &), EEWAHFRICI, STATL & STAT2 OF 0¥ YRED) YEHEE EhICE CRABRIUATH 24, C
ERHRERMIE T, STATI #0¥ >0 Yk (pY-STATL) HEETWwE OO, STATZ BF O ¥ ) YEL (pY-
STAT2) IR E T vy, 73 /EBIRICL DIIFNAE: Ko7 CmS 13, STAT 0 YEHEORMEILIdEk Hela EFL
%% (BT). STAT2, STATL i3I IFN 2L 0 BMENAEAKL DT, IFN #4581 3 HeLa L1 Cm5 Ml T
IFN OFERIFR & & b ITTFERINENT 5.

33



pp.179-188, 2004)

FHMIETI ISRE KEFEEFFES LTEHESETL
fooXy ¥ O(RED) PO LILA, MIFNEZHE>—ED
C REMBTREANED LA LW (ESEE) IV, =0
B, C REMM THESTRT ISGF3 #EefMER SN
TWEWIEETRLTHA,

Tid, STAT] RU STAT2 ZEaAE 0 _EMEEKICHEA
2NEB ETVIFEDRF O EEDY) VB Y 15
9. IFN- g IR B s o TF O 2 701
1) Bk STATL L0 3 »690Y » Bk STAT2 % gigs+
5:&#?35.Haammfumﬁ&#auy&wén
7z STATI & STAT2 BB 6h, Z0i%, ®APT5. IFN
FETIICLEbH ST E(L STAT1 & STATZ E#%Rd
CFTADE, UMERELAVWESIRTERO 74— Fay
sHREMRHEPETHE, BIHREORELCE, CEAHE
IR Tid IFN ORI EVIZLEL LT F 0 2 701
VEE(L STAT1 7 LS, FhHHIEuc & b ininEfec
Wit azk, —F, 90600 Bl STAT? i,
IFN THISLTLED ORI L2 RAICRRELY,
SeV C EEEOH IFN 21213 STAT2 »F o 1) VL
FWIaZbiRL, BALEHOTERC EBHEFE
WEDOEERHEELL (H3ET)S?, S, C ZOH
HED LIz STATZ DF T ¥ V690 VEb*HELT
WEOPEEEEANS,

Bhy

D85 370y A WATH IFN Oy 4 VBRI
MY HRENVH 2 Z EFRFMRCTHRE SN, T0H

185

BOMENBRIEAL (2, 25 EHOALSIE)I D,
b, VIS ANAERFTEASYLANMARBIIC
BEHAERHI WIS VAETHIH, TOBEO SVS
(1), &Y TAYL NIRRT v }SS4 TN YA
WA 2R =5y AT A AR I R
b PRERETIOCELESKD VEHED VERERCIK
IFN MR L. BALAWI YL, ZhDO9ANVADY
EOEOERIESVS EL VY TAYANVA, Za—Hv R
Wi A VAT STATL OFFH, v b3S 4 7Ly
FI A WA BT STATZ OGHFTHER, LE6b /07
7V—AOHEEHEFNZ D EBAIC STAT BYEET
ABlipbrExF AL/ 7O T T U—LRENLTOEL
TWbEZEZHRTVEY, [AHHERPROTVWEDN
ZonTiHoTwhw, F7, VECEHEAHYED
ANZNRG L VABOZ T A LA, T A4 VAR
ORRET A NWATHE, C EHHIZIHRIFNEEI 2, VE
BHL PEAEOMLBETSICH IFN fEE S 5. +0M
EFHEL, BEILLoTERSL DD STATL, STAT2 @
) CEME, ZRERRS ZWIIEBITHRI: 2 hBY,
STAT OFBR T 2 I EA3HE L Ty 2384040

L IFN B2 O N T I 2 VI A VABHOT L LR
DIFER, YA VAZMILARFEFHILAKRDOD S
SETHLHY, MRMVDICFEINTWIE, FoEEE
BUHTihd, £BLEYAVABO—KIEETOLRRT
WRWOLEHIRTH LS. VEHEDO A LEX Y VEELES
HETANAMTROBTEENS Zn 7 14 > T — 5%
BT Sh, BREAZ RO TE L DFRNEB IS,

BFEHFE

A LR 1BNEN S & i &35
PREREF A NZEAR
RFIZ A NAF
NI TANAEH
VAT YA ALRE T EFA TR C STAT2D U - ER{kimE]
EAEYTALARE =323y B V3 v,P STAT12?D Y »ER{EME
oA R E L P E V,P STAT1 L STAT2D# &6 L 84T
TEaI 9L NAE Za=Hy AMRTA LA v STATIDZ 077 —hit X 557
NTSEL AR DY TAGL LR v STATIDZ BT 7 VY — iz & 54743
b FRFA T 28 v STATZOZ a5 7 V—hit L D08
SV5 A% STATIO T T 7/ — Ak L 55588

:;~5E-!7«f N AR
Za—FEUAf VAR -
AFZa—FTA VAR .

T2 NII9UNLINAMEBIFNG &+ IEEHEE

NS I2YDANAR, AT L USALNABEBRDOTALAT, IHIFN O 7 FIEEAHET S 2 & 595
NTWwHLoE—RIZLA. vy 4vA LA C EBHSEO@BELIE, VESEIZIE,, L2 a4, 60
B4 NAREZST f LA, PEREL VEAKOKERSTHE 7 3/ RMAICH IFN iESERATHET 2
(BBEYANAOCEAREEMTRRIFN EERIEL L v, VEARLHRBILTHELBOTESRTEsR T
Wizl —F, Za—=A v AVEIANA, AVTRATANA, EISSL I NI YL LA 2R BVE T
RVEARGROLA VRSV VEBBMIFET S, S2a—E0 A VABOY A VAL IFN igd o s 7

MEZRERBRESNA TRV *E,
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HaH SeV/V ) ERAVTITo RBESgE—BBCERT5
BEMRYANAEREIMRT 2400 ETHD EOH
Bid, SeVV ZBREOH IFN gL i3 odh i do £225,
DstF 2274 ATV EHIEN BEATERV TH
Ui, ZIERATHEAOROIAEDR VA
RATH, ¢0HOMEILTLE VEHEOA LK
FUNVERICHBICW IFN B2 DTl &,
L IFN 6% 3> TV T O EAENR L 2 EHBE 00D,
COFEHOEWRMIFE V) AT, BOBLALLTET
WAEDHRETHD.

W

P o gy G S R S N R S £ Y, S R ol
¥, BULRMETIRROKEEL, EEREREMOES
BE, RORR, SHESHU0EEEFoIRELEITHAO
LD IThh b OTT. ThoOFLITEA TESfv7:
LET.

AR

k1. FA o LNA (SeV) OHEVA VAESTO
ERX &L, Hemagglutinating virus of Japan (HV])
ThE, ZOTA4NAITIBEEHIUETE &5
ERBRAIPOGEEINRLFOANVIELT,
Newborn virus pneumonitits (Type Sendai) & LT
AXRERIND ) Foik Sendai &V EHGI A
ORI AL L E(HvwoRE L
2%k b, FiED EFNIHEST, FOH, B FOREK
ETREZLTTADEETANATH D I & HEHE
# v Murine parainfluenza virus type 1 ®&#Hd 5
5, LdL, BEEENELBICIATHE2PTEDL
oW TIIHEEMERLS D,

Za—EVANVABRCETEYA VARG YT TN
ZEIEEL a5, IFN DIkt H A 2 & i,
YA AREHITRMENTVWAZ ETH L. EE,
MRS w4 NAMD NSL & NS2 EHEH IRF-3 @
EE LA AET LI LIt ) [FNOELE*BET S
HEMAHESA T, FEHTRETOHRETEHIEL
7z,

*2:
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A vy =7z {(IFNIZL 5857 4 VAR
DRENL, BEELELDMAIEILEED
O EDTHSE, IFNOIETRAIE, IO
M A A IV A DX % T i (interference) 5
feRd bbbt bhd:, IFNIZIZTE
(akp) ENE (Y AHY, THIFNIHIZLALT
STOMBED S I A W ARSI L W EAE SR,
WA NVAERORBOEFRE LT, —K, 1
RIIFNIZ, FICRERMAE, & i THRRPNK
Mo X hEe X, A VAIERHIN LR
HREENEDERLE R >TWA, VA NVAREK
FuELHA | - 2Eb4 7 [ RIIFNO{ER L, ke~
g7 7—CVOREERE LS ICERRBBEICTH
Xha, BR%ER, ETEEY O ETEDY
ELITCEAGFETHIRERTH S,

74 ARG L INF

AFTIETET YL VANIFNIZIHLT 5
HedboZbhbhoTnsd, 72X CHERF
%A NMAHCV gL, BRI Ro
BEOWEHIZE, Lo SIFN-off Ao
TWwa, LaL, 74 VARRBERUATIC
5 EOHAREEDROHN D5 — A1320
%RIBETHY, )Y v EIFN-ak O REE
THORBELHESNTWS, TRBHIZHCY
B ALDPOFEIZE HIFNIIERMEERTI L

LEEINTVWA (Thd)., Hfad 5nidER,
SEL LTERREB L ERRERHAS
ZEWNEoTHRERMLATE., —K, 74
VALTBEDREVATLANOHNLFE, &
AVWREFTAIFRCEHRELLEXS LB,
EEFKoTwAELWR A,

IFND ¥ 1 )L X {EH

IEND™Y A W AZIROFERBITE—TIE% {,
SFXIRPWEOEETHHR NV, 722
IFNit, PKR(RNAKGHEBE ) v B{LER) O
EEYFEL, R LEERRPKRE A
845, ZOEMEPKRIZ, BEAEERET eIl
20051 FEB DY y ) YEREL, TANRR
TBEOMRNAOERE IO 2@ ENHSH, T2
e ideic, IENIZ2, SAGREBEDEEFEL
T T L, ppp(A2'p)nADEE L {RHET
%. ppp(A2'pYnAliRnaseL% FEHEEI O B2
BRI S, YA N APEEORNALIET T
AEHIE ToEMILIFNIZ, MxEHE
DERAZFET D, MBERFREE-T A
FETABIILAEOEREWLS /AT R
WWIHHEELTWAEBEFTHD. Mx/ v 277
Py A, BAERYYRERTA Y7L
YHGAN AT HEZTENEDDTEL R
A, MxBEBREIL, 17V Fo L VA
RSN AR EMMEE SN REYIRE
T5, ZOBRMxEREILHSGTPasefEidd W E

* Interferon system and the anti-IFN mechanism of viruses. :
** Atsushi KATO, Ph.D.: Bl B ER AR IS E 7 4 M A E=1(S208-0011 EF R EEM LT #E4-7-1) ; De-
partment of Virology I, Murayama Annex, National Institute of Infectious Diseases, Musashi-Murayama 208-

0011, JAPAN
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