

他人、当事者)や4M-4E方式などがあるが、実際はあまり使いこなせてはいない。

当院では、報告されたアクシデントを定期的に集計・分類を行い、アクシデント発生傾向を把握し現場に報告する。重要と判断されたアクシデントは、リスクマネージャー会議で分析、対策の検討を行い、再検討された対策を自部署において周知徹底している。また、リスクマネージャーに対する「ヒューマンエラー低減と再発防止への取り組み」の研修や、職員に対しては、安全管理研修の義務化、医療安全推進週間の実施など医療安全管理の意識化を図っている。

2) ヒューマンエラーについて

人間の特性は、機械と違って、適正、訓練、覚醒(意識)レベル、疲労などの内部要因から著しい影響を受ける。日本人間工学会、安全人間工学部会では、ヒューマンエラーを、人間の行動から見て、作業情報の提示・伝達の誤り、認知・確認の誤り、記憶・判断の誤り、動作・操作の誤り、操作後の確認の誤りの5つに分類している。ヒューマンエラーの原因分析の方法としては、意識のフェーズと関連させて分析が行われている。ヒューマンエラーの対策としては、標準化(重要な操作具の配列順序、形状、色彩などの規格化)、操作後の確認システム(指差呼称方法)、警報・安全装置(異常事態を適切に知らせる)の採用、教育訓練があげられている。

3) 看護師のエラーの特徴について

新人であっても、ベテランならなおのこと誰もある程度教育・指導を受ければ使いこなせる医療機器でなければならない。しかし、実際は、コンピュータをうまく使いこなせるユーザーはめったにいない。ほとんど使われることのない「モード」や「機能」のために混乱を引き起こすこともある。同じ種類の機械でもメーカーの違いによって操作方法、警報、規格も異なる。医療機器が高度であればあるほど、極度の精神的ストレスを経験し、かつ作業環境は騒々しい中での重要な判断も求められる。何か問題が生じるたびに「取説」を読まなければ理解が不可能で、特に緊急時においては読んで理解する時間的な余裕はないことが現実である。新人、ベテランのエラーの特徴をまとめると、以下のような医療機器に対する認識を考えられるため、経験年数に応じた教育・指導を考えていく必要がある。

①新人エラーについて：

知覚情報の選択ができない、経験がなく、記憶との照合ができない、判断の遅れ、決心がつかない、行動パターンが確立できていない、操作を忘れどんどん焦る

②ベテランエラーについて：

情報を得た瞬間に判断・処理してしまうため思い込みで全く違う操作をしてしまう、不注意になる、故意の違反が多い(多少規則を破って大丈夫と思い込む)

4) 看護師がME機器の取り扱いに「熟練」するにはいくつかの段階がある

新人看護師は、少なくとも医療機器の一連の操作を訓練し、安全に使用できるよう、

教育する必要がある。現場では、医師やMEが不在であることも少なくないため、中堅看護師は、アラーム対処や医療機器の不完全状態を見抜き、ベテラン看護師は、スタッフのみならず患者・家族への教育が求められる。

①一連の操作を理解して安全に使用できる

取り扱い説明書をよく読み、機器に対する基本的な知識がある、看護手順通りに使用・管理できる

②アラーム鳴動時、故障や不安全な状態を見抜き、正しく対処・行動できる

どんなアラームがあるか、正常と異常を見分け、看護師で対処できるか、ME機器管理室や医師に相談する必要があるか、メーカーへ修理を依頼する必要があるか判断できる

③スタッフに正しく説明、指導ができる

④患者・家族にも分かりやすく説明できる

5) 医療事故防止への課題

①組織的対処：病院を挙げての安全対策・事故防止システムの構築を図る。予防処置は、組織全体として取り組むべきものであり、安全対策室が、補助することにより保障される。医療機器が安全に使用できているか、MEやメーカー側が定期的に保守・点検の査察を行うなど、チーム医療・他部門他職種の協働を前提にした確認システムの構築が必要である。

②事故リスク分析とそれに基づく対処：事故内容、発生時間帯、患者側のリスクなどの分析とリスク分類に基づく予防策のシステム化

③基本的な手順遵守の徹底：

実施可能な手順であること：安全管理における標準化は、必要不可欠なものである。24時間、実施者が誰であっても、どんな状況でも守れるものになっているか、いつでも手にとって手順が確認できるか、守れない手順では意味が無い。マニュアルが現場で遵守されているか評価し、うまく機能していない場合は、標準化の見直しを図る。

④医療機器・器材に関連した課題

A. 標準化による操作手順の統一：病棟毎に異なる器具、機種、メーカー毎にアラームの鳴り方が異なるため、使用方法の標準化や製品の標準化が課題。

B. 物理的事故防止対策：経管栄養と点滴チューブがつながらないもの、人工呼吸器回路のディスポーザブル化などのように、人間の思い込み、判断の誤りがあっても事故に到らない器具・器材機器メーカーに開発を促す現場からの提案の機会を設ける、普段からメーカーとの話し合いを十分に持ち、問題発生時に速やかに対応してもらえることが望ましい。

C. 人間の行動に沿ったものの配置や環境：現場は、医療機器や材料、点滴などのものが溢れ、ナースコールや電話の対応が多い中で業務をしている。

必要なときに必要な場所に置かれている、作業環境が整っていることが課題。

D. 全ての設計が、単純であり、必要最小限のトレーニングを受けたユーザーが操作、保守、点検、修理できること、購入時点で、耐用年数、部品などの使用期限を明確化にすることが望ましい。

6) 医療機器にはいくつかの分類がある

ユーザーから患者へ：患者に対する影響（リスク）の大きさにより分類されると分かりやすい。現在、教育システムの構築は無く、現場に任されていることが多い。医療機器のリスクに応じたユーザーへの教育システムの開発（そのランク付け）・教育の義務付けが必要と考える。

- ①医療材料（カテーテル、ドレーン、チューブ類など）：新たな材料については教育が必要、初回に取り扱いを確認すれば、使用が可能
- ②測定機器（心電計、血圧計、脳波計、体温計、モニタ各種）：
取り扱い説明書を読んで使用する、初回に取り扱いを確認すれば、使用が可能
- ③診断機器（CT、MRI、生体検査装置など）：取り扱い説明書を読んで使用する、使用にあたっては教育、資格が必要
- ④治療機器（内視鏡、刺激装置、治療装置、ペースメーカー、人工呼吸器など）：
基本的な手順・アラーム対処方法のマニュアルが機器に備えられていること、訪室時定期的に患者を観察できるチェックシート、操作時・点検時のチェックリストの作成、視覚に訴えるマニュアルが望ましい、必ずユーザー全員に教育・訓練が必要
- ⑤侵襲の大きい機器（手術装置）：必ずユーザー全員に機器の知識や操作方法の訓練が必要、熟練しないユーザーには使用できない、あるいは資格が必要

4. まとめ

どんなに便利で精密で信頼性の高い医療機器であっても、ユーザーが適切に使用できなければ、提供される患者の安全が損なわれる。看護師に求められる医療機器に対する安全対策は、不具合に対する情報収集を行い、ユーザー側の問題点を洗い出すこと、そして分析・判断を行い、対策、実施、評価を一連のプロセスとして行うことである。予防的対策が取れることが望ましいが、起きたインシデント・アクシデントが二度と起こらないように対策を講じ、全職員に徹底することが重要である。

今回、医療機器のリスクマネジメントについて改めて考えてみると、現場では、「医療機器は安全」であることが前提として使用していること、安全に対する認識の甘さに気づかされた。教育指導の見直しは元より、チーム医療の観点から医師、MEなど他職種を交えて、病院全体として医療事故の再発防止に取り組む必要がある。

7. 審査の観点から見たリスクマネジメント及び課題

(財) 日本医療機器センター 添田直人
(財) 日本品質保証機構 笹尾逸郎

(1) リスク分析に関する資料

平成17年4月1日施行の薬事法改正に伴い医療機器等に関して様々な見直しが行われている。その一つとして、承認（認証）申請の添付資料として「リスク分析に関する資料」の提出が求められることとなっている。

平成17年2月16日薬食発第0216002号「医療機器の製造販売承認申請について」では、「リスク分析に関する資料」は、「1. リスク分析実施の体制に関する資料、2. 重要なハザードに関する資料」とされており、同通知の別表2では、すべての申請区分に添付が必要とされている。

平成17年2月16日薬食機発第0216001号「医療機器の製造販売承認申請に際し留意すべき事項について」では、その内容として以下のとおりとされている。

(7) リスク分析に関する資料

J I S T 1 4 9 7 1 「医療機器—リスクマネジメントの医療機器への適用」を参照にし、当該医療機器について行ったリスクマネジメントのその実施体制及びその実施状況の概要を示す資料を添付すること。

また、以下に示す事項については、リスク分析に当たり、当該想定されるリスクが臨床上の有用性と比較して受容可能であることを説明すること。

ア 申請に係る医療機器のハザードのうち、厚生労働省等から安全対策上の対応を求められたハザード（類似の医療機器に関するハザードであって、申請に係る医療機器に関連性のあるハザードを含む。）のリスク分析及び行ったリスク軽減措置を、表形式に要約した資料を添付すること。

イ アの他、J I S T 1 4 9 7 1 を参考にしてリスク分析を行った結果、重大なハザードが認められた場合、そのハザードに対するリスク分析及び行ったリスク軽減措置を表形式に要約した資料を添付すること。

上記のように「リスク分析に関する資料」では、J I S T 1 4 9 7 1 「医療機器—リスクマネジメントの医療機器への適用」を参照に、リスクマネジメントの社内体制及びその実施状況の概要を示す資料を添付することされている。

(2) 医療機器及び体外診断用医薬品の製造管理及び品質管理の基準に関する省令（GMP省令）

リスクマネジメントの体制に関しては、今後、平成16年12月17日に告示された「医療機器及び体外診断用医薬品の製造管理及び品質管理の基準に関する省令」の適用を受けることとなる。

下記のとおり第26条（製品実現計画）が直接該当する規定である。また、設計開発に係る第30条（設計開発計画）から第36条（設計開発の変更管理）の規定も密接に関係するが、第4条第1項の規定により厚生労働大臣が定める医療機器のみが適用される。

なお、26条第5項及び第6項など、附則第4条の規定によりこの省令の施行の日から2年間は規定を適用しないことができる規定があることに留意する必要がある。

○医療機器及び体外診断用医薬品の製造管理及び品質管理の基準に関する省令

(H16.12.17厚生労働省令第169号)

(製品実現)

第26条

5 製造業者等は、製品実現に係るすべての工程における製品のリスクマネジメントに係る要求事項書を作成しなければならない。

6 製造業者等は、リスクマネジメントに係る記録を作成し、これを保管しなければならない。

承認（認証）申請の審査のためには、リスクマネジメントの体制及びリスクマネジメントの実施状況に関する添付資料への記載のモデルを具体的に示すことができれば有用である。

(3) J I S T 1 4 9 7 1

一方、個別製品のリスクマネジメントを行う上では、J I S T 1 4 9 7 1を参照することとされているが、J I S T 1 4 9 7 1は、「1. 適用範囲」で、「受容可能なリスクレベルを規定しない」とされており、また、「医療機器の使用に関する臨床的判断には適用しない」とされている。

J I S T 1 4 9 7 1の基本的考え方は、以下のとおりとなっている。

①リスク分析（ハザードの特定、リスク（危害の発生確率×危害の重大さ）の推定）

↓

②リスク評価（リスクの受容判断）

↓

③リスクコントロール（リスクコントロール手段の選択・実行、残留リスクの評価、リスクの受容判断）

↓

④製造後の情報

実際にリスクマネジメントを行うためには、ハザードの特定方法、リスク（危害の発生確率及び重大さ）の推定方法、受容判断基準の設定方法に関する最低限の基準あるいは標準的考え方を具体的に示すことができれば有用である。

ア. ハザード

J I S T 1 4 9 7 1では、「正常状態及び故障状態の両方における医療機器に関連した既知又は予見できるハザード」としている。また、参考として附属書A（安全に影響する医療機器の特質を明確化するために使用できる質問事項）、附属書B（インビトロ診断機器に関するリスク分析の指針）、附属書C（毒性的なハザードに関するリスク分析手順の指針）が示されており、附属書D（医療機器に関連しておこる可能性があるハザード及び関連する要因）で、すべてを網羅しているわけではないとの限定付きで、ハザード及び関連する要因のリストを示している。

承認（認証）申請の審査のためには、今後次の事項を検討することも有用と思われる。

①縦軸にハザードの種類、横軸にハザードの評価方法を入れたマトリクスの作成。

②附属書A～Dを基本として、今後告示される基本要件基準及びその他の資料を参考に考慮すべきハザードをさらに整理した表の作成。

③ハザードの特定のために考慮（参照）すべき情報源を提示。

例)

- ・行政による自主点検通知
- ・回収情報
- ・外国の添付文書（海外にある場合）
- ・類似医療機器の添付文書
- ・類似医療機器の不具合情報

イ. 危害の発生頻度及び重大性

J I S T 1 4 9 7 1 では、参考として附属書E（医療機器に適用するリスク概念）及び附属書F（リスク分析手法に関する情報）があるが、定性的（主観的）である。しかしながら、今後一般的かつ定量的なリスク（危害の発生確率及び重大さ）の推定方法を作成することは困難と思われる。

ウ. リスク軽減措置

J I S T 1 4 9 7 1 では、下記の優先順位に従ってその一つ以上を用いることを求めている。

- ①設計による本質的な安全
- ②医療機器自体又は製造工程における防護手段
- ③安全に関する情報の提供

また、残留リスクのリスク／効用分析を行うことも記載している。
これについては、特段あらたな検討は不要と思われる。

エ. 受容判断基準

J I S T 1 4 9 7 1 では、「受容可能なリスクレベルを規定しない」とされており、また、「医療機器の使用に関する臨床的判断には適用しない」とされている。リスクマネジメント計画で確立した判断基準を用いて判定する際に、残留リスクが受容できないと判定した場合は、医学的効用が残留リスクを上回るかどうか判定することとしている。

薬事法第14条第2項では、以下の第3号に該当する場合は承認は与えないとされている。

「三、名称、成分、分量、構造、用法、用量、使用方法、効能、効果、性能、副作用その他の品質、有効性及び安全性に関する事項の審査の結果、その物が次のイからハまでのいずれかに該当するとき。

- イ その申請に係る効能、効果、又は性能を有すると認められないとき。
- ロ その効能、効果又は性能に比して著しく有害な作用を有することにより、使用価値がないと認められるとき
- ハ イ又はロに掲げる場合のほか、・・・不適当なものとして厚生労働省令で定める場合に該当するとき（注：性状又は品質が保健衛生上著しく不適当な場合）」

今後告示が予定されている基本要件基準では、以下の項目が規定される予定となっている。なお、該当する項目のみが適用される。

- ①一般的な要求事項 6項目
- ②化学的、物理学的並びに生物学的特性 6項目
- ③感染及び微生物汚染 10項目
- ④製造及び環境的特性 4項目
- ⑤診断或いは測定機能を有する医療機器又は体外診断薬 5項目

- ⑥放射線防護 5 項目
- ⑦エネルギー源への接続又はエネルギー源を具備している医療機器又は体外診断薬 7 項目
- ⑧機械的リスクに対する防護 5 項目
- ⑨供給エネルギー又は物質が患者に及ぼすリスクに対する防護 3 項目
- ⑩自己検査用医療機器、自己検査体外診断薬又は自己投薬機器が患者に及ぼすリスクへの防護策 3 項目
- ⑪製造業者・製造販売業者が提供する情報 1 項目
- ⑫性能評価、該当する場合、臨床試験を含む 2 項目

承認の場合は承認基準、認証の場合は適合性認証基準とともに示される予定となっている基本要件適合性チェックリスト（案）では、共通のものとして以下の記載がある。

適合の方法	特定文書の確認
・要求項目を包含する認知された基準に適合することを示す。	・「医療機器の製造管理及び品質管理に関する基準」
・認知規格に従ってリスク管理が計画・実施されていることを示す。	・J I S T 1 4 9 7 1：医療機器－リスクマネジメントの医療機器への適用

具体的に全身用X線CT装置の基本要件適合性チェックリスト（案）を例にとると、J I S T 1 4 9 7 1を特定文書としている項目は、以下のとおりである。

- 1項（安全性）
- 2項（残存リスク）
- 4項（特性及び性能の悪影響）
- 5項（輸送及び保管による特性及び性能の低下防止）
- 6項（有効性）
- 7. 6項（物質のリスク）
- 9. 2項（リスクの除去又は低減）
- 12. 1項（システムの再現性、信頼性及び性能）
- 16. 1項（使用者への情報提供）

（4）審査の考え方でみた場合

リスクに関しては以下のとおり考えられるが、薬事法改正を踏まえて今後さらに検討する必要がある。

- ・平成17年2月16日薬食機発第0216001号「医療機器の製造販売承認申請に際し留意すべき事項について」では、厚生労働省等から安全対策上の対応を求められたハザード（類似の医療機器に関するハザードであって、申請に係る医療機器に関連性のあるハザードを含む。）のリスク分析及び行ったリスク軽減措置を、表形式に要約した資料を添付することとされているように、自主点検通知等の対象の医療機器・問題事項は必ずチェックする必要がある。
- ・上記通知では、重大なハザードが認められた場合、そのハザードに対するリスク分析及び行ったリスク軽減措置を表形式に要約した資料を添付することとされているが、重大なハザードの基本的な考え方がなければ申請者間でバラツキが生じるおそれがある。
- ・適合性認証基準又は承認審査基準に適合する場合は、当該基準で規定しているリスクに関しては受容できるものとみなすことになる。ただし、基準のうち判断基準が明確でない項目を除く必要がある。
- ・認証品目又は承認審査基準がある品目については、基本要件チェックリストで非該当と

された項目はチェックする必要はないものと考える。

- ・基本要件基準への適合性を判断する場合には、その適否の判断ができる資料が必要になる。

8. 平成17年度に向けた課題

分担研究者 吉田 正人

本研究の目的は、初年度の総括研究報告書に記述されているが、ここで繰り返すと以下のとおりである。

これまでに制定されているISO14971やGHTF基本要件は、医療機器全般にわたって満たすべき総論というべきものであり、リスク管理手法を個別の機器に当てはめ、さらに承認申請時点において確認しておくべきリスク管理の内容については必ずしも明確になっていない。本研究の目的は個別の機器のリスク管理等について問題点を洗い出し、実効的な医療機器のリスク管理を考える上でのガイダンス的評価手法を確立することである。

初年度は、本研究の目的を念頭に置きながら、医療機関、企業及び審査機関側より、それぞれの立場から問題点を洗い出してみることに論議の主眼をおいた。その結果、以下の点が課題として挙げられた。それぞれの課題ごとに次年度において論議を深めていくことになるが、ここでは議論の切り口となるいくつかの論点を列挙してみたい。

課題 1

医療機器はきわめて多種であり、それぞれに設計、製造、使用等が一律ではない。従ってリスク管理も機種ごとに異なり、薬剤とは違った複雑な様相を示す。かかる機種の差異に応じたリスク管理における定量的取り扱いが問題となるであろう。

＜論点＞

異種の機器ごとのハザードリストに基づき、ハザードの大きさと頻度を図示したマトリックスを作成して比較分析すると、異種の機器間の特徴や問題点がつかめ、リスクの重点的な管理手法の糸口が見出されるかもしれない。

マトリックスのパラメータ（ハザードの大きさと頻度）は、可能な限り具体的かつ定量的なものを開発することが必要である。例えば、ハザードの大きさは損傷部位の治療期間、ハザードの頻度は機器の故障率とも関係があるだろう。

実効性のあるハザードを識別するために、不具合報告等における実際の有害事象（機器の不具合）を吟味することも必要である。ハザードと有害事象とは裏腹の関係にあるからである。

課題 2

医療機器の承認申請時点において満たすべきリスク管理の内容は、これまでのリスク分析やGMP等の法体系全体の中で、整合性とバランスのとれたものにすることが必要である。

＜論点＞

わが国の新GMP／QMSでは、医療機器の製造管理及び設計管理の対象機器は医療機器のリスククラスによって異なっている。クラスI機器の半分近くはGMPの製造管理が必要である。その他のクラスI機器はGMPが適用されない。クラスIIからIVまでの医療機器はすべてGMPの製造管理が必要である。設計管理は、クラスIIでは一部、クラスIIIではほとんど、クラスIVではすべて適用される。リスク管理はGMP／QMSの一部でもあるため、リスク管理の対象とすべき工程（設計開発、製造工程）も機器ごとに異なったものになってくるだろう。例えば、クラスI機器でGMPが適用されないものはリスク管理も不要とし、クラスIV機器は設計開発及び製造過程を通じたリスク管理が必要となるという解釈が成り立つかもしれない。

課題3

ISO14971、GHTF基本要件等の成立の経緯を調査研究し、欧米各国における状況の違いや、リスク分析用語の意味内容をよく吟味する必要がある。

＜論点＞

わが国にリスク管理を法規制として導入する場合には、国際的な整合性と国際相場感を考慮に入れるべきである。特に、欧州において長年にわたり要求されてきたリスク分析の範囲と関連データについて調査研究し、ISO14971やGHTF基本要件との関連づけを行い、リスク管理の要求範囲を提案する必要があるだろう。

課題4

医療現場で使用される医療機器のリスク管理を考えるにあたっては、単に製造企業側のみでなく、使用者としての医療側の意見を取り入れることが必要である。さらに情報の共有化のために、審査側のメンバーも討論に参加することが必要であり、これら全体の討論のもとにリスク管理手法を決めることが医療の安全の実効的向上につながる。

ユーザーとしての医療側は、設計・製造側である企業に対して、機器設計上の人間工学的配慮や使用現場の実態への理解を深めることを希望し、情報の共有、教育周知の徹底などが必要であることを指摘している。

＜論点＞

機器設計上の人間工学的配慮や、使用現場の実態把握に努めることは、機器の設計・製造に携わる企業の大きな責務である。昨今、ヒューマンファクター・エンジニアリング（HFE）、ユーザビリティ、ヒューマンエラー、ユースエラーなどの国際規格づくりが鋭意進められているが、これらの情報も医療機器の設計開発やリスク管理において大いに役立つものと思われる。リスク管理の

手法の中に、HFEなどの要素をどのように取り入れ、リスクを抑え込むか、その手順やプロセスについて議論を深めていく必要がある。

医療機関と企業との情報の共有、教育周知の徹底については、本研究班においても論議されてきたところであるが、リスク管理から見た有効なツールについて重ねて議論を続けていく必要がある。

課題 5

審査においても、リスク管理における定量性の考え方や、残留リスクと医療上の効用とのバランスをどう考えるかという点が問題になる旨の意見が出ている。個別機器のリスク管理や残留リスクと医療上の効用のバランスを考える場合、これらの定量性について吟味する必要がある。

〈論点〉

リスク管理の規格や文献では、これらの課題に対する客観的判断基準が示されていない。然るに、製品の設計・開発思想や、個々の安全規格基準の中には、機器の安全要素（強度、耐圧、毒性、滅菌など）に対する安全倍率、安全係数という観念が存在しており、これらの情報をリスク管理と関連づけて整理するならば、リスクの定量的評価が可能となるかもしれない。

必要な場合、臨床データもリスク管理の大きな要素となり得る。臨床試験は、本来、設計管理における「設計の妥当性確認」として位置づけられるが、近年、リスク管理においても、有効な評価手段として認識されている。

他方、残留リスクと医療上の効用とのバランスをどう考えるかという点は、最終的には企業の判断と責任の問題とされている。そのため、リスク／ベネフィットの比較考量から、効用がリスクを上回るという論拠を文書にして審査側に示す必要がある。この場合、有効率何%、有害率何%というように可能な限り数字で定量性を論証するならば、審査側の評価に役立つかもしれない。その定量的な表現方法も今後の研究課題となろう。

課題 6

数万種類にわたる個別の機器ごとに、一つ一つリスク管理の要件を決めていくことは実際的でない。リスク管理という観点から、医療機器の類別化をはかり、その機器群ごとにリスク管理手法を定めていくことがリスク評価のガイドンスを示す上で便利である。

〈論点〉

機器の分類方法については、GMDNで検討されているサブカテゴリー（集合語又は中分類）がそのままリスク管理上の括りにはなりにくいかもしれない。その他の分類法として、例えば機器の属性としてのいくつかの形質に着目した形質的分類等の方法が存在しないだろうか。それらの分類法の具体案と得失などについて考察してみる必要がある。

以上

IMPLEMENTATION OF HAZARD ANALYSIS AND CRITICAL POINTS (HACCP) PLAN AS A CONTINUAL IMPROVEMENT INITIATIVE IN THE MANUFACTURING PROCESS OF MEDICAL DEVICES

By O. VICTOR OPARAH, RPh, MS.

Abstracts

Hazard Analysis and Critical Control Points (HACCP) plan is a program where manufacturers determine their critical control points, and assure that they are in control. The program allows auditors and investigators to focus on critical control points (CCPs), which are identified through hazard analysis of every single step of device manufacture. It allows manufacturers to zero in on critical control points that could lead to device failures or other problems by implementing specific corrective actions, monitoring procedures, verification and process validation as preventive measures.

Qualified device manufacturers who participate in the HACCP program will work with the Center for Device and Radiological Health (CDRH) in implementing their program. The center has adopted seven elements, which apply to all manufacturers and which are already required in the Quality Systems Regulations and ISO 9000 series.

Compliance to QSR is a prerequisite to participation in the HACCP program and industry will develop the specific HACCP elements that apply to their particular device technologies. Invaluable benefits from the program include increased quality consciousness of employees, limited inspection time, and decreased device problems through quality monitoring of critical control points.

INTRODUCTION

In February 9, 2000 BioEnterics Corporation completed the submission of an original PreMarket Approval (PMA) application for the LAP-BAND Adjustable Gastric Banding System, a surgical implant for the treatment of severe obesity. BioEnterics utilized the FDA PMA Shell (framework of modules that identifies the information that will be necessary to support the filing and approval of a specific class III product) and Modular Review process. The Manufacturing Module included a Hazard Analysis and Critical Control Points (HACCP) plan as first, a continual improvement initiative and second, to facilitate FDA's review of the manufacturing process.

According to FDA's Center for Devices and Radiological Health (CDRH), Becton Dickinson, in the fall of 1999 reported the results of implementing HACCP for their chocolate agar product line, which they stated was at "regulatory risk". According to their quality engineer, implementing HACCP resulted in a saving of \$2,000 to \$3,000 per week through a reduction in rework and scrap. That was approximately \$100,000 a year for one product line. Becton Dickinson manufactures a total of 13,000 products.

Hazard Analysis and Critical Control Point (HACCP) is a risk management concept that is being explored by the Food and Drug Agency's Office of Compliance and the medical device industry as the next phase of quality system regulations (QSR) evolution. Typically, FDA's GMP inspection involves the review of complaint files and non-conforming reports which may be related to either design controls, and/or production/process controls that may result in rework and scrap. Driven by budgetary constraints, the Office of Compliance is looking for ways to conduct short but highly

focused quality system inspections. And HACCP is their top consideration. It will impact greatly on time and effort in reviewing device submissions and will result in significant savings for companies.

The HACCP concept was originally designed as a process control strategy for the food industry. It is currently taking a foothold in regulating devices, while being considered as a mechanism to advance drug GMP compliance. HACCP is a science-based method for understanding and controlling manufacturing processes by focusing on select “critical control points” (CCPs). These critical control points represent a crucial step in a manufacturing process that compromises the product if malfunctions occur. The points are identified through systematic hazard analysis.

After a CCP is identified, the manufacturer establishes both “critical limits” for the particular operation and monitoring procedures to ensure those limits are not exceeded. Corrective and preventive actions are put in place should CCP exceed or near the limits of specification. HACCP also requires that verification and record-keeping procedures be developed.

The HACCP concept can be integrated into the recipes and standard operating procedures of any small, regional, and national establishment. Thus far, three medical device manufacturers namely, Cyberonics Inc, Becton Dickinson BioSciences, and BioEnterics Corporation have implemented HACCP and have reported positive results through various media. Employee training is a major factor in successful implementation of HACCP. Employees must learn which control points are critical in an operation and

what the critical limits are at these points, for each preparation step they perform.

Management is required to also follow through by routinely monitoring the operation to verify that employees are keeping the process under control by complying with the critical limits.

For these reasons, CDRH and FDA have trained and continue to train their inspection personnel to understand the concept properly and be able to perform HACCP inspections.

The agency's Center for Food Safety and Applied Nutrition (CFSAN) and the Department of Agriculture, and worldwide organizations, such as Codex Alimentarius and the European Union has included HACCP in their manufacturing assessment programs.

Proponents of HACCP view the concept as providing manufacturers with more precise means of overseeing and controlling their processes, which could in turn lead to greater efficiencies and cost-savings. From FDA's point of view, HACCP offers the potential to stretch scarce inspection resources through development of an auditing tool that allows investigators to concentrate on critical manufacturing operations.

The implementation of HACCP, as it is, will continue to evolve and to be further refined as new products and procedures are developed and as hazards and their control measures are more defined. This document will examine in further detail the components of HACCP plan and how it can be incorporated in manufacturing processes to ensure product safety, enhance FDA facility inspection, and represent a cost-savings initiative for the medical devices industry and the public health community in general.

HISTORY

The Pillsbury Company with the cooperation and participation of the National Aeronautic and Space Administration (NASA), Natick Laboratories, and the U.S. Air Force Space Laboratory Project Group in the early 1960s pioneered the application of HACCP to food production. It created food for the U.S. space program that approached 100% assurance against contamination by bacterial and viral pathogens, toxins, and chemical or physical hazards that could cause illness or injury to astronauts. The concept identified where a possible safety risk could occur in a food production facility and attempted to control that risk, eliminating the problems in the end product. Ultimately, it replaced end-product testing to provide safety assurance and provided a preventive system for producing safe food that had universal application.

Since that time, HACCP has been adopted by the military as well as many food processors, and food handling establishments. It has been endorsed worldwide by organization such as the European Union and by several countries including Canada, Australia, Iceland, Thailand, New Zealand, and Japan. The concept is becoming more broadly recognized by the international community as a mechanism to apply uniform inspection procedures.

HACCP EXPERIENCE:

The FDA first required HACCP for low-acid canned food processing in 1973 as a preventive measure against botulism. After several years of pilot testing, data collection, and studying similar programs, the FDA published the “Final Rule” on the mandatory

HACCP requirements for the seafood processing industry in 1995. These regulations now consist part of Chapter 21 of the CFR under a new "Section 123" and state that all seafood processors and importers must comply with these regulations by December of 1997. Since 1998, FDA's Center for Devices and Radiological Health (CDRH) has been exploring how HACCP concepts might be applied in a medical device context, particularly as a means to streamline inspections. Consideration is also given to extending the program to the drug GMP compliance area, given the experiences of the CDRH and field staff with HACCP and risk management in device regulation.

Part of the force behind this deep consideration and support for HACCP is the resource constraints throughout FDA's enforcement program. The large array of device firms falling under FDA's regulatory territory has prompted CDRH in particular to look for more efficient compliance approaches. As a result, new quality concepts have been actively debated for devices, and CDRH has been taking the lead in piloting programs to test their validity.

HACCP has been shown to have direct and immediate cost benefits as demonstrated by the experiences of Becton Dickinson. The concept is a structured and predictable approach to a risk-based product quality system that is focused and clearly delineates the role and responsibilities of all participants. HACCP also would result in immediate time and cost savings in providing a pre-approved format for PMA and 510(k) submissions and for establishing GMP documents using established HACCP principles acceptable to FDA and medical device industry.

Intangible benefits of the concept begin with management commitment to bring together design, production, and quality employees into a united team committed to maximizing reliability and minimizing risk. Long term implementation of the plan will yield optimized productivity with decreased operating cost and improved employee morale. According to the Senior Regulatory Operations Officer of the FDA/CDRH, Mr. Joseph Salyer, “voluntary HACCP participation connotes acknowledgement of following established guideline or standards and can benefit in potential reduction in liability insurance cost”(5). With every step of production examined and analyzed to eliminate faulty design of product, injuries accruing from such products are minimized, consumer satisfaction is increased, and product litigation is expunged.

DEFINITIONS (9,11)

Many terms are used in the discussion of HACCP that must be clearly understood to effectively develop and implement a plan. It may be pertinent at this point to define some of these terms prior to further discussion for a better understanding.

Acceptable level – means the presence of a hazard which does not pose the likelihood of causing an unacceptable health risk.

Critical control point – means a point at which loss of control may result in an unacceptable health risk.

Critical limit – means the maximum or minimum value to which a physical, biological, or chemical parameter must be controlled at a critical control point to minimize the risk that the identified safety hazard may occur.

Deviation – means failure to meet a required critical limit for a critical control point.

HACCP Plan – means a written document based upon the principles of HACCP, which delineates procedures to be followed to assure control of a specific product and a specific process.

HACCP System – means a firm's HACCP related activities, including prerequisite programs, HACCP training and HACCP plan.

Hazard – means a biological, chemical, or physical property that may cause an unacceptable consumer health risk.

Monitoring – means a planned sequence of observations or measurements of critical limits designed to produce an accurate record and intended to ensure that the critical limit maintains product safety. Continuous monitoring – means an uninterrupted record of data.

Prerequisite Programs – means pre-established programs in place at the firm before implementation of HACCP, such as: design control; quality systems; sanitary control over facilities, personnel, equipment; production and processing operations; compliance with all applicable FDA regulations.

Preventive measure – means an action to exclude, destroy, eliminate, or reduce a hazard and prevent defect through effective means.

Risk – means an estimate of the likely occurrence of a hazard.

Verification – means methods, procedures, and tests used to determine if the HACCP system in use is in compliance with the HACCP plan.

HACCP PRINCIPLES

As part of the FDA's Modernization Act of 1997, the CDRH initiated several programs to produce more focused and efficient inspections of devices manufacturing facilities.

One of those programs is the HACCP. A team was formed to examine the current inspectional techniques (QSR and ISO 9001/13485) and compare it with the seven principles of HACCP.

The seven principles are: (5,6,9,10)

1. Conduct a hazard analysis and identify preventive measure

This involves listing of steps in the manufacturing process where significant hazards occur and description of relative preventive measures.

2. Identify critical control points (CCP) in the process.

This is a step or procedure where control can be applied and a safety hazard can be prevented, eliminated, or reduced to acceptable levels.

3. Establish critical limits for preventive measures associated with each identified CCP

4. Establish CCP monitoring requirements.

Establish procedure for using monitoring results to adjust the process and maintain control. It involves looking at:

- **What:** usually a measurement or observation to assess if the CCP is operating within the critical limit.
- **How:** usually physical or chemical measurement (for quantitative critical limits) or observations (for qualitative critical limits).
- **When (frequency):** can be continuous or intermittent.
- **Who:** someone trained to perform the specific monitoring activity.