genes asal, cylA and aac(6’)/aph(2”’) was used as donor, and F. faecalis FA2-2
(rifampicin and fusidic acid resistance) was used as recipient. Broth matings were
performed with a donor/recipient ratio of 1:10.  Overnight cultures of 0.05 ml of donor
and 0.5 ml of recipient were added to 4.5 ml of fresh broth, and the mixtures were
incubated at 37°C with gentle agitation for 4 h. Portions (0.1 ml) of the mixed and
diluted culture were then plated on Todd Hewitt agar plates with appropriate selective
antibiotics. Transconjugants were selected on Todd Hewitt agar plates supplemented
with 500 pg of gentamicin/ml and 25 pg of rifampicin and fusidic acid/ml. Colonies
were counted after 48 h of incubation at 37°C. Separate platings where donors alone
were selected provided a basis for estimating the transfer frequency (per donor).  Filter
matings were also carried out. Overnight cultures of 0.1 ml of donor and 1 m! of
recipient were added to 9 ml of fresh broth, and the mixtures were immediately
collected on a membrane (25 mm width 0.45 pm pore size filter, type HA; Millipore
Corp., Billerica, MA, USA), which was inverted onto the surface of 2 Todd Hewitt agar
plate supplemented with 4% horse blood. After incubation at 37°C for 20 h, the cells
were suspended in 1 ml of Todd Hewitt broth. The subsequent procedure was the
same as that for broth matings. Transfer frequencies were calculated as the number of
transconjugants per donor cell.

" Retrospective .clinical study. We retrospectively reviewed the medical
records of the 352 patients whose characteristics were summarized in Table 2 and
classified their UTI as catheter-related or catheter-unrelated, polymicrobial or
monomicrobial, and febrile or non-febrile cases. Febrile UT! was defined as UTI in a
patient with a body temperature of > 37.0°C.

Statistical methods. Data are expressed as mean values + standard deviation
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(SD). Comparison of ODsz values between groups was carried out using Fisher’s
exact test or Mann-Whitney’s U test. All results were considered statistically

significant at the P<0.05 level.

Results

Presence of various genes, and the production of extracellular enzymes in E.
Jaecalis isolates. Of the 352 E. faecalis isolates, 291 (82.7%), 254 (72.2%), 164
(46.6%), 306 (86.9%), and 141 (40.1%) isolates possessed asal, esp, cyld, gelE/sprE,
and aac(6’)/aph(2”), respectively. Of 164 isolates possessing the cyld gene, 63
(38.4%) isolates produced HIn. Of 306 isolates possessing gelE/sprE genes, 167
(54.6%) isolates produced Gel. The number of E. faecalis isolates with both asal and
esp genes, with asal gene only, with esp gene only, and with neither gene were 230, 61,
24 and 37, respectively.

Biofilm formation of E. faecalis isolates. Of the 352 E. faecalis isolates, 64
(18.2%), 156 (44.3%), and 132 (37.5%) isolates exhibited strong (ODs70 20.5), medium
(ODs7p 20.2 to <0.5), and weak (ODs3g 0 to <0.2) biofilm formation, respectively. The
mean ODsy of the 352 isolates was 0.3630.37 (meantSD). We evaluated the
relationships between biofilm formation and the 4 virulence determinants of the E.
faecalis isolates. As shown in Table 3, the mean ODsy value (meaniSD) was
significantly higher in asal-, esp-, and cylA-i)ositive isolates than in asal-, esp-, and
cylA-negative isolates (P=0.0176, P=0.0276 and P=0.0116, respectively). The value
was also significantly higher in Hln producing isolates than in Hln non-producing

isolates (P=0.0384). We also evaluated the biofilm-forming capacities of E. faecalis
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isolates in the four groups based on the presence/absence of asal and esp genes (Fig.1).
As shown with a box and whisker plot, the E. faecalis isolates with asal and esp genes
had greater capacities for biofilm formation than did those lacking these genes. The
Mann-Whitney’s U test of 2 mean ODsyg values (meantSD), 0.41+0.42 and 0.22+0.16,
in 230 asal-, esp- positive and 37 asal-, esp- negative isolates, respectively, confirmed
that the E. faecalis isolates possessing both asal and esp genes had significantly greater
capacities for biofilm formation than did those lacking both genes (P=0.038).

Percentage of E. faecalis isolates possessing cylA, gelE/sprE and
aac(6’)/aph(2”) genes in four groups based on the presence/absence of asal and esp
genes. As shown in Fig.2, the percentage of E. faecalis isolates possessing cyl4 and/or
aac(6’)/aph(2”)genes was greatest in the group with both asa! and esp genes and lower
in the groups with only the asal gene or the esp gene. No isolates possessing the cyid
gene and only 1 isolates possessing the aac(6')/aph(2”’)gene were found in the group
lacking both the asal and esp genes. In contrast, E. faecalis isolates possessing
gelE/sprE genes were found evenly among the four groups. Of the 230 E. faecalis
isolates in the group with asal and esp genes, 147 (63.9%), 195 (84.8%) and 117
(50.9%) possessed cyld, gelE/sprE and aac(6’)/aph(2 ”)genes, respectively. Of the 61
E. faecalis isolates in the group with only the asal gene, 15 (24.6%), 56 (91.8%) and 22
(36.1%) possessed the cyld, gelE/sprE, and aac(6')/aph(2”)genes, respectively. Of
the 24 E. faecalis 1solates in the group with only the esp gene, 2 (8.3%), 23 (95.8%) and
1 (4.2%) possessed the cyld, gelE/sprE, and aac(6’)/aph(2”)genes, respectively. Of
the 37 E. faecalis isolates in the group with neither gene, 0 (0%), 32 (86.5%) and 1
(2.7%) possessed the cylA, gelE/sprE, and aac(6’)/aph(2”’)genes, respectively.

Number of E. faecalis isolates producing hemolysin and gelatinase in four
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groups based on the presence/absence of asal and esp genes. As shown in Fig.3, the
majority of Hln-producing and Gel-producing isolates were found in the group with
both asal and esp genes. Of the 63 Hin-producing and 167 Gel-producing isolates, 59
(93.7%) and 94 (56.3%) isolates, respectively, possessed both the asal and esp genes.

Transferability of asal, cylA and aac(6’)/aph(2”) genes. To determine the
transferability of asal, cyld and aac(6’)/aph(2”’) genes, mating experiments were
performed. Of the 43 E. faecalis isolates possessing the 3 genes of asal, cyld and
aac(6’)/aph(2 "), 4 isolates were able to donate gentamicin resistance at a frequency of
10 to 10! per donor in broth matings. In filter matings, 7 of 43 and 28 of 43 isolates
were able to donate the gentamicin resistance at a frequency of 10 to 10" and 10 to
107 per donor, respectively. The presence of asal, 'cyIA and aac(6’)/aph(2”) genes in
transconjugants was confirmed by PCR assay. Of the transconjugants from the 35 E.
faecalis isolates possessing asal, cyld and aac(6’)/aph(2”), 35 (100%) possessed the
aac(6’)/aph(2”) gene, 33 (94.3%) possessed the asal gene and 12 (34.3%) possessed
the cy/4 gene.

Clinical aspects on the isolation of E. faecalis in four groups based on the
presence/absence of asal and esp genes. The 352 cases of UTI caused by E. faecalis
consisted of 107 catheter-related (30.4%) and 245 catheter-unrelated (69.6%) cases, 202
polymicrobial (57.4%) and 150 monomicrobial (42.6%) cases, and 60 febrile (17.0%)
and 292 non-febrile (83.0%) cases. No statistically significant differences between
biofilm-forming capacities and clinical background (catheter-related and
catheter-unrelated cases, polymicrobial and monomicrobial cases, febrile and
non-febrile cases) were found (Table 3). As shown in Fig.4, both asal and esp genes

were carried by 20, 46, 79 and 85 isolates from patients with catheter-related
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monomicrobial UTI, catheter-related polymicrobial UTIL, catheter-unrelated
monomicrobial UTT and catheter-unrelated polymicrobial UTI, respectively. The asal
and/or esp genes were carried on 80 of 82 (97.6%) and 103 of 124 (83.1%) isolates
from patients with catheter-related polymicrobial UTI and catheter-unrelated

monomicrobial UTI, respectively, (Fisher’s exact test: P=0.0020).

Discussion

Enterococci are an important cause of nosocomial infections [3-5]. Although
E. faecalis in the urinary tract rarely causes serious infectious symptoms, the frequency
of isolation of E. faecalis from the urinary tract of hospitalized patients has risen [6-8].
One of the reasons, we suspect, is that the number of patients with various urinary stents
and catheters is increasing with the progress of endourology in the urology ward.
Therefore, it is important to understand biofilm formation and the pathogenicity of E.
JSaecalis infections in the urinary tract.  Biofilms are surface-associated, sessile bacterial
communities. A mature biofilm is formed when planktonic cells initially colonize a
surface, aggregate and/or grow into multicellular colonies, and embed themselves in an
exopolysaccharide matrix [29, 30]. Enterococci have been associated with biofilms on
various kinds of indwelling medical devices [29]. An understanding of the bacterial
factors that foster enterococei in the nosocomial environment or at infection sites is only
recently emerging,

The incidence of virulence factors in E. faecalis clinical isolates has been
studied [31-33]. In 1995, Coque et al. [31] reported that frequencies of Hln, Gel and

asal in E. faecalis ﬁrine isolates were 13, 53 and 67%, respectively. In 2002, Vergis et
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al. [32) reported that frequencies of Hin, Gel and esp in E. faecalis blood isolates were
11, 64 and 32%, respectively. In our study, frequencies of Hin, Gel, asal and esp in E.
faecalis urine isolates were 63/352 (17.9%), 167/352 (47.4%), 291/352 (82.7%) and
254/352 (72.2%), respectively. Our data indicated that E. faecalis isolates possessing
both asal and esp were predominant. As shown in Fig.2, E. faecalis isolates
possessing asal were more likely to contain cyl4 and/or aac(6’)/aph(2”). This may be
due to the expression of asal-encoded Agg facilitating the subsequent exchange of
genetic material between E. faecalis isolates. The additional presence of virulence
factors may enhance the ability of pathogenic E. faecalis to persist in the clinical
environment.

Horizontal gene transfer is important for the evolution and genetic diversity of
natural microbial communities [34]. The prevalence of plasmids in bacteria from
diverse habitats is well established, and gene transfer by conjugation is one of the best
understood mechanisms for dissemination of genetic information. Since most bacteria
in natural settings reside within biofilms, it follows that conjugation is a likely
mechanism by which bacteria in biofilms transfer genes within or between populations.
In this study, we chose E. faecalis isolates possessing the 3 genes asal, cyl4 and
aac(6’)/aph(2”) to examine gene transfer from one Enterococcus to another. These
three genes have been reported to be encoded on pheromone-responsive E. faecalis
plasmids [23, 35]. Our data indeed demonstrated the existence of highly conjugative
virulence genes and antimicrobial resistance genes in E. faecalis isolates from patients
with UTL

With regard to biofilm formation, there were contrasting reports on the role of

Esp and Gel. A strong correlation between the presence of Esp and the ability of an
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enterococcal strain to form biofilms in vitro has been reported [13]. In the same study,
however, it was suggested that additional determinants in E. faecalis may also
contribute to biofilm formation. More recently, Kristich et al. [14] demonstrated that
an esp-negative strain can form biofilms on abiotic surfaces independently of Esp.
Mohamed et al. [15] also demonstrated that esp was not required to form biofilm, but
that its presence was associated with higher amounts of biofilm. In the same study,
several genes of E. faecalis that influenced primary attachment and biofilm formation
(epa, atn, gelE, and fsr) were identified. Most recently, Tendolkar et al. [17] defined
Esp as a key contributor to the ability of E. faecalis to form biofilms in a
glucose-dependent manner. In addition, Kristich ef al. [14] reported that Gel enhanced
biofilm formation by E. faecalis, whereas Tendolkar ef al. [17] did not find a synergistic
effect between Gel and Esp on biofilm formation. In our study, biofilm-forming
capacities were significantly higher in esp-positive isolates than in esp-negative isolates
(Table 3). On the other hand, there were no significant differences between
gelE/sprE-positive, Gel producing isolates and gelE/sprE-negative, Gel non-producing
isolates on biofilm-forming capacities (Table 3).

In our study, cyld-positive, Hln producing E. fuecalis isolates formed biofilms
at rates significantly higher than those of cyl4-negative, HIn non-producing isolates
(P=0.0116 and P=0.0384, respectively). To our knowledge, there has been no report
on Cyl of E. faecalis implicating it in biofilm formation. Caiazza et al. [36] showed
that Hla, a 34-kDa protein of Staphylococcus aureus that causes host cell lysis by
heptamerizing upon insertion into eukaryotic cell membranes, plays a primary role in
cell-to-cell interactions during biefilm formation. They were initially surprised to find

that a secreted toxin had such a dramatic impact on biofilm formation. More recently,
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we showed that the biofilm-forming capacities of MRSA isolates were higher in Ala-
and hlb-positive isolates than in hla- and hlb-negative isolates, respectively [37].
These toxins may be bifunctional enzymes and cause tissue damage of urinary
epithelium.

The fsr quorum-sensing system has been shown to regulate two proteases, Gel
and serine proteases [1, 10-12]. More recently, Hancock ef al. [16] showed that the E.
faecalis | fsr quorum-sensing system controls biofilm development through the
production of Gel. However, our data do not support this finding since .Gel
non-producing isolates can form biofilms (Table 3). In our previous study [24], a
23.9-kilobase chromosomal deletion containing the fs» gene cluster region was found to
be present in the majority of Gel non-producing isolates. An understanding of the
process of biofilm formation by E. faecalis is only now beginning to emerge, and the
results appear to be contradictory [38].

In this study, there were no statistically significant differences between
biofilm-forming capacities and clinical background (catheter-related and
catheter-unrelated cases, polymicrobial and monomicrobial cases, febrile and
non-febrile cases). Biofilm formation by enterococci occurs not only with indwelling
devices but also in response to any bacterial factor that mediates adherence to
components of the extracellular matrix of the host [1, 39, 40j. No sihgle factor
predominated as the major predictor of virulence, and their effects appeared to be
cumulative [37].. The relative importance of host factors versus bacterial virulence
determinants in disease pathogenesis is unknown. Host factors for E. faecalis discaée
are likely to include a genetic predisposition via one or more susceptibility genes and

acquired factors such as the presence of intravenous devices, surgical wounds, and other
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events that perturb normal host defenses.
In summary, our study indicates that E. faecalis isolates that have accumulated
virulence genes are apt to form persistent biofilms in the urinary tract.
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Legends to Figures

Fig. 1 Biofilm-forming capacities of E. faecalis isolates in four groups based on the
presence/absence of asal and esp genes. ODsy values of the isolates in the four
groups arc shown by the box and whiskers plot, which represents a five-number
summary (upper extreme, upper quartile, median, lower quartile, and lower extreme).
The mean ODs7p values (mean =¥ SD) of the four groups are also shown.

*P=0.038 **P=0.0449 ***P=0.1208 (Mann-Whitney’s U test)

Fig. 2 Percentage of cyld-, gelE/sprE- and aac(6')/aph(2")-positive isolates among E.
Jaecalis isolates in four groups based on the presence/absence of asaf and esp genes.

Bars: yoyid; B , gelE-sprE ; [ , aac(6’)-aph(2")

Fig. 3 Number of E. faecalis isolates producing hemolysin and gelatinase in four
groups based on the presence/absence of asal and esp genes.

Bars: , hemolysin ; , gelatinase

Fig. 4 Number of E. faecalis isolates in four groups based on the presence/absence of
asal and esp genes.  Clinical aspects are shown by four categories.
Bars: B3, catheter-related monomicrobial UTI
, catheter-related polymicrobial UTI
, catheter-unrelated monomicrobial UTI

B . catheter-unrelated polymicrobial UTI
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