

1. 論文発表

なし

2. 学会発表

川崎弘二, 高島隆太郎, 酒井怜子, 上村
参生, 神原正樹. Q L F法を応用した感
染象牙質の診査および除去について.

Cariiology Today in Japan The 5th
Workshop in Tokyo Program &
Abstracts 5 : 3 : 2004.

川崎弘二, 廣瀬泰明, 高島隆太郎, 酒井
怜子, 上村参生, 井上正義, 神原正樹.
感染象牙質の除去における光誘導蛍光定
量法の応用. 日本歯科保存学雑誌 47
(秋季特別号) ; 57 : 2004.

H. 知的財産権の出願・登録状況

1. 特許取得

特になし

2. 実用新案登録

特になし

3. その他

特になし

厚生労働科学研究費補助金（医療技術評価総合研究事業）

分担研究報告書

口腔内蛍光測定用のプローブ開発

分担研究者 松村英夫 独立行政法人・産業技術総合研究所

光技術研究部門 主任研究員

研究要旨

口腔内齲歯などの疾患の早期発見に利用が研究されているQLF (Qualitative Light Fluorescence) 法のさらなる展開の一つとしてプローブ粒子とQLFとを組合せた手法の開発を目指した。これが実現すれば極初期齲歯の検出も可能となると考えられる。今期は実際の抜歯サンプルを用いその適用の可能性を追求した。標準脱灰液で僅かに脱灰したサンプル上に黒点スポットとして蛍光観察可能な微粒子系を見出した。

A. 研究目的

口腔内疾患の齲歯などの早期発見に利用が試みられているQLF (Qualitative Light Fluorescence) 法の新規な発展を探る目的で、極めて初期の齲歯等の発見の可能性に結びつくプローブの開発を研究目的とする。QLF法で歯を観察すると健康な歯のエナメル質からはほぼ均一な黄緑色蛍光（青色励起）を発光する。齲歯などでエナメル質に欠損を生ずると蛍光強度が低下する。この方法を拡張してさらに極く初期疾患状態の歯の部分に吸着し歯からの蛍光発光を阻害するプローブ粒子の開発を試みる。

B. 研究方法

方法論としては、極めて初期の齲歯部位に結合するとともに、QLFで使用される励起光波長（青色光）や蛍光波長（緑黄色あるいは赤色）の光を吸収する微粒子の開発をおこない、均一的蛍光発光の健康歯部位と極初期齲歯部位との区別化を行うことである。

当期の実験法は以下のようである。抜歯サンプル（人の歯）を準備し標準的脱灰液を含浸した濾紙を歯サンプルの特定部位に任意時間付着させる。脱灰液組成はCaCl₂ : 3 mM, KH₂PO₄ : 10 mM, NaCl : 100 mM、乳酸 : 100 mM、pH 4.5

である。任意の処理時間後に濾紙パッチを外し、洗浄後プローブ微粒子分散液と接触させる。サンプルと接触させる微粒子系はQLFで使用される励起光波長や蛍光波長の光を吸収する光特性をもつヘマタイト微粒子（約2ミクロン）を基盤とするものである。ヘマタイト粒子の表面性状を変えるため種々の高分子物質等を吸着させて疾患部とより相互作用を強いものを選択する。特に今回用いたものはPoly-L-lysineである。歯サンプルをこの微粒子分散液と接触させ水洗後蛍光顕微鏡観察をおこなう。

抜歯サンプル全体の観察は低倍率の実体顕微鏡に蛍光観察用光源として水銀ランプ光源を付加したものを使用し、また倍率をあげた観察は倒立型蛍光顕微鏡（Xeランプ光源）を用いて行った（対物レンズ×5、×20倍）。

C. 研究結果

標準脱灰液を滲みこませた濾紙（約3×4mm）を歯サンプルの一部へのせて脱灰液と歯表面との接触を行い所定の時間の脱灰処理を行った。また、比較対照のため脱灰処理しない他の部分の観察もおこなった。

図1.aに濾紙のパッチが存在しているときの歯サンプルの蛍光実体顕微鏡画像を示す。図1.bには脱灰処理後、濾紙を外し蒸留水で洗浄し自然乾燥の状態での蛍光実体顕微鏡画像を示す。脱灰処理した部分が僅かであるが暗くなっている様子が見られる。

図1に使用したサンプルをPoly-L-lysineコートのヘマタイト粒子分散液と接触させ水洗後蛍光顕微鏡観察をおこなったときの画像を図2に示す。脱灰処理部には明らかに微粒子が付着した黒点が観察される。

図1.a

ろ紙パッチを外した状態

図1.b

蛍光顕微鏡（対物5倍）

図2.a.

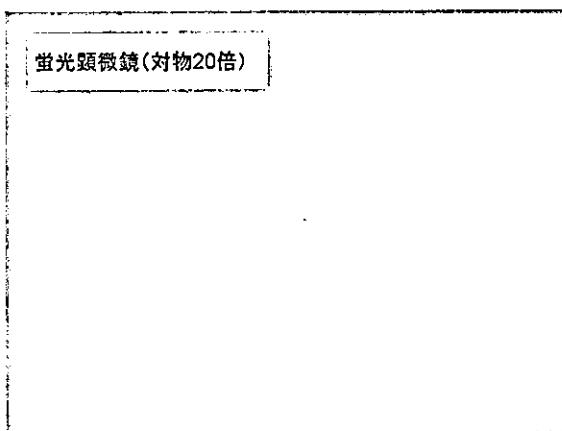


図 2 b.

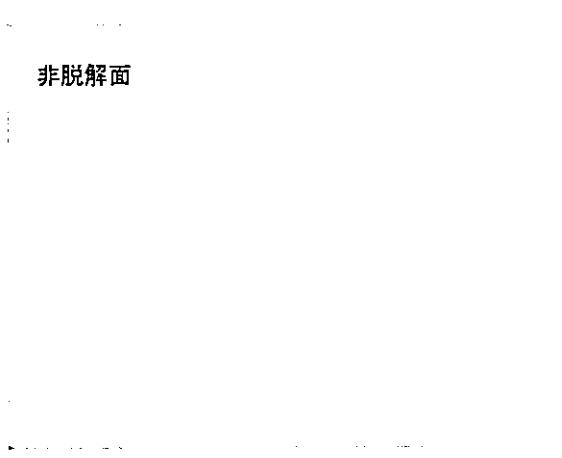


図 3.

図 3 には図 1 中に非脱灰処理面として表した部分を Poly-L-lysine コートのヘマタイト粒子分散液と接触処理し水洗後蛍光顕微鏡観察をおこなったときの写真を示す。元からある不整合なところの暗部以外には微粒子が付着したような黒点は観測されなかった。

今度は同一の歯サンプルの別の場所に標準脱灰液が滲み込んだ濾紙を置き上記と同様な処理過程を行った。図 4 a には濾紙パッチを置いたときの蛍光実体顕微鏡写真を示す。また、図 4 b には脱灰処理後濾紙を外し蒸留水で洗净し自然乾燥した状態での同一の場所を指した蛍光実体顕微鏡写真を示す。今回の脱灰処理では蛍光実体顕微鏡画像レベルでは

処理部分の蛍光画像は非処理部分と大きな違いは見られない。しかし、蛍光顕微鏡を使い倍率を上げた観察をおこなうと処理部分には微粒子の吸着によると思われる黒点があちらこちらに見られた。図 5 a. には対物レンズ 5 倍の観察画像を、また、図 5 b. には対物レンズ 20 倍の観察画像を示す。このサンプルを中性洗剤と共に超音波洗净を短時間おこなうと黒点として見られていたところがほぼ均一な蛍光画像を示すようになった。

ろ紙パッチ： 脱灰液処理

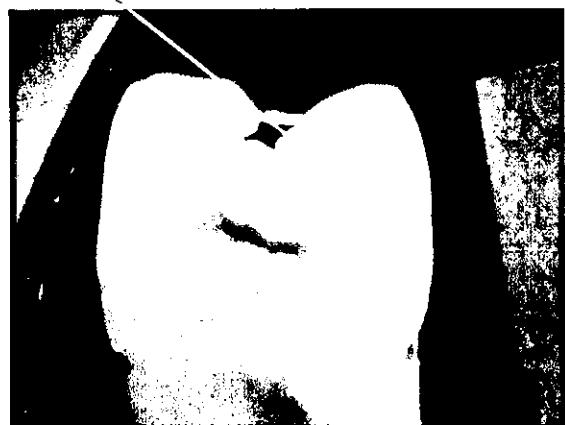


図 4 a.

ろ紙パッチを外した状態

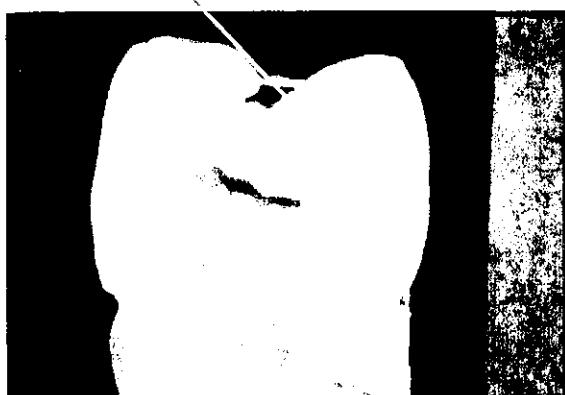


図 4 b.

対物X5

D. 考察

Poly-L-lysine コートのヘマタイト粒子は脱灰処理した歯面に吸着することが示された。また、吸着した微粒子は通常の洗浄処理により脱着可能であることも判った。また、脱灰液を含浸させた濾紙によるパッチ付着法で模擬う蝕が可能であることも判った。これらの方法を今後の研究に生かして行きたい。

図 5 a.

対物X20

E. 結論

通常の Q L F (Qualitative Light Fluorescence) 法では判別が難しい極めて初期の齲歎等の発見の可能性がこのプローブ併用法で高くなることが判った。

図 5 b.

図 6 に洗浄後の蛍光顕微鏡画像を示す。明らかに、吸着していた微粒子が脱離したこと物語っている。

洗浄後

F. 健康危険情報

特になし

G. 研究発表

1. 論文発表

K. Furusawa and H. Matsumura, Colloidal Nanoparticles: Electrokinetic Characterization, *Dekker Encyclopedia of Nanoscience and Nanotechnology*, (2004) 773-786.

2. 学会発表

「複合粒子の生成とコロイドの動電現象」古澤邦夫、松村英夫 第56回コロイドおよび界面化学討論会 (2004. 9. 10)

H. 知的財産権の出願・登録状況

1. 特許取得

特になし。

2. 実用新案登録

特になし。

3. その他

特になし。

図 6.

厚生労働科学研究費補助金（医療技術評価総合研究事業）
分担研究報告書

歯列不正と齲歯との関連評価、臨床試験

分担研究者 相馬 邦道
東京医科歯科大学大学院医歯学総合研究科咬合機能矯正学分野教授

研究要旨

平成 16 年度は、分担研究者の担当する予備的な調査として、当分野の歯科医師を対象に、日常生活時における歯垢付着の状況を QLF 法により撮影・計測し、上下顎前歯部の叢生の状況と歯垢付着状態との関連性について比較検討した。その結果、叢生がない部位に比べ、叢生がある部位、特に舌側転位している歯の唇側面、唇側転位している歯の舌側面および捻転歯では赤色蛍光を発する歯垢の付着が多い傾向が認められた。また、同じく同分野の矯正治療経験者を対象に同様の調査を行ったところ、矯正歯科治療後では、叢生が減少し、歯垢の付着も減少している傾向にあった。

A. 研究目的

一般に歯列不正部位は、自浄作用や口腔清掃の効率が低下しやすいことから、歯垢が堆積し、齲歯や歯周疾患に罹患しやすいと考えられている¹⁻²¹⁾。しかしながら、歯列不正と歯垢付着および齲歯との相関について、初期齲歯まで含めた科学的背景は、いまだ十分とはいえない。

近年、エナメル質表層下脱灰を生体に対して非侵襲的に定量観察できる定量的光励起蛍光（Quantitative Light-induced Fluorescence : QLF）法が開発²²⁻²⁴⁾・検証され²⁵⁻³⁸⁾、初期齲歯の検出や再石灰化の経時的観察などに応用されている³⁹⁻⁴⁸⁾が、この QLF 法を応用した光学診査により、歯垢が発する自家蛍光も検出できることが明らかになっている⁴⁹⁻⁵⁰⁾。

本研究では歯列不正と歯垢付着および初

期齲歯との関連を明らかにすることを目的に、平成 16 年度は主に QLF 法を用いた叢生の状況と歯垢付着状態との関連性について予備的検討を行った。

B. 研究方法

東京医科歯科大学大学院医歯学総合研究科咬合機能矯正学分野の歯科医師のうち、本研究の趣旨を十分理解し、自由意志で参加した 24 歳から 40 歳までの研究者を被験対象者とした。

同一被験者の上下顎前歯部（中切歯・側切歯・犬歯）において、歯列不正の 1 つである叢生がある部位とない部位とに分けて、QLF 法におけるリアルタイム口腔内蛍光ビデオカメラ（Inspektor Pro 口腔内蛍光カメラ、Inspektor Research Systems BV、

アムステルダム、オランダ)により蛍光観察を行った。次に、上下顎中切歯・側切歯・犬歯の唇側面および舌側面の静止画をデジタル画像としてパソコン用コンピュータに取り込んだ。さらに、画像解析ソフトウェア(Inspektor Pro ソフトウェア、Inspektor Research Systems BV、アムステルダム、オランダ)により、各歯面において設定した解析エリア内における、設定した基本エリアの赤色蛍光レベルより高い赤色蛍光強度がある面積の割合 (Area%)、歯垢が発する赤色蛍光レベル (赤/緑ピクセル値) の平均増加度 (ΔR Average)、歯垢が発する赤色蛍光レベル増加度の最大値 (ΔR Max) を算出した。矯正歯科治療既往者に対しても、同様の調査を行った。また、歯列不正部位における初期齲歫を検出する方法についても検討を行った。

C. 研究結果

同一被験者内では、叢生がない部位に比べ、叢生がある部位、特に舌側転位している歯の唇側面、唇側転位している歯の舌側面および捻転歯では赤色蛍光を発する歯垢の付着が多い傾向が認められた。(図 1)

図1 捻転・唇側転位している歯の舌側面の一例 (左下犬歯)

図2 叢生がない部位の一例 (右下中切歯)

また、矯正歯科治療後の被験者では、叢生が減少し、歯垢の付着も減少している傾向にあった。

また、着色存在下ではあったが、明らかな初期齲歫は認められなかった。

結果の詳細に関しては現在集計中である。

D. 考察

本研究では、歯垢付着に関わる条件が比較的安定していると考えられる同一被験者内での叢生がある部位とない部位での比較検討を行った。歯垢付着には、食生活習慣や口腔清掃習慣、口腔内細菌層の分布など多くの因子が関与することから、被験者間の比較が困難な場合があると想像できる。

同一被験者でも、利き手の同側と反対側では歯垢付着状況に相違が生じる可能性があるが、本研究での被験者は歯科医師であることから、同一被験者内での部位別の変動は少ないと考えられる。したがって、本研究結果は、まだ予備的な調査ではあるが、比較的叢生の有無という因子にしたがった結果となっていることが推察される。

本研究では歯垢付着の有無に焦点を絞ったため、研磨装置等による直前の歯面清掃は行わなかった。しかし、成人で歯の表面

に着色が存在すると、初期齲歯が判別できないだけでなく、歯垢有無の確認にも影響を与える可能性がある。したがって、今後の成人の研究では事前に着色等は除去した後、改めて別の日に口腔内蛍光カメラでの撮影を行う必要があろう。

E. 結論

歯科医師の歯垢付着の状況を QLF 法により予備的に調査したところ、以下の結果が得られた。

1. 叢生がない部位に比べ、叢生がある部位、特に舌側転位している歯の唇側面、唇側転位している歯の舌側面および捻転歯では赤色蛍光を発する歯垢の付着が多い傾向が認められた。

2. 矯正歯科治療後では、叢生が減少し、歯垢の付着も減少している傾向にあった。

F. 引用文献

- 1) Ackerman M: Evidence-based orthodontics for the 21st century: J Am Dent Assoc 135(2): 162-7; quiz 227-8, 2004.
- 2) Staufer K, Landmesser H: Effects of crowding in the lower anterior segment--a risk evaluation depending upon the degree of crowding. J Orofac Orthop 65(1): 13-25, 2004.
- 3) Glans R, Larsson E, Ogaard B: Longitudinal changes in gingival condition in crowded and noncrowded dentitions subjected to fixed orthodontic treatment. Am J Orthod Dentofacial Orthop 124(6): 679-82, 2003.
- 4) Chung CH, Vanarsdall RL, Cavalcanti EA, Baldinger JS, Lai CH: Comparison of microbial composition in the subgingival plaque of adult crowded versus non-crowded dental regions. Int J Adult Orthodon Orthognath Surg. 15(4): 321-30, 2000.
- 5) Diedrich P: Periodontal relevance of anterior crowding. J Orofac Orthop 61(2): 69-79, 2000.
- 6) Richardson ME: Late lower arch crowding in relation to skeletal and dental morphology and growth changes. Br J Orthod 23(3): 249-54, 1996.
- 7) Frankel R, Loffler U: Functional aspects of mandibular crowding. Eur J Orthod 12(2): 224-9, 1990.
- 8) Palin-Palokas T, Ruokokoski-Pirkkanen S: Occlusal features and caries experience. Proc Finn Dent Soc 86(2): 77-82, 1990.
- 9) Helm S, Petersen PE: Causal relation between malocclusion and periodontal health. Acta Odontol Scand 47(4): 223-8, 1989.
- 10) Matsue M, Sato H, Tawara H, Yamaguchi S, Lee JH, Masunaga H, Matsue I: Morphological study of periodontal tissues in the initial stage of periodontal disease. Part 1. Application of a morphological measurement and a system for

evaluating the periodontal status. Nippon Shishubyo Gakkai Kaishi. 31(2): 691-703, 1989. in Japanese.

11) Schneider HG, Markowski B: Tooth crowding and plaque development. Fortschr Kieferorthop 48(5): 397-406, 1987.

12) el-Mangoury NH, Gaafar SM, Mostafa YA: Mandibular anterior crowding and periodontal disease. Angle Orthod 57(1): 33-8, 1987.

13) Lombardi AV: The adaptive value of dental crowding: a consideration of the biologic basis of malocclusion. Am J Orthod. 81(1): 38-42, 1982.

14) Buckley LA: The relationships between malocclusion, gingival inflammation, plaque and calculus. J Periodontol 52(1): 35-40, 1981.

15) Ingervall B, Jacobsson U, Nyman S: A clinical study of the relationship between crowding of teeth, plaque and gingival condition. J Clin Periodontol 4(3):214-22, 1977.

16) Geiger AM, Wasserman BH: Relationship of occlusion and periodontal disease: part IX-incisor inclination and periodontal status. Angle Orthod 46(2): 99-110, 1976.

17) Paunio K: The role of malocclusion and crowding in the development of periodontal disease. Int Dent J 23(3): 470-5, 1973.

18) Geiger AM, Wasserman BH, Turgeon LR: Relationship of occlusion and periodontal disease. 8.

Relationship of crowding and spacing to periodontal destruction and gingival inflammation. J Periodontol 45(1): 43-9, 1974.

19) Paunio K: The role of malocclusion and crowding in the development of periodontal disease. Int Dent J. 23(3): 470-5, 1973.

20) Matsumoto M, Kuroda Y, Taki S, Sakuda M, Takimoto K: Relationships between crowding and gingivitis: correlation between the degree of displacement of tooth and the severity of gingival. Nippon Shishubyo Gakkai Kaishi 15(1): 73-8, 1973. in Japanese.

21) Jacobson L, Linder-Aronson S: Crowding and gingivitis: a comparison between mouthbreathers and nosebreathers. Scand J Dent Res 80(6): 500-4, 1972.

22) Hafstrom-Bjorkman U, Sundstrom F, de Josselin de Jong E, Oliveby A, Angmar-Mansson B: Comparison of laser fluorescence and longitudinal microradiography for quantitative assessment of in vitro enamel caries. Caries Res. 26(4): 241-7, 1992.

23) de Josselin de Jong E, Sundstrom F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Mansson B: A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res 29(1): 2-7, 1995.

24) Al-Khateeb S, Ten Cate JM, Angmar-Mansson B, de Josselin de Jong E, Sundstrom G, Exterkate RA, Oliveby A: Quantification of formation and remineralization of artificial enamel lesions with a new portable fluorescence device. *Adv Dent Res* 11(4):502-6, 1997.

25) Pretty IA, Edgar WM, Higham SM: A study to assess the efficacy of a new detergent free, whitening dentifrice *in vivo* using QLF planimetric analysis. *Br Dent J* 13;197(9): 561-6, 2004.

26) Vieira AP, Hancock R, Eggertsson H, Everett ET, Grynpas MD. Tooth quality in dental fluorosis genetic and environmental factors. *Calcif Tissue Int* 76(1): 17-25, 2005.

27) Pretty IA, Edgar WM, Higham SM: The effect of dehydration on quantitative light-induced fluorescence analysis of early enamel demineralization. *J Oral Rehabil* 31(2): 179-84, 2004.

28) Pretty IA, Edgar WM, Higham SM: The validation of quantitative light-induced fluorescence to quantify acid erosion of human enamel. *Arch Oral Biol* 49(4): 285-94, 2004.

29) Ando M, Eckert GJ, Stookey GK, Zero DT: Effect of imaging geometry on evaluating natural white-spot lesions using quantitative light-induced fluorescence. *Caries Res* 38(1):39-44, 2004.

30) Pretty IA, Ingram GS, Agalamanyi EA, Edgar WM, Higham SM: The use of fluorescein-enhanced quantitative light-induced fluorescence to monitor de- and re-mineralization of *in vitro* root caries. *J Oral Rehabil* 30(12): 1151-6, 2003.

31) Pretty IA, Pender N, Edgar WM, Higham SM: The *in vitro* detection of early enamel de- and re-mineralization adjacent to bonded orthodontic cleats using quantitative light-induced fluorescence. *Eur J Orthod.* 25(3): 217-23, 2003.

32) Ando M, Schemehorn BR, Eckert GJ, Zero DT, Stookey GK: Influence of enamel thickness on quantification of mineral loss in enamel using laser-induced fluorescence. *Caries Res.* 37(1): 24-8, 2003.

33) Rousseau C, Vaidya S, Creanor SL, Hall AF, Girkin JM, Whitters CJ, Strang R, McHugh S: The effect of dentine on fluorescence measurements of enamel lesions *in vitro*. *Caries Res* 36(6): 381-5, 2002.

34) Buchalla W, Lennon AM, van der Veen MH, Stookey GK: Optimal camera and illumination angulations for detection of interproximal caries using quantitative light-induced fluorescence. *Caries Res.* 36(5): 320-6, 2002.

35) Pretty IA, Hall AF, Smith PW, Edgar WM, Higham SM: The intra- and inter-examiner reliability of quantitative light-induced fluorescence (QLF) analyses. *Br Dent J* 27;193(2): 105-9, 2002.

36) Tranaeus S, Shi XQ, Lindgren LE, Trollsas K, Angmar-Mansson B: In vivo repeatability and reproducibility of the quantitative light-induced fluorescence method. *Caries Res.* 36(1): 3-9, 2002.

37) Amaechi BT, Higham SM: Quantitative light-induced fluorescence: a potential tool for general dental assessment. *J Biomed Opt* 7(1): 7-13, 2002.

38) Ando M, Hall AF, Eckert GJ, Schemehorn BR, Analoui M, Stookey GK: Relative ability of laser fluorescence techniques to quantitate early mineral loss in vitro. *Caries Res* 31(2): 125-31, 1997.

39) Higham SM, Pretty IA, Edgar WM, Smith PW: The use of in situ models and QLF for the study of coronal caries. *J Dent* 33(3): 235-41, 2005.

40) Boersma JG, van der Veen MH, Lagerweij MD, Bokhout B, Prahl-Andersen B: Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. *Caries Res.* 39(1): 41-7, 2005.

41) Amaechi BT, Podoleanu A, Higham SM, Jackson DA: Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. *J Biomed Opt* 8(4): 642-7, 2003.

42) Benson PE, Pender N, Higham SM: Quantifying enamel demineralization from teeth with orthodontic brackets: a comparison of two methods. Part 2: validity. *Eur J Orthod* 25(2):159-65, 2003.

43) Benson PE, Pender N, Higham SM: Quantifying enamel demineralization from teeth with orthodontic brackets: a comparison of two methods. Part 1: repeatability and agreement. *Eur J Orthod*: 25(2):149-58, 2003.

44) Ando M, van Der Veen MH, Schemehorn BR, Stookey GK: Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques. *Caries Res* 35(6): 464-70, 2001.

45) Angmar-Mansson B, ten Bosch JJ: Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions. *Dentomaxillofac Radiol* 30(6):298-307, 2001.

46) Tranaeus S, Al-Khateeb S, Bjorkman S, Twetman S, Angmar-Mansson B: Application of quantitative light-induced

fluorescence to monitor incipient lesions in caries-active children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci 109(2): 71-5, 2001.

47) Shi XQ, Tranaeus S, Angmar-Mansson B: Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Caries Res 35(1): 21-6, 2001.

48) van der Veen MH, de Josselin de Jong E: Application of quantitative light-induced fluorescence for assessing early caries lesions. Monogr Oral Sci 17: 144-62, 2000.

49) Pretty IA, Edgar WM, Smith PW, Higham SM: Quantification of dental plaque in the research environment. J Dent 33(3): 193-207, 2005.

50) Heinrich-Weltzien R, Kuhnisch J, van der Veen M, de Josselin de Jong E, Stosser L: Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner. Quintessence Int. 2003 34(3): 181-8.

H. 知的財産権の出願・登録状況

1. 特許取得

特になし

2. 実用新案登録

特になし

3. その他

特になし

G. 研究発表

1. 論文発表

なし

2. 学会発表

なし

研究成果の刊行に関する一覧表

書籍

著者氏名	論文 タイトル名	書籍全体 の 編集者名	書籍名	出版社 名	出版 地	出版 年	ページ
Furusawa K Matsumura H	Colloidal nanoparticles: Electrokinetic characterization	Schwarz JA, Contescu CI, Putyera K	Dekker Encyclopedia of Nanoscience and Nanotechnology	Marcel Dekker	New York	2004	773-786

雑誌

発表者氏名	論文 タイトル名	発表誌名	巻号	ページ	出版年
Uemura M Doi T Miyake T Sakamoto Y Kambara M	Clinical trials on early caries detection using QLF technique	Journal of Dental Research	84 Special Issue A	Seq #229 2061	2005
Kawasaki K Sakai R Takashima R Kambara M	Evaluation of red-fluorescent dental plaque using QLF method	Journal of Dental Research	84 Special Issue A	Seq #229 2059	2005
Sakai R Takashima R Kawasaki K Kambara M	In vitro QLF observation of remineralizing effect in fluoride applications	Journal of Dental Research	84 Special Issue A	Seq #229 2051	2005
Izu M Miyake T Uene M Tanaka H Takashima R Nishijima N Kambara M	New analysis method of gingiva with quantitative light-Induced fluorescence	Journal of Dental Research	84 Special Issue A	Seq #127 1069	2005

神原正樹	QLF (Quantitative Light-induced Fluorescence) による齲歯診断	細胞	37 (3)	84-87	2005
伊津元博 神原正樹	画像解析を応用した初期歯肉炎診査	歯科医学	68 (1)	99-110	2005
神原正樹 川崎弘二 上村参生	バイオフィルム検出における口腔内カメラ活用の意義と使用解説	The Quintessence	24 (3)	567-573	2005
高島隆太郎 川崎弘二 上村参生 酒井怜子 川上富清 小室崇 西島典幸 田治米元信 多名部実 小室美樹 神原正樹	エナメル質人工初期う蝕試料の再石灰化における QLF 観察	口腔衛生学会雑誌	55 (1)	41-49	2005
伊津元博 神原正樹	画像解析を応用した初期歯肉炎診査	歯科医学	68 (1)	153-154	2005
Matsumura H Neytchev V Terezova N Tsoneva I	Ca ion permeation through liposome membranes with heat generation by square-wave electric field	Colloids and Surfaces B: Biointerfaces	33 (3)	243-249	2004
大塚秀人 三宅達郎 神原正樹	<i>In Vivo</i> における QLF による早期う蝕診断に関する研究 初期う蝕病巣の 1 年間の追跡調査について	歯科医学	67 (3/4)	266-273	2004
坂本吉史 上村参生 神原正樹	<i>In Vivo</i> における QLF による早期う蝕診断に関する研究 初期う蝕	歯科医学	67 (3/4)	257-265	2004

	病巣の定量評価について				
Kishikawa R Tsubaki E Koiwa A Otsuki M <u>Kambara M</u> Matoba K Tagami J	Oral examination using a new oral scope	Japanese Association for Dental Research 52nd Annual Meeting Program and Abstracts of Papers	52	101	2004
川崎弘二 高島隆太郎 酒井怜子 上村参生 神原正樹	QLF法を応用した感染象牙質の診査および除去について	Cariology Today in Japan The 5th Workshop in Tokyo Program & Abstracts	5	3	2004
川崎弘二 廣瀬泰明 高島隆太郎 酒井怜子 上村参生 井上正義 神原正樹	感染象牙質の除去における光誘導蛍光定量法の応用	日本歯科保存学雑誌	47(秋季特別号)	57	2004
神原正樹	早期齲歯検出法とその意味	第63回日本歯科矯正学会大会プログラム・抄録集	63	114-115	2004
神原正樹	歯科領域における光学研究の応用	日本レーザー医学会誌	25(3)	184-185	2004
上村参生 三宅達郎 上根昌子 川崎弘二 日吉紀子 土居貴士 伊津元博 田中秀直 高島隆太郎 神原正樹	Quantitative Light-induced Fluorescence(QLF)による早期う蝕診断への応用	第20回日本歯科医学会総会プログラム・事前抄録集	57	396	2004

神原正樹	エナメル質診断	第20回日本歯科医学会総会プログラム・事前抄録集	57	342	2004
伊津元博 上村参生 三宅達郎 川崎弘二 上根昌子 田中秀直 神原正樹	歯肉炎の客観的観察法	日本歯周病学会会誌	46(秋季特別号)	155	2004
川崎弘二 上村参生 上田雅俊 今井久夫 神原正樹	QLF法による歯垢付着特性の評価	日本歯周病学会会誌	46(秋季特別号)	113	2004
伊津元博 酒井怜子 高島隆太郎 小室崇 小室美樹 熨斗秀光 神原正樹	デジタル画像解析による炎症性歯肉の経時的变化	日本口腔衛生学会雑誌	54(4)	461	2004
竹内博朗 的場一成 奥田健太郎 神原正樹 花田信弘	<i>Porphyromonas gingivalis</i> によるバイオフィルムの光学的手法を用いた臨床検出法の検討	日本口腔衛生学会雑誌	54(4)	439	2004
上村参生 三宅達郎 土居貴士 上根昌子 奥村紀子 白石雅照 奥村信 中嶋省志 金子憲司	初期う蝕の回復・進行に関わる因子分析	日本口腔衛生学会雑誌	54(4)	316	2004

神原正樹					
川崎弘二 酒井怜子 高島隆太郎 伊津元博 朴容徳 西島典幸 川上富清 田中浩二 河村泰治 神原正樹	歯垢の検出に対する QLF 法の応用	日本口腔衛生学会 雑誌	54 (4)	313	2004
古澤邦夫 松村英夫	複合粒子の生成とコロ イドの動電現象	第 56 回コロイドお よび界面科学討論 会講演要旨集	56	3B06	2004
上村参生 川崎弘二 神原正樹	光誘導蛍光定量法 (QLF) の応用による 早期う蝕診断に関する 臨床研究	日本レーザー医学 会誌	25 (2)	120	2004
川崎弘二 高島隆太郎 伊津元博 上村参生 朴容徳 神原正樹	QLF 法による歯垢検 出技術の評価に関する 研究	歯科医学	67 (3/4)	289	2004
伊津元博 川崎弘二 高島隆太郎 上根昌子 三宅達郎 神原正樹	デジタル画像による辺 縁歯肉の分析	歯科医学	67 (3/4)	288	2004
神原正樹	齲歯予防における早期 齲歯診断	小児歯科学雑誌	42 (2)	62	2004

Colloidal Nanoparticles: Electrokinetic Characterization

Kunio Furusawa

University of Tsukuba, Ibaraki, Japan

Hideo Matsumura

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

INTRODUCTION

A charged colloidal particle suspended in an electrolyte solution is surrounded by a cloud of counterions. The set of the surface charges and countercharges is called the electrical double layer. The electrical double layer plays an essential role in various interfacial electrical phenomena on the particle surface and in the particle-particle interaction of colloid suspension.

Generally, it is almost impossible to measure the surface potential on colloid particles. However, we can measure the potential near the particle surface. It is called the zeta (ζ) potential. The zeta potential is the potential at the hydrodynamic slipping plane in the electrical double layer, hence its value is not precisely the same as that of making a stable suspension because the total interaction potential between two particles a bit distant from their surface is essential for a stable dispersion. The ζ -potential has been considered to provide useful information necessary for preparing stable colloidal suspensions in many application fields including food preparation, agriculture, pharmaceuticals, paper industry, ceramics, paints, coatings, photographic emulsions, etc. The concept of the zeta potential is also very important in such diverse processes as environmental transport of nutrients, sol-gel synthesis, mineral recovery, waste water treatment, corrosion, and many more.

OVERVIEW

These are several origins from which solid surfaces are charged: dissociation of chemical groups on the surface, preferential adsorption of cation or anion onto the surface, etc. The distribution of each ionic compound between the surface and the solution bulk is determined by the differences in the electrochemical potential of each compound between two phases: the solid (surface) phase and the solution phase. Therefore the composition of the solution is an important factor that determines surface

potentials. When H^+ is the potential-determining ion, we can change the amount of surface charge by changing the pH of the solution. It is important to know the position of the isoelectrical point (IEP) (i.e., the pH value at which the particles have zero ζ -potential). At the IEP, there are no repulsive forces and the particles are strongly aggregated because of the attractive van der Waals forces. In many cases, the stable colloidal particle dispersion is desired, so the colloidal suspensions are designed such that the pH of the suspension is well away from the IEP. The IEP data for a number of colloids of various compositions have been reported.^[1] Table 1 lists the IEP for some typical dispersions.

If colloid particles are brought to a concentrated situation through some engineering processes, it is not certain if the surface charges, and hence surface potential, hold the same values as those in diluted dispersions. It must be measured experimentally, and several methods have been explored in recent years.

Here, we briefly describe experimental methods of the measurements of ζ -potential for the diluted and the concentrated particle systems, and how the control of zeta potential is useful for preparing composite particle systems in the last part of this report. The fundamentals of electrokinetics in colloidal systems have been described in numerous books in recent years.^[1-3]

MEASUREMENTS OF ζ OF PARTICLES IN DILUTED SUSPENSION

Regular Method by Electrophoresis

The historical prominence of ζ -potential has been because of its experimental accessibility via measurement of the electrophoretic mobility μ . Electrophoretic mobility is the velocity of the colloid particle v per unit field strength E :

$$v = \mu E \quad (1)$$

Table 1 Isoelectric points

Compound	IEP (pH)
α -AlOOH	9.4
γ -AlOOH	5.5-7.5
α -Al(OH) ₃	5.0-5.2
γ -Al(OH) ₃	9.3
CdO	10.4
Co ₃ O ₄	5.5
Co(OH) ₂	10.5
α -Fe ₂ O ₃	8.3
β Fe ₂ O ₃	6.7-8.0
Mg(OH) ₂	12
MnO, MnO ₂	6
NiO	9.5
SiO ₂	1.8-2.5
SnO ₂	4.5
TiO ₂	6
ZrO ₂	4

where ζ is related with mobility by the equation from von Smoluchowski:^[4]

$$\mu = \varepsilon \zeta / \eta \quad (2)$$

where ε or η are the permittivity or viscosity of the medium, respectively. In regular electrophoretic apparatus, we utilize a narrow capillary cell of cylindrical or rectangular shape. The migration velocity of the particles is measured by optical microscopy for larger-sized particles, or by observation of Doppler shift of laser light scattering signal for smaller particles. However, the capillary cell walls also bear electrical charges and hence have electrical double layers. Therefore the application of electrical fields causes the movement of charged liquid medium in the double layer, which is called electroosmosis. The electrophoretic migration of colloid particles is always superimposed on the electroosmotic liquid flow from the cell wall. The closed sample cell causes a back liquid flow through the generation of hydrostatic pressure gradient. At equilibrium, there are two positions where the liquid flow has zero velocity. These are called the stationary levels. Thus we can observe the true electromigration velocity of colloid particles at the stationary levels. Von Smoluchowski^[4] showed the profile of electroosmotic flow velocity (U_{osm}) for a cylindrical cell:

$$U_{osm} = U_0(h^2/b^2 - 1) \quad (3)$$

and for a flat cell, which has an infinitely long width:

$$U_{osm} = U_0/2(3h^2/b^2 - 1) \quad (4)$$

where h is the distance from the cell center in the direction of cell thickness, b is the half-thickness of the cell, and U_0

is the electroosmotic flow at the cell wall ($h=b$). The stationary levels are located at a distance from the cell center to each side by the quantity $h=b/\sqrt{2}$ for the cylindrical cell, or $h=b/\sqrt{3}$ for the flat cell. Komagata^[5] showed a more practically useful equation for a rectangular cell, which has a thickness of $2b$ and a width of $2w$ ($b < w$); the stationary level is located at a distance from the cell center to each side by the quantity $h=b\sqrt{(1/3(1 + 384b/\pi^2w))}$. The traditional measurements of zeta potentials of particles are conducted at these stationary levels.

Electrophoretic Measurements Using a Standard Sample

The profile of electroosmotic flow is parabolical. Thus the velocity gradient of the liquid at the stationary levels is usually large and the observed velocity of the particles changes rapidly with cell depth. It causes substantial errors in electrophoretic mobility measurements from the wrong setting of observing points. However, if the electrophoretic measurements can be carried out by using a reference sample as a standard, the electrophoretic mobility of the unknown sample can be determined at any cell depth by subtracting the mobility of the reference particles at the same level, because the velocity of electroosmotic liquid flow induced by the cell wall has the same value under the same experimental conditions. Therefore one can obtain real electrophoretic mobility rather accurately by measuring the velocity at the cell center, where the velocity gradient is zero.

The apparent electrophoretic mobility (U_{app}) of an unknown colloid sample is always the sum of two contributions, one of which is the real electrophoretic mobility (U_{el}) and the other is the liquid flow velocity induced by the electroosmotic effect (U_{osm}) of the cell wall, which changes as a parabolical function of the cell depth:

$$U_{app} = U_{el} + U_{osm} \quad (5)$$

Similarly, the apparent velocity of the reference sample (U'_{app}) was also indicated by the sum of the real electrophoretic mobility (U'_{el}) and the electroosmotic flow velocity (U'_{osm}), that is,

$$U'_{app} = U'_{el} + U'_{osm} \quad (6)$$

Under the same experimental conditions, using a finite electrophoretic cell ($U_{osm} = U'_{osm}$), the following relationship holds from Eqs. 5 and 6:

$$U_{el} - U'_{el} = U_{app} - U'_{app} \quad (7)$$

If U'_{el} is known exactly, the U_{el} value of the unknown sample can be determined from the difference between

the two apparent mobilities at any cell depth. Thus if the particle mobilities of unknown samples and the reference sample are measured at the cell center where the migration velocity has a maximum, the real electrophoretic mobility of the unknown sample is given by:

$$U_{el} - U'_{el} = U_{app}(\text{maximum}) - U'_{app}(\text{maximum}) \quad (8)$$

Fig. 1 shows an example indicating the electrophoretic mobility profiles obtained experimentally for the reference sample (PSSNa lattices) and an unknown sample (SM lattices) along the cell depth in a 1×10^{-3} M KCl solution at 25°C. The SM lattices employed as an unknown sample were prepared by the copolymerization of styrene with 5% methacrylic acid (MA) at 70°C. It is apparent that both profiles indicate reasonable parabolical curves, and the curve for the reference lattices shows a constant mobility at the two stationary levels. Furthermore, the difference between the two apparent mobilities at the cell center agrees well with the velocity of the SM lattices at the stationary level.

Fig. 2 shows the ζ -potential vs. pH curves for the SM lattices, which have been determined from the maximum mobilities using the PSSNa lattices as a standard.^[6] The same relation obtained from the velocity of the SM lattices at the stationary level is also indicated. As can be seen, both curves agree fairly well over the whole pH range. All of these results indicate that if we have a reliable colloid sample whose ζ -potential is exactly determined, the ζ -potential of the unknown sample can be determined precisely from the measurements of apparent electrophoretic mobility at the cell center. In that case, slight errors in focusing (i.e., errors because of

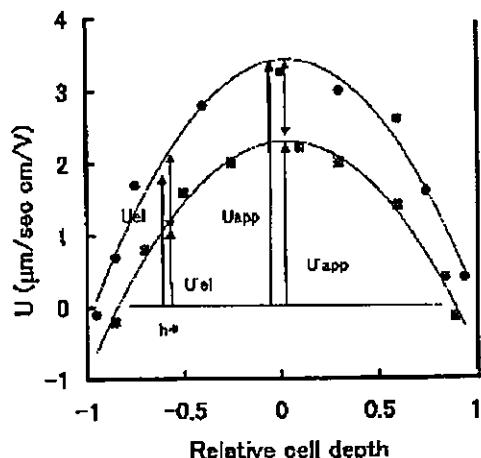


Fig. 1 Examples of electrophoretic mobility profiles of PSSNa lattices (U') and SM lattices (U). (h^*) stationary level; (■) PSSNa lattices; (●) SM lattices (1×10^{-3} M KCl, 25°C).

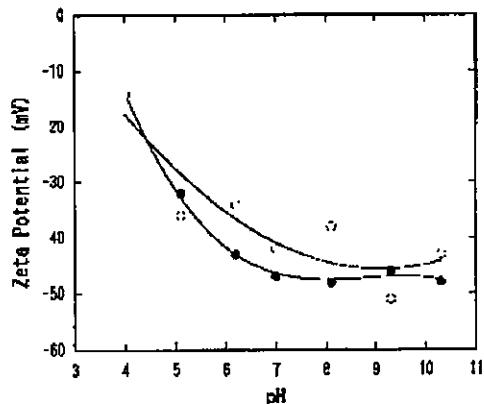


Fig. 2 ζ -Potential vs. pH curves of unknown sample (SM lattices) determined by the maximum velocity of reference sample (●) and the usual method (○).

the view field) are less important because the velocity gradient near the level of observation is very small.

According to Eqs. 3 and 4, U_0 and hence the ζ -potential of the cell wall are determined using a reference sample. The electroosmotic velocity (U_0) obtained by the extrapolation of the velocity profile to the cell wall permits the determination of the ζ -potential of the cell wall-solution interface, and the ζ -potential measurement of various solid-solution interfaces,^[7] including the dissimilar cell system,^[8] has been determined. Here, we would like to emphasize again that the determination of the ζ -potential of the cell wall is also possible from the maximum velocity of the reference sample, instead of the tedious plane interface procedure. According to Eq. 4, the apparent velocity of the reference sample at the cell center (at $h=0$) is $U_{app}' = U_{el}' - U_0/2$. Therefore U_0' and hence the ζ -potential of the cell wall can be quickly determined if the U_{el}' has been previously known.

Fig. 3 shows some examples of apparent flow velocity profiles of standard latex samples (PSSNa lattices) at various pH values in which both boundaries refer to the glass-solution interface. A symmetrical parabola was given at all pH conditions where the surface charge of glass is consistent with both sides.

ELECTROKINETIC CHARACTERIZATIONS IN CONCENTRATED DISPERSIONS

In recent years, electroacoustics offered studies on surface characterization and the stability of suspended colloid particles. The term electroacoustics refer to two kinds of related phenomena: 1) colloid vibration potential (CVP),