Physical and Functional Interaction between Dorfin and VCP

The amount of Dorfin bound with VCP was saturated at even
molar ratio in vitro (Fig. 3, B and (), Since VCP exists as a
homohexamer (Fig. 3D), the in vivo observed size of ~600 kDa
appears to be too small for the Dorfin-VCP complex if one VCP
molecule binds to more than one Dorfin as shown in in vitre
experiments. However, it is noteworthy that the size of mole-
cules estimated by glycerol density gradient centrifugation
analysis used in this study is not accurate and sufficient to
discuss the molecular interaction of Dorfin and VCP in the
cells. To date, various adaptor proteins, with which VCP forms
multiprotein complexes, have been identified, such as Npl4,
Ufdl (18, 20), Ufd2 (34), Ufd3 (35), p47 (36), or SVIP (37).
Although our in vifro study showed direct physical interaction
between Dorfin and VCP, the environment with those adaptor
proteins might reflect ir vivo conditions. This also may explain
the apparent discrepancy of the Dorfin-VCP binding fashions
between in vivo and in vitro analyses.

Treatment with a proteasomal inhibitor causes the translo-
cation of endogenous VCP and Dorfin to the aggresome in
cultured cells (4, 15). Our results showed that these two pro-
teins indeed colocalized perinuclearly in the aggresome follow-
ing treatment with a proteasomal inhibitor (Fig. 4). Further-
more, we were able to demonstrate both Dorfin and VCP
immunoreactivities in LB-like inclusions in ALS and LBs in PD
(Fig. 5). In the majority of LBs, indistinguishable peripheral
staining patterns were observed with both anti-Dorfin and
anti-VCP antibodies. These results confirmed that both Dorfin
and VCP are associated with the formation processes of aggre-
somes and inclusion bodies through physical interaction.

We showed here that co-expression of VCPX5244 resulted in a
marked decrease of ubiquitylation activity of Dorfin compared
with co-expression of VCPYT or control. On the other hand,
VCP¥524A failed to decrease autoubiquitylation activity of Par-
kin. VCPX524A did not change the level of polyubiquitylated
protein accumulation in the cell lysate in this study (Fig. 7).
Knockdown experiments using the RNA interference technique
showed accumulation of polyubiquitylated proteins (38). Com-
bined with the cbservation that inhibition of VCP did not
decrease the general accumulation of polyubiquitylated pro-
teins, our results indicated that the E3 regulation function of
VCP may be specific to certain E3 ubiquitin ligases such as
Dorfin. VCP is an abundant protein that accounts for more
than 1% of protein in the cell cytosol and is known to have
various chaperone-like activities (39); therefore, it may func-
tion as a scaffold protein on the E3 activity of Dorfin. The
localization of Dorfin and VCP in UBIs in various neurodegen-
erative disorders indicates the involvement of these proteins in
the quality control system for abnormal proteins accumulated
in the affected neurons in neurodegenerative disorders.

Since the unfolded protein response and ERAD are dynamic
responses required for the coordinated disposal of misfolded
proteins (40), the ERAD pathway can be critical for the etiology
of neuronal cell death caused by various unfolded proteins.
VCP is required for multiple aspects of the ERAD system by
recognition of polyubiquitylated proteins and translocations to
the 26 S proteasome for processive degradation through the
VCP-Npl4-Ufdl complex (18, 41). Our results suggest the in-
volvement of Dorfin in the ERAD system, which is related to
the pathogenesis of neurodegenerative disorders, such as PD or
Alzheimer's disease. Further study including Dorfin knockout
and/or knockdown models should examine the pathophysiology
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of Dorfin in association with the ERAD pathway or other cel-
lular functions. Such studies should enhance our understand-
ing of the pathogenetic rele of Dorfin in neurodegenerative
disorders.
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Dorfin prevents cell death by reducing mitochondrial localizing
mutant superoxide dismutase 1 in a neuronal cell model of familial

amyotrophic lateral sclerosis
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Abstract

Dorfin is a RING-finger type ubiquitin ligase for mutant
superoxide dismutase 1 (SOD1) that enhances its degrada-
tion. Mutant SOD1s cause familial amyotrophic lateral scler-
osis (FALS) through the gain of unelucidated toxic properties.
We previously showed that the accumulation of mutant SCD1
in the mitochondria triggered the release of cytochroma c,
followed by the activation of the caspase cascade and
induction of neuronal cell death. In the present study, there-
fore, we investigated whether Dorfin can modulate the level of
mutant SOD1 in the mitochondria and subsequent caspase
activation. We showed that Dorfin significantly reduced the

amount of mutant SOD1 in the mitochondria, the release of
cytochrome ¢ and the activation of the following caspase
cascade, thereby preventing eventual neuronal cell death in a
neuronal cell model of FALS. These results suggest that
reducing the accumulation of mutant SOD1 in the mitochon-
dria may be a new therapeulic strategy for mutant SOD1-
asscciated FALS, and that Dorfin may play a significant role in
this.

Keywords: amyotrophic lateral sclerosis, Dorfin, mitochon-
dria, neuronal cell death, superoxide dismutase 1, ubiquitin
ligass.
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease caused by selective death of motor neurons.
Approximately 10% of ALS cases are familial (FALS).
Missense mutations in the gene coding superoxide dismutase
1 (SOD1) are responsible for approximately 20% of FALS
cases (Rosen et al. 1993; Hirano 1996) through the gain of
unclucidated toxic properties (Yim et al. 1996).

Many reports have documented that the mitochondria are
involved in the pathogenic process in mutant SOD1-associ-
ated FALS. Mitochondnial degeneration, including swelling,
dilatation and vacuolization, is an early characteristic patho-
logical feature of FALS and FALS transgenic (Tg) mice
models with SOD1 mutations (Dal Canto and Gurney 1994;
Wong et al. 1995; Hirano 1996; Kong and Xu 1998; Jaarsma
et al, 2000; Higgins ef al, 2003). Recently, it was demon-
strated that SODI, considered to be a cytosolic enzyme,
exists in the mitochondria (Sturtz et al. 2001; Okado-
Matsumoto and Fridovich 2001; Higgins er f. 2002), and
that the mitochondrial vacuoles in mutant SOD1 Tg mice
wete lined with mutant SOD1 (Jaarsma ef af. 2001; Higgins
et al. 2003). Many studies have suggested that the pro-
grammed cell death (PCD) pathway contributes to motor

neuron death in FALS (Durham et al. 1997; Martin 1999; Li
et al. 2000; Pasinclli et al. 2000; Guégan et al. 2001; Kriz
et al. 2002; Raoul et al. 2002; Zhu et al. 2002). Moreover,
we previously reported that accumulation of mutant SOD1 in
the mitochondria triggered the release of mitochondrial
cytochrome ¢, which subsequently activated the caspase
cascade and induced neuronal cell death (Takeuchi et al
2002a). Taken together, these results suggest that the
accumulation of mutant SOD]1 in the mitochondria is critical
in the pathogenesis of mutant SOD1-associated FALS.
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Dorfin is the product of a gene that we cloned from the
anterior horn tissue of the human spinal cord {Niwa et al.
2001); it contains a RING-finger/IBR motif (Niwa et al.
2001) at its N-terminus. It was reperted that a distinct
subclass of RING-finger/in-between RING-fingers (IBR)
motif-containing proteins represents a new ubiquitin ligase
(E3) family that interacts specifically with distinct ubiquitin-
conjugating enzymes {Moynihan et al. 1999; Ardley er al.
2001). Dorfin is a juxtanuclearly located E3 that ubiquity-
lates various SODI1 mutants derived from patients with
FALS, and enhances the degradation of mutant SOD} (Niwa
et al. 2002). Whether Dorfin can modulate the protein level
of mutant SOD1 in the mitochondria, and the subsequent
activation of the mitochondnal caspase cascade, is an
important and interesting question.

Here we show that Dorfin significantly reduced the
amount of mutant SOD1 in mitochondria, the release of
cytochrome ¢ from mitochondria into the cytosol and the
subsequent activation of the caspase cascade, thereby
preventing the eventual neuronal cell death in a neuronal
cell model of FALS. These results suggest that reducing
mutant SODI in the mitochondnia may be a useful strategy
for the treatment of mutant SOD1-associated FALS, and that
Dorfin might play a significant role in this.

Materials and methods

Plasmids

Non-organelle-oniented plasmids expressing the enhanced green
fluorescent protein (EGFP)-tagged hurnan SOD1 (wild type, mutant
G93A, and G85R) were described previously (Takeuchi et al.
2002ab). These vectors express SODI-EGFP fusion proteins
ubiquitously in each organelle (Takeuchi et af. 2002a). They were
designated Cyto-WT, Cyto-G93A and Cyto-G85R respectively.
Mitochondria-oriented plasmids expressing EGFP-tagged human
SODI (wil dtype, mutant G93A and G85R) with mitochondrial
localizing signals were generated as described previously (Takeuchi
et al. 2002a). These vectors express SOD1-EGFP fusion proteins
mainly in the mitochondria (Takeuchi ef al. 2002a). They were
designated Mito-WT, Mito-G93A and Mito-GRSR respectively, The
plasmid pcDNA3.1/HisMax-Dorfin, which expresses Xpress-tagged
Dotfin, was also described previously (Niwa et af. 2001). As a
control, we used pCMV-B vector expressing LacZ (Clontech, Palo
Alto, CA, USA). All constructs used here were confirmed by DNA
sequence analysis.

Cell culture

Mouse neuroblastoma cell line Neuro2a cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) {Invitrogen Corp.,
Carlsbad, CA, USA) supplemented with 10% fetal calf serum
(Invitrogen Corp.) as described previously (Takeuchi et af. 2002b).
They were cultured on Laboratory-Tee II four-well chamber slides
(Nalge Nunc International, Rochester, NY, USA) coated with poly-
t-lysine (Sigma, St Louis, MO, USA), Transient expression of
SOD1 plasmids (0.1 pg of DNA/well) and pcDNA3.1/His

Dortin reduces mitochondrial mutant SODL 65

Max-Dorfin or pCMV-8 (0.3 ug of DNA/well) in NeuroZa cells
(2 x 10 cells/well) was accomplished with LipofectAMINE PLUS
reagent (Invitrogen Corp.). After incubation for 3 h with transfec-
tion reagents, transfected cells were cultured in differentiation
medium (DMEM supplemented with 1% fetal calf serum and 20 pm
retinoic acid). To detect Xpress-Dorfin fusion protein, 0.5 pm
proteasome inhibitor MGL32 (Sigma) was added 16 h before
collection, as described previously (Niwa er al. 2001),

Cell fractionation

At each time point (0, 24 and 48 h) after transfection, cells were
collected and gently homogenized with 2 Dounce homogenizer in
cold buffer [250 mm sucrose, 10 mm Tris-HICl pH 7.5, 5 mm
MgCl;, 2 mm EDTA and protease inhibitor cocktail (Complete
Mini EDTA-frec; Roche Diagnostics, Basel, Switzerland)]. Cell
fractionation was performed as described previously (Takeuchi et af.
2002a}. To verify the fractionation, each fraction was subjected to
western blotting for cytochrome ¢ oxidase (COX) as a mitochondrial
marker using anti-COX subunit IV mouse monoclonal antibody
(1 : 1000; Molecular Probes, Eugene, OR, USA), and B-actin as a
cyiosolic marker using anti-B-actin mouse monoclonal antibody
(1 : 5000; Sigma).

Western blot analysis

The protein concentration was determined with a DC protein assay
kit (Bio-Rad Laboratories, Hercules, CA, USA) and western blotting
was done as described previously (Takeuchi er al. 2002b). To
evaluate the level of mitochondrially localized SOD1-EGFP fusion
proteins, 20 pg protein from the mitochondrial fraction was loaded.
For analyzing the release of cytochrome ¢ from the mitochondria
into the cytosol, 20 pg protein from the mitochondrial fraction or the
cytosolic fraction was loaded.

To assess the levels of SODI-EGFP fusion proteins, Xpress-
Deorfin fusion proteins and the activation of caspase-9 and caspase-3,
cells were collected at each time point (0, 24 and 48 h) afier
transfection, and lysed in TNES buffer (50 mm Trs-HCI pH 7.5,
150 ma1 NaCl, 1% NP-40, 2 mnm EDTA, 0.1% sodium dodecyl
sulfate and protease inhibitor cocktail} as described previously
(Takeuchi et al. 2002a). For the analysis, 20 pg protein from the
total lysate was [oaded.

The primary antibedies used were as follows: anti-SOD1 rabbit
polyclonal  antibody (1: 10 000; StressGen Biotechnologies,
Victoria, BC, Canada), anti-Xpress mouse menoclonal antibody
(1 : 3000; Invitrogen Corp.), anti-caspase-3 rabbit polyclonal
antibody and anti-caspase-9 rabbit polyclonal antibody (1 : 1000;
Cell Signaling, Beverly, MA, USA) and anti-cytochrome ¢ mouse
monoclonal antibody (I : 1000; Pharmingen, San Diego, CA,
USA). After overnight incubation with primary antibodies at 4°C,
each blot was probed with horseradish peroxidase-conjugated anti-
rabbit IgG and anti-mouse IgG (1 : 5000; Amersham Biosciences,
Piscataway, NJ, USA). Blots were then visualized with ECL Plus
western blotting detection reagents {Amersham Biosciences). The
signal intensity was quantified by densitometry using NIH Image
1.63 software,

Immunocytochemistry
At each time point (0, 24 and 48 h) after transfection, cells were
fixed with 4% paraformaldehyde for 30 min on ice and then
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permeabilized with 0.05% Triton X-100 at room temperature for
10 min. They were stained with the anti-Xpress mouse monoclo-
nal antibody (1 : 5000; Invitrogen Corp.) at 4°C overnight. They
were subsequently stained with Alexa-568-conjugated secondary
antibody (1 : 5000; Molecular Probes) at room temperature for
90 min. Then they were counterstained with 2 pg/mL TO-PRO-3
(Molecular  Probes) at room temperature for 10 min, and
mounted in Gelvatol. A confocal laser scanning microscope
(MRC1024; Bio-Rad Laboratories) was used for the morpholo-
gical analysis.

Quantitative assessment of mitochondrial impairment and cell
death

To assess cell viability through mitochondrial impairment, we
used the 3-(4,5-dimethyl-thiazol-2y1)-5-{3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay with CellTiter 96
Aquecus one solution assay (Promega, Madison, WI, USA), as
described previously (Takeuchi et al. 2002a). At each time point (0,

Fig. 1 Subcellular localization of SOD1-
EGFP and Xpress-Dorfin in Neuro2a cells.
(a-l) Confocal laser scanning microscopic
images at 48 h after transfection. (m}
Fractionation analysis of Xpress-Dorfin
fusion protein. (a—¢) Cylo-WT + Xpress-
Dorfin, (d-f) Cyto-G93A + Xpress-Dorfin,
(g-1) Cyto-G85R + Xpress-Dotfin; (j-I) Mito-
G93A + Xpress-Dorfin. SOD1-EGFP fusion
proteins (green; a, d and g) and Xpress-
Dorfin fusion proteins (red; b, e and h) were
observed ubiquitously in the cells with Cyto-
SO01 containing no organelle-oriented
signals. SOD-EGFP fusion proteins and
Xpress-Dorfin - fusion  proteins  were
co-localized {yellow; c, f and i). In contrast,
in the cells with Mito-SOD1, SOD1-EGFP
fusion proteins were observed in the mito-
chondria (green; {) and Xpress-Dorfin fusion
proteins (red; k) were observed mainly in
the cytoplasm. They were not co-localized
in the cells with Mito-SOD1 {l). Cells were
counterstained with TO-PRO-3  (blue).
Scale bars, 10 ym. Western blots also
revealed that Xpress-Dortin fusion proteins
were absent in the mitochondrial fraction

(m).

24 and 48 h) after transfection, MTS assays were carried out in
six independent trials. Absorbance at 490 nm was measured in
a multiple plate reader as described previously (Ishigaki et al.
2002).

Cell death was assessed by the dye exclusion method with
propidium iodide (PI; Molccular Probes) as described previously
(Takeuchi ef al. 2002a). At each time point (9, 24 and 48 h) after
transfection, cells were incubated with 2 pg/mL PI in DMEM for
15 min at room temperature and mounted in Gelvatol. More than
200 wansfected cells in duplicate slides were assessed blindly in
three independent trials under a conventional fluorescent micro-
scope. The ratio of dead cells was calculated as a percentage of
Pl-positive cells among EGFP-positive cells,

Statistical analysis

All results were analyzed by two-way anova with Tukey—Kramer
post-hoc test, using Statview software version 5 (SAS Institute Inc.,
Cary, NC, USA).

© 2004 International Society for Neurochemistry, J. Neurochem. (2004) 89, 64-72

—277—



Results

Dorfin reduces the levels of total, cytosolic

and mitochondrial mutant SOD1

Confocal laser scanning microscopic images revealed that
expression of both non-organelle-oriented Cyto-SOD1
plasmid and pcDNA3.1/HisMax-Dorfin was diffusely pre-
sent in the cells. SODI-EGFP fusion proteins were
co-localized with Xpress-Dotfin fusion proteins (Figs la-i),
consistent with our previous study (Niwa eral. 2002;
Takeuchi et @l. 2002a). In contrast, the expression of
mitochondria-oriented Mito-SOD1 plasmid was observed in
the mitochondria, as in our previous report (Takeuchi ef al.
2002a), and was not co-localized with Xpress-Dorfin fusion
proteins (Figs 1j-1). Western blots also revealed that
Xpress-Dotfin  fusion proteins were absent from the
mitochondrial fraction (Fig. lm). At 48 h after transfection,
co-expression of Dorfin had reduced the total cell lysate
level of SOD1-EGFP fusion proteins expressed by Cyto-
G93A or Cyto-G85R by approximately 40%, whereas it
did not affect those expressed by Cyto-WT (Fig. 2). In
contrast, the amount of SODI-EGFP fusion proteins
expressed by Mito-SOD! did not show any reduction
even with co-expression of Dotfin (Fig. 2). In the cytosolic

(a) Cyta Cyto Mo
WwT GI3A G8S5R  WT_ GUiA GBSR WT GB3A GBSR

Tt £ H £ ¥ ¥ ¥ ¥ £
ota .
sont.earp S == v o e e S AP
Xpress-Dorfin ¥ L T ™ ‘ T el kb "7 - ab
Aglin ——
24h 4gh 48n
(b)

Ratio of total SOD1-EGFP/actin

WT G33A G85R
Cyto Cyto Mito
24h 48h 48h

WT GS3A GB5R  WT G93A GBSR

Fig. 2 Leve! of total SOD1-EGFP fusion protein. {a) Levels of total
SOD1-EGFP fusion protein and Xpress-Dorfin fusion protein. (b)
Densitometric analysis of total SOD1-EGFP fusion protein expressed
as a ratio to actin. Dorfin significantly reduced the level of total SOD1-
EGFP fusion protein expressed by Cylo-G83A or Cyto-GBSR,
whereas it did not reduce that expressed by Mito-SOD1. Values are
mean + SD {n = 4), *p < 0.05 {two-way anova with Tukey-Kramer
post-hoc test).
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fraction, co-expression of Dorfin also reduced the level of
SODI-EGFP fusion proteins expressed by Cyto-G93A or
Cyto-G85R by approximately 40%, whereas it did not
affect those expressed by Cyto-WT (Fig. 3). As we
described previously (Takeuchi et al. 2002a), cells with
Mito-SOD1 showed very small amounts of SODI1-EGFP
fusion proteins in the cytosolic fraction (Fig. 3). In the
mitochondral fraction, co-expression of Dorfin also
reduced the level of SOD1-EGFP fusion proteins expressed
by Cyto-G93A or Cyto-G85R by approximately 50%,
whereas it did not affect those expressed by Cyto-WT
(Fig. 4). This reduction in mitochondrial SOD1-EGFP was
observed from 24 h after transfection, earlier than that of
total or cytosolic SOD1-EGFP. In contrast, in the cells
with Mito-SOD1, Dorfin did not reduce the amount of
mitochondral SODL-EGFP fusion proteins (Fig. 4). The
above results suggest that the mitochondrial accumulation
of mutant SOD1 without organelle-oriented signals might
be a result of mutant SOD1 in the cytosol, and we suggest
that Dorfin, a cytosolic E3, reduced the accumulation of
mutant SODI1 in the mitochondria by enhancing the
degradation of mutant SODI in the cytosol, not in the
mitochondria.

(a) Cylo Cylo Mito

WT (GS3A G85R WT  G93A GB5R _WT  GS3A GESR.

NENE Y & Sy Ea g
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24h 48h 48h

(b)

Ratio of cytosolic SOD1-EGFPlactin

WwT  G23A G85SR
Mita

48h

Fig. 3 Level of cytosolic SOD1-EGFP fusion protein. (a) Levels of
cytosolic SOD1-EGFP fusion protein. (b) Densitometric analysis of
cytosolic SOD1-EGFP fusion protein expressed as aratioto actin. Inthe
cytosalic fraction, Dorfin significantly reduced the levels of SOD1-EGFP
fusion protein expressed by Cyto-G33A or Cyto-GB5R. Mito-SOD1
showed very small amounts of SOD1-EGFP fusion proteins in the
eytosolic fraction. Values are mean x SD (n = 4). *p < 0.05 {two-way
anova with Tukey—Kramer post-hoe est).
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Fig. 4 Level of mitochondrial SOD1-EGFP fusion protein. {a) Levels
of mitochondrial SOD1-EGFP fusion protein. (b} Densitometric ana-
lysis of mitochondrial SOD1-EGFP fusion protein expressed as a ratio
to COX. In the mitochondrial fraction, Dorfin significantly reduced the
level of SCD1-EGFP fusion protein expressed by Cyto-G33A or Cyto-
GB5R, whereas it did not reduce that expressed by Mito-SOD1. Val-
ues are mean £ SD {n = 4). *p < 0.05 (two-way anova with Tukey—
Kramer post-hoc test).

Deorfin protects neuronal cells from mutant SOD1-
mediated neurotoxicity by reducing mitochondrial
mutant SOD1

As we demonstrated previously (Takeuchi et al. 2002a), the
cells with Cyto-G93A and Cyto-G85R underwent cell death
(Fig. 5a) and mitochondrial impairment (Fig. 5b), whereas
those with Cyto-WT did not. The cells with Mito-G93A
and Mito-G85SR exhibited significantly more cell death and
mitochondnial impairment than those with Cyto-G93A and
Cyto-G85R, whereas those with Mito-WT did not (Fig. 5).
Co-expression of Dorfin significantly ameliorated cell death and
mitochondrial impairment induced by Cyto-G93A and Cyto-
G835R (Fig. 5), as in our previous report {(Niwa et al. 2002). In
contrast, Dorfin did not affect cell death and mitochondrial
impaimment induced by Mito-SOD1 (Fig. 3), whose protein
level Dorfin did not reduce. These findings suggest that Dorfin
ameliorates mutant SOD}-mediated neurotoxicity by reducing
the accumnulation of mutant SOD1 in the mitochondria.

Dorfin reduces mitochondrial cytochrome c release

and sequential activation of caspase-9 and caspase-3

We next assessed whether Dorfin reduced the mitechondrial
death signal associated with the mutant SODI-mediated
cytotoxicity. Western blots revealed that Cyto-G93A and
Cyto-G85R induced a gradual increase in the cytochrome ¢
teleased from the mitochondria into the cytosol, whereas
Cyto-WT did not (Fig. 6). The cells with Mito-G93A and
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Fig. & (a) Frequency of dead cells and (b) mitechondrial impairment
analyzed by MTS assay. The cells with Mito-G93A and Mito-G85R
exhibited a significantly higher level of cell death and mitochondrial
impairment than those with Cyto-G33A and Cyto-GB5R. Dorfin signi-
ficantly decreased cell death and mitochondrial impairment induced by
Cylo-G93A and Cyto-GB5R, whereas it did not affect those induced by
Mito-SOD1. Values are mean = SD (n = 8}. *p < 0.05 (two-way anova
with Tukey-Kramer post-hoc test).

Mito-G85R  also exhibited a higher level of cyto-
chrome ¢ release than those with Cyto-G93A and Cyto-
G85R, whereas those with Mito-WT did not (Fig. 6).
Co-expression of Dorfin significantly reduced the release of
cytochrome ¢ from the mitochondra into the cytosol
induced by Cyto-G93A and Cyto-G83R (Fig. 6). In the
cells with Mito-G93A and Mito-G85R, however, Dorfin did
not reduce the cytochrome ¢ release from the mitochondria
into the cytosol (Fig. 6).

Next, we examined whether Dorfin affected the down-
stream signal cascade of the activation of caspase-9 and
caspasc-3 following the release of mitochondrial cytochrome
¢. As we demonstrated previously (Takeuchi et al. 2002a),
western blots revealed that Cyto-G93A and Cyto-G85R
induced gradual activation of caspase-9 and caspase-3,
whereas Cyto-WT did not (Figs 7 and 8). The cells with
Mito-G93A and Mito-G8SR exhibited a higher level of
activation of caspase-9 and caspase-3 than those with Cyto-
G93A and Cyto-G85R, whereas those with Mito-WT did not
(Figs 7 and 8). Co-expression of Dorfin significantly reduced
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Fig. 6 Western blot analysis of cytochrome crelease. (a) Time course
of mitochondrial cytochrome ¢ release into the cytosol. {b) Densito-
metric analysis of eylochrome ¢ release expressed as a ratio to COX.
The cells with Mito-G33A and Mito-G85R exhibited significantly more
cytochrome ¢ release than those with Cyto-GS3A and Cyto-GB5R.
Deorfin significantly reduced the amount of mitechondrial cytochrome ¢
released into the cytosol induced by Cyto-G93A and Cylo-G85R,
whereas it did not affect that induced by Mito-SOD1. Values are
mean + SD (n = 4). "p < 0.05 {two-way anova with Tukey—Kramer
post-hoc test).

the activation of caspase-9 and caspase-3 induced by Cyto-
G93A and Cyto-G85R (Figs 7 and 8). However, Dorfin did
not reduce the activation of caspase-9 and caspase-3 induced
by Mito-G93A and Mite-G85R (Figs 7 and 8), as it did not
reduce the release of cytochrome ¢ induced by Mito-G93A
and Mito-G85R (Fig. 6). These findings combined with the
aforementioned observations suggest that the reduction in the
amount of mitochondrial mutant SOD1 due to Dorfin results
in attenuated activation of the mitochondrial PCD pathway
and prevents eventual cell death.

Discussion

In the present study, we first demonstrated that Dorfin, an E3
for mutant SODI1s, attenuated the activation of the mitoch-
ondrial PCD pathway and prevented eventual ccll death in a
neuronal cell model of FALS by reducing the amount of
mutant SOD! in the mitochondria. Dorfin reduced the levels
of both cytosolic and mitochondrial mutant SOD1-EGFP
fusion proteins that were expressed by Cyto-G93A and Cyto-
G85R without organelle-oriented signals, whereas Dorfin did
not affect the level of mutant SOD1-EGFP fusion protein that
was expressed by Mito-G93A and Mito-G85R with mitoch-
ondrial localizing signals. The reduction in the level of
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Fig. 7 Westem blot analysis of caspase-9 activation. (a) Time course
of the activation of caspase-2. (b) Densitometric analysis of caspase-9
activation. The cells with Milo-G93A and Mito-G85R exhibited signifi-
cantly more activation of caspase-2 than those with Cyto-G93A and
Cyto-G85R. Dorlin significantly reduced the aclivation of caspase-9
induced by Cyto-G@3A and Cylo-G85R, whereas it did not reduce that
induced by Mito-SOD1. Values are mean + 8D (n=4). "p<0.05
{two-way anova with Tukey-Kramer post-hog test).
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Fig. 8 Western blot analysis of caspase-3 activation. (a) Time course
of activation of caspase-3. (b) Densitornetric analysis of caspase-3
activation. The cells with Mitc-G83A and Mito-GB5R exhibited signifi-
cantly more activation of caspase-3 than those with Cyte-G93A and
Cyto-G85R. Dorfin significantly reduced the activation of caspase-3
induced by Cyto-G93A and Cyto-G85R, whereas it did not reduce that
induced by Mito-SOD1. Values are mean + SD (7= 4). *p< 0.05
{two-way Anova with Tukey—Kramer post-ho¢ test).

© 2004 International Society for Neurochemistry, J. Neurockem. (2004) 89, 64-72

—230—



70 H. Takeuchi ef al.

mitochondrial SOD1-EGFP was observed earlier than that of
total or cytosolic SOD1-EGFP. Moreover, Dorfin was present
in the cytosol, not in the mitochondria. These findings
indicated that the mitochondrial mutant SODI1 without
organelle-oriented signals (Cyto-G93A and Cyt0-G85R)
might be translocated {rom the cytosol, and we suggest that
Derfin reduces the mitochondrial accumulation of mutant
SOD! by enhancing the degradation of mutant SOD1 in the
cytosol through the ubiquitin-proteasomal pathway, thereby
reducing the uptake of mutant SODI into the mitochondria,

Many reports have documented mitochondrial involve-
ment in ALS and FALS. Mitochondrial degeneration with
vacuolization or membrane disintegration in motor neurons
is one of the earliest pathological findings in FALS Tg mice
{Dal Canto and Gumey 1994; Wong et al. 1995; Hirano
1996; Kong and Xu 1998; Jaarsma et al. 2000; Higgins et al.
2003). Moreover, mitochondrial dysfunction such as altered
calcium homeostasis (Carri et al. 1997; Menzies et al.
2002b), decreased respiratory chain complex activity (Matt-
iazzi et al. 2002; Menzies et al. 2002a), alteration of
mitochondria-related gene expression (Yoshihara er al.
2002) and an increase in reactive oxygen species (Beretta
et al. 2003} have been reported in in vitro and in vivo models
of FALS. Several studies have documented that SODI,
which has been considered a cytosolic enzyme, also exists in
the mitochondrial intermembrane space (Okado-Matsumoto
and Fridovich 2001; Sturtz et al. 2001; Higgins et al. 2002)
and that the mitochondrial vacuoles are lined with mutant
SODI1 in a FALS Tg mice model (Jaarsma ef al. 2001;
Higgins et al. 2003). Although the mitochondria-oriented
vector we used here is designed to localize proteins to the
mitochondrial matrix, we predict that SODI-EGFP also
exists in the mitochondrial intermembrane space through the
process of its uptake into the mitochondrial matrix in our
model, although were not able to confirm this. Recent studies
also revealed that SODI in the mitochondria originates from
the uptake of SODI in the cytosol (Sturtz ef al. 2001;
Okado-Matsumoto and Fridovich 2002; Field er al. 2003).
At least our result provided enough evidence that Dorfin
interacts with mutant SODI in the cytosol, not in the
mitochondria. Thus we suggest that Dorfin indirectly reduces
the mitochondrial accumulation of mutant SOD1 by reducing
the uptake of mutant SODI into the mitochondria.

Previous studies demonstrated that the mitochondrial PCD
pathway, cytochrome ¢ release and subsequent caspase
activation, might contribute to the motor neuron cell death
in FALS (Durham et al. 1997; Martin 1999; Li et al. 2000,
Pasinelli er af. 2000; Guégan et al. 2001; Kriz et al. 2002;
Zhu et al. 2002). Thus, inhibiling the activation of the
mitochondrial PCD pathway is potentially useful in the
treatment of FALS. Methods for this include inhibition
of cytochrome ¢ release by minocycline (Zhu e al. 2002;
Kriz et al. 2002), co-expression of bel-2 (Lee er al. 2001)
or X-chromosome-linked inhibitor of apoptosis protein

(Ishigaki ef al. 2002), and treatment with a broad caspase
inhibitor zVAD-fink (Pasinelli er al. 2000; Takeuchi et a/.
2002a) or a caspase-9 specific inhibitor zZLEHD-fink (Takeu-
chi er al. 2002a). In this study, we demonstrated that Dorfin
reduces the amount of mitochondrial mutant SODI, attenu-
ates the activation of the mitochondrial PCD pathway and
prevents eventual neuronal cell death. It is therefore possible
that reducing the amount of mutant SOD1 in the mitochon-
dria may be adopted as a new therapeutic strategy for mutant
SOD1-associated FALS.

Recent studies have suggested that some E3s, including
Dorfin, act in a quality-control system to degrade cytosolic or
transmembranous unfolded abnormal proteins (Moynihan
et al. 1999; Fang ef al. 2001; Meacham et al. 2001; Murata
et al. 2001; Yoshida er al, 2002). The mitochondria also
have a quality-contro! system that depends on mitochondria-
specific molecular chaperones and ATPases associated with
diverse cellular activities (AAA) proteases such as chapero-
nin 60 (Gottesman e af. 1997), mitochondrial heat-shock
protein 70 (Savel’ev er al. 1998), and homologs of Lon,
Ymelp, ClpP and ClpX {(Wang ef «l. 1993; Suzuki ef al.
1997; Langer 2000; Shah er al. 2000; Kang et al. 2002;
Rottgers ef al. 2003). A recent study documented that the
accumulation of unfolded abnormal proteins in the mito-
chondria itself up-regulated the nuclear gene expression
encoding mitochondrial-specific molecular chaperenes (Zhao
et al. 2002). Even though the mitochondria are able to
dispose of abnormal proteins, they appear to have limited
capacity to do this. They also seem to release death signals
when abnormal proteins overflow their disposing capacity.
Combination therapy such as Dorfin and mitochondria-
specific molecular chaperones or AAA proteases thus seems
maore effective. Further investigations are needed to develop
this therapeutic avenue,

There remains the problem of how the mutant SODI
induces the mitochondrial PCD pathway. One of our
previous studies revealed that bel-2 family pro-apoptotic
proteins, such as Bax, Bak, Bid, Bad and Bim, and other
mitochondrial death signals such as apoptosis-inducing
factor (AIF) and second mitochondria-derived activator of
caspase (Smac) were not involved in the neuronal cell death
in our model (Takeuchi ef al. 2002a). Other studies have
reported that translocation of Bax and cleavage of Bid were
associated with neuronal cell death in the FALS Tg mouse
model (Guégan et al. 2001; 2002), but there is a possibility
that the surrounding environment of motor neurons such as
astrocytes, microglia or dying neurons might have been
affected in these models. Moreover, we have indicated that a
non-apoptotic form of PCD might contribute to neuronal cell
death through the mitochondrial PCD pathway in our model
(Takeuchi er al. 2002a). Another report also mentioned that a
non-apoptotic type of PCD acting through the mitochondrial
PCD pathway might underlie mutant SOD1-related neuro-
toxicity (Guégan and Przedborski 2003). Further in vive
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investigations are needed to shed light on the mechanism of
mutant SOD1-mediated neuronal cell death.

In this study we demonstrated that Dorfin, an E3 for
mutant SODIs, significantly reduced the level of mutant
SODI1 in the mitochondria, attenuated the subsequent
activation of the mitochondrial PCD pathway and prevented
eventual neuronal cell death in a neuronal cell model of
FALS. Reducing the accumulation of mutant SODI in the
mitochondria may have an important place in the therapeutic
strategy for mutant SOD1-associated FALS, and Dorfin may
play a key role in this.
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