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lium and whether such changes are correlated with tunor
growth and/or metastases. From a therapeutic perspective, our
results point to a potential benefit of overexpressing and/or
inducing the activity of DSCR-1 in tumor endothelium.

In addition to its inhibitory effect on endothelial cell prolif-
eration and angiogenesis, DSCR-1 was also shown to down-
regulate the expression of a nwnber of activation markers in
endothelial cells, including ICAM-1, VCAM-1, tissue factor,
interleukin-8, and E-selectin. These results are consistent with
previous studies demonstrating a link between calcineurin-
NF-AT and a pro-inflammatory response. For example, in en-
dothelial cells, CsA-sensitive induction of NF-AT-mediated has
been implicated in the expression of granulocyte macrophage
colony-stimulating factor and E-selectin (29). Histamine in-
duces interleukin-8 in HUVEC through a CsA-sensitive, NF-
AT-dependent mechanism (44). A previous study in HUVEC
demonstrated that VEGF induces tissue factor expression via a
calcineurin-NF-AT/API-dependent mechanism (31). Taken to-
gether, these data suggest that DSCR-1 may exert an auto-
inhibitory break on Ca?*—calcineurin-NF-AT-mediated endo-
thelial cell activation.

Such a mechanism is reminiscent of the NF-kB-I-xBe auto-
inhibitory loop. Cellular activation results in phosphorylation-
dependent degradation and subsequent ubiquitination of
I-«Ba. As a result, RelA translocates to the nucleus and part-
ners with other members of the NF-«B family to transactivate
a multitude of target genes, including pro-inflammatory medi-
ators. In addition, the NF-xB family induces the early expres-
sion of its inhibitor, I-xBa (3, 4), which serves to dampen
further RelA actvity. Consistent with these results, we have
shown that VEGF, thrombin, and TNF-a each results in the
rapid induction of [-xBa in HUVEC, an effect that is blocked by
pretreatment with proteasome inhibitors and enhanced by cy-
clohexamide (data not shown). The NF-AT-DSCR and NF-«xB-
l-xBa negative feedback loops may function to “fine tune” the
desired downstream effect of the transcription factor and signal
transducer.

During the preparation of this manuscript, Hesser et al. (45)
reported that VEGF, but not basic fibroblast growth factor,
induces DSCR-1 mRNA and protein in HUVEC. They showed
that this oceurs through Flk-1/KDR and involves a Cn-depend-
ent mechanism. Finally, consistent with our results, they dem-
onstrated that DSCR-1 suppressed the expression of inflamma-
tory marker genes in activated endothelial cells (45). However,
there are several important differences between the two stud-
ies. First, Hesser et al. (45) reported that VEGF and TNF-«
induce comparable levels of DSCR-1 mRNA at 6 h. In our
study, we show that VEGF has a much greater effect compared
with TNF-a en DSCR-1 mRNA at 1 h. Second, we have dem-
onstrated that thrombin induces DSCR-1 expression, suggest-
ing that the auto-inhibitory loop is not specific to VEGF sig-
paling. Third, and most importantly, we have extended the
studies to show that DSCR-1 also inhibits VEGF-mediated
effects on endothelial cell migration, cell cycle progression, and
tube formation in primary human endothelial cells, as well as
neo-vascularization and tumor progression in mice.

An important geal in vascular biology is to understand the
molecular mechanisms by which the microenvironment regu-
lates vascular function in space and time. In this study, we
have analyzed the effect of VEGF and thromnbin signals on
endothelial cell gene expression and deinonstrated a key role
for DSCR-1 as a negative feedback regulator common to both
mediators. Based on this knowledge, we believe that DSCR-1
may lend itself to therapeutic manipulation in vasculepathic
disease states, including tumor angiogenesis.

DSCR-1 Auto-inhibits Thrombin and VEGF Signaling
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FOXO01, a member of the FOXO forkhead type tran-
scription factors, is markedly up-regulated in skeletal
muscle in energy-deprived states such as fasting and
severe diabetes, but its functions in skeletal muscle have
remained poorly understood. In this study, we created
transgenic mice specifically overexpressing FOXO1 in
skeletal muscle. These mice weighed less than the wild-
type control mice, had a reduced skeletal muscle mass,
and the muscle was paler in color. Microarray analysis
revealed that the expression of many genes related to
the structural proteins of tvpe I muscles (slow twitch,
red muscle) was decreased. Histological analyses
showed a marked decrease in size of both type I and type
I fibers and a significant decrease in the number of type
I fibers in the skeletal muscla of FOX0O1 mice. Enhanced
gene expression of a lysosomal proteinase, cathepsin L,
which is kmown to be up-regulated during skeletal mus-
cle atrophy, suggested incressed protein degradation in
the skeletal muscle of FOXO1 mice. Running wheel ac-
tivity (spontaneous locomotive activity) was signifi-
cantly reduced in FOXO1 mice compared with control
mice. Moreover, the FOX0O1 mice showed impaired gly-
cemic control after oral glucose and intraperitoneal in-
sulin administration. These results suggest that FOX01
negatively regulates skeletal muscle mass and type I
fiber gene expression and leads to impaired skeletal
muscle function. Activation of FOX01 may be involved
in the pathogenesis of sarcopenia, the age-related de-
cline in muscle maes in humans, which leads to obesity
and diabetes.
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Skeletal musecle is the largest organ in the human body,
comprising about 40% of the body weight. The mass and com-
position of skeletal muscle are critical for its functions, such as
exercise, energy expenditure, and glucose metabolism (1, 2).
Elderly humans are known to undergo a progressive loss of
muscle fibers associated with diabetes, obesity, and decreased
physical activity (sarcopenia) (3). In human skeletal muscle,
there are two major classifications of fiber type: type I (slow-
twitch oxidative, so-called red muscle) and type 11 (fast-twitch
glycolytic, so-called white muscle) fibers (2). Mags, fiber size,
and fiber composition in adult skeletal muscle are regulated in
response to changes in physical activity, environment, or path-
ological conditions. For example, space flight experiments us-
ing rats showed a reduction in total skeletal muscle mass of up
to 37% as well as a significant loss of contractile proteins in
type I but not type II fibers by 1-2 weeks of microgravity (4).
Furthermore, the ratio of type I to type II fibers is associated
with obesity and diabetes; the number of type 1 fibers is re-
duced in obese subjects and diabetic subjects compared with
that in controls (5-7).

Skeletal muscle mass is positively regulated by honnones
such as insulin-like growth factors (IGFs)' and growth hor-
mone {8). Induction of hypertrophy in adult skeletal musecle by
increased load is accompanied by the increased expression of
IGF-1 (9). Systemic administration of IGF-1 results in in-
creased skeletal muscle protein and reduced protein degrada-
tion (10). In addition, overexpression of IGF-1 blocks the age-
related loss of skeletal muscle (11). Supplementation of IGF-1
to muscle cells in vitro promotes myotube hypertrophy, sug-
gesting that hypertrophy can be mediated by autocrine- or
paracrine-produced IGF-1 (12). Thus, delivery of the IGF-1
gene specifically into skeletal muscle has been proposed as a
genetic therapy for skeletal muscle disorders. A better under-
standing of the role of IGF-1 in skeletal muscle is therefore of
great importance.

Specialized/differentiated myofiber phenotypes, including
type 1 and type II fibers, are plastic and are physiologically

! The abbreviations used are: IGF, insulin-like growth factor; CaMK,
calmodulin-dependent kinase; PGC-1a, peroxisome proliferator acti-
vated receptor-y coactivator-1a; STZ, streptozotocin: MLC, myosin light
chain; mtCK, mitochondrial creatine kinase; IGFBP, IGF-binding pro-
tein; COX, cytochrome ¢ oxidase: DEXA, dual energy X-ray absorptiom-
etry; EDL, extensor digitorum longus.
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controlled by variations in motor neuron activity, The influence
of motor neuron activity on different types of skeletal muscle
fibers is considered to be transduced via caleium signaling and
downstream molecules such as calcineurin and the calmodulin-
dependent kinase {CaMK) pathway (13). Signals generated by
calcium/caleineurin/CaMK augment the transactivating func-
tion of Mef2 and/or NFAT and enhance type 1 fiber-specific
gene expression (13-18), More recently, it has been shown that
a nuclear receptor cofactor (19, 20), peroxisome proliferator
activated receptor-y coactivator-la (PGC-1a) (21), drives the
formation of type I fibers, Specifically, in transgenic mice ex-
pressing PGC-la, type [l fibers are red in color, and PGC-1a
activates expression of type I fiber-specific genes (22). We also
reproduced the PGC-la-induced red appearance of skeletal
muscle; both type I and type II fibers appear redder in trans-
genic mice overexpressing PGC-1la in skeletal muscle (23).

FOXO1 (FKHR), FOX04 (AFX), and FOX03a (FKHRL1) are
a subfamily of the forkhead type transcription factors (24, 25).
FOXO1 was originally cloned from a rhabdomyosarcoma be-
cause of its aberrant fusion with another transcription factor,
PAX3, resulting from a chromosomal translocation (26). Recent
studies have shown that the FOXO protein can also act as a
cofactor of nuclear receptor activity (27-30). FOXO family
members have been shown to regulate various cellular func-
tions. FOXOs influence the transcription of genes involved in
metabolism (31-34), the cell eycle (35, 36), and apoptosis (37,
38). In addition, FOXO1 can modulate cell differentiation; the
constitutive active form of FOXO1 prevents the differentiation
of preadipocytes (39) and stimulates myotube fusion of primary
mouse myoblasts (40). Moreover, a FOX01 knockout mouse
has been reported; Foxol haploinsufficiency restores insulin
sensitivity and rescues the diabetic phenotype in insulin-resis-
tant mice by reducing the hepatic expression of glucogenetic
genes and by increasing the adipocytic expression of insulin-
sensitizing genes (41). We have shown that FOXQ1 expression
is increased in skeletal muscle in energy-deprived states, such
as in fasting mice, in mice with streptozotocin {STZ)-induced
diabetes, and in mice after treadmill running (42). However,
the physiological role of FOXO1 in skeletal muscle is still
unclear, Although many studies have been performed using
cultured cells, studies using animals with genetic modifications
focused to the skeletal muscle remain to be conducted in order
to understand the function of the FOXO family proteins in vivo.
Meanwhile, it has been reported that FOX01 and PGC-1a can
physically interact and regulate gene expression in the liver
(43). Given that PGC-1« is important for the differentiation of
type I fibers, FOX01 might be involved in this process. (Here-
after, we use “differentiation of muscle fiber” to mean “a switch
from one fiber type to another fiber type.”) On the other hand,
a genetic study of Caenorhabditis elegans showed that DAF16,
the worm counterpart of FOXO, functions as a suppressor of
insulin receptor-like signaling {44). Thus, the FOXO family
may act negatively in mammals as a downstream player in
insulin or IGF signaling. As IGF-1 plays an important role in
controlling skeletal muscle mass, FOX01 might also be in-
volved in this process.

To gain insight into the potential role of FOXO1 in skeletal
muscle, including the control of skeletal muscle mass and the
control of differentiation of muscle fiber type, we established
transgenic mice specifically overexpressing FOXO1 in their
skeletal muscle. Most interestingly, these mice showed reduced
skeletal muscle mass, and the muscle was paler in color. His-
tochemical, physiclogical, and microarray analyses of these
FOXO1 transgenic mice showed that FOXOQ1 is involved in the
regulation of skeletal muscle mass and type [ fiber gene ex-
pression. In addition, our results suggest that FOXO1 activa-
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tion may play a role in the impairment of skeletal muscle
funetion including glycemic control.

EXPERIMENTAL PROCEDURES

RNA Analysis—Northern blot analyses were performed as described
previously (42). The cDNA probes for Gadd45« (GenBank™ accession
pumber, U00937), troponin C (slow) (M29793), tropenin T (slow)
(AV213431), myosin light chain (MLC) (slow} {M91602), myogiobin
(X04405), mitochondrial creatine kinase (mtCK, AV250974), F,F,-
ATPase (AF030559), MLC (fast) (U77943), troponin I (fast) (J04992),
troponin T (fast) (L48989), cathepsin L (X06086), IGF-binding protein &
{IGFBP5) (L12447), MuRF1 (AF294790), and atrogin 1 (AF441120) were
cbtained by reverse transcription-PCR. The PCR primers used are as
follows: Gadd45«, forward, 5'-TCGCACTTGCAATATGACTT-3', and re-
verse, 5'-CGGATGCCATCACCGTTCCG-3"; troponin C (slow), forward,
5-AGCTGCGGTAGAACAGTTGA-Y', and reverse, 5-TCACCTGTGGCC-
TGCAGCAT-3'; troponin T (slow), forward, 5'-TTCTGTCCAACATGGG-
AGCT-¥, and roverse, 5-TCGGAATTTCTGGGCGTGGC-3"; MLC (slow),
forward, 5'-CAGTTCAAGGAAGCCTTCAC-3', and reverss, 5'-CTGCGA-
ACATCTGGTCGATC-3'; myoglobin, forward, 5'-CACCATGGGGCTCA-
GTGATG', and reverse, 5'-CTCAGCCCTGGAAGCCTAGC-3"; miCK,
forward, 5'-AAAGGAAGTGGAACGATTAA-3', and reverse, 5'-TTGATG-
TCTTGGCCTCTCTC-3', F,, Fy-ATPase, forward, 5-ACTGACCCTGCCC-
CTGCAAC-3', and reverse, 5'-CAAGGCTCTTGTGTGGCCTG-3', MLC
(fast), forward, 5'-AGGGATGGCATTATCGACAA-3', and reverse, 5'-CA-
GATGTTCTTGTAGTCCAC-3'; troponia [, (fast), forward. 5-AGGAAAG-
CCGCCGAGAATCT-3, and reverse, 5'-TACTGGGGAAGTGGGCAGTT-
3" troponin T (fast), forward, 5-CAGCAAAGAATTCGCGCTGA-3', and
reverse, 5'-GGCCTTCTTGCTGTGCTTCT-3'; cathepsin L, forward, 5°-C-
GGAGGAGTCTTACCCCTAT-3', and reverse, 5'-CTACCCATCAATTCA-
CGACA-3'; IGFBPS5, forward, 5'-GCCTATGCCGTACCGGCTCA-3', and
reverse, 5"-CTTCACAGCCTCAGCCTTCA-3'; MuRF1, forward, 5'-ATG-
AACTTCACGGTGGGTTT-3", and reverse, 5°-TCAGTGCAGGCCTGAG-
CCTT-3" and atrogin 1, forward, 5-ATGCCGTTCCTTGGGCAGGA-3,
and reverse, 5-TCAGAACTTGAACAAATTGA-Y, FOX01, FOXO3a, and
FOX04 cDNA probes were prepared as reported previously {42). COXII,
COXIV, Mef2c, PGC-1c, and glucose transporter 4 cDNA probes were
prepared as described previously (23). NFAT (IMAGE clone 41054689) and
CaMK II8 (IMAGE clone 5014712} cDNA probes were purchased from
Invitrogen.

Gencrating Tronsgenic Mice—The human skeletal muscle a-actin
promoter (45) was provided by Dra. E. D. Hardeman and K. Guven
(Children's Medical Research Institute. Australia). The human FOXO1
¢DNA was as described previously (42). The transgene (Fig. 1A) was
excised from agarose gel and purified for injection (2 ng ul™'). Fertilized
egga were recovered from C57BL/G females crossed with C57BL/6 males
and microinjected at Japan SLC Ine. (Hamamatsu, Japan), The mice
were mainiained at a constant Lemperature of 22 °C with fixed artificial
light (12-h light and 12-h dark cycle). Care of the mice was conducted in
accordance with the institutional guidelines.

Body Composition Analysis—Mice were anesthetized with pentobar-
bital sodium, Nembutal (0.08 mg/g body weight, Abbott), and scanned
with a Lunar PIXI mus2 densitometer (Lunar Corp., Madison, WI),
equipped for dual energy x-ray sbsorptiometry {DEXA) (46).

Immunobiotting—Protein extracts from skeletal muscle were pre-
pared by centrifugation of the tissue homogenates as described previ-
ously {(47). Proiein extracls {30 pg) separated by SDS-PAGE were
electrophoretically transferred to Immobilon P membranes {(Millipore,
Bedford, MA). Immunoblotting was performed by using goat anti-
FOXO1 IgG (N-18, Santa Cruz Biotechnology, Ine. Santa Cruz, CA),
goat anti-troponin I (slow) {C-19, Santa Cruz Biotechnology), goat anti-
troponin I (fast) (C-19, Santa Cruz Bictechnelogy), goat anti-myoglobin
(M-109, Santa Cruz Biotechnology). or rabbit anti-PGC-1a (C terminus,
Calbiochem) as primary antibodies {1:1000} and anti-goat IgG or anti-
rabbit IgG conjugated with horseradish peroxidase as secondary anli-
bodies (1:1000). Bands were visualized with the enhanced chemilumi-
nescence system (Amersham Biosciences),

Histological Analyses—Skeletal muscle (soleus) samples were frozen
in liquid nitrogen-cooled isopentane, and transverse serial sections
were stained with ATPase at pH 4.3 to detect type I fibers and at pH
10.5 to detect type L1 fibera (48). The ratio of type I fibers to type II fibers
and the size (area) of skeletal muscle cells were determined by counting
cell numbers in six randomly selected cross-section areas (each 900
p#m®} stained with ATPage at pH 4.3.

Blood Analysis—Blood samples were obtained from mice tail tips for
hormone and metabolite determination under feeding conditions. Im-
munoreactive insulin was measured by an insulin assay kit (Morinaga,
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Kanagawa, Japan), free fatty acid by NEFA C-test Wako (Wako Bio-
chemicals, Osakea, Japan), lactate by the lactate reagent (Sigma), and
glucose by the TIDEX glucose analyzer {Sankyo, Tokyo, Japan).

Running Wheel Activity—Mice were housed individually in cages
(3 X 22 X 9 cm) equipped with a running whee!l {20-cm in diameter,
Shinano Co., Tokyo, Japan). Each wheel revolution was registered by a
magnetic awitch, which was connected to a counter. The number of
revolutions was recorded daily for 6 days.

Gral Glucose and Insulin Telerance Tesl—For the oral glucose toler-
ance test, D-glucose {I mg/g of body weight, 10% (w/v) glucose solution)
was administered with a stomach tube after an overnight fast. Blood
samples were obtained by cutting the tail tip before and 30, 60, and 120
min after glucose administration. For the insulin tolerance test, human
insulin (Humulin R; Lilly) was injected intraperitoneally {(0.75 milli-
unita/g of body weight) into fed animals. Blood glucose concentrations
were measured using a TIDEX glucose analyzer (Sankyo, Tokyo,
Japan).

Microarray Analyses—RNA was isolated from skeletal muscle {quad-
riceps) of sex- and age-matched FOXO1 mice (Al and A2 lines) and
control mice (males at 4 months of age, RNA from three mice of each
group were combined). Each of the combined samples was hybridized to
the Affymetrix MGU74A microarray, which contains 12,489 genes in-
cluding ESTs, and analyzed with the Aflymetrix Gene Chip 3.1 software
aa deacribed previously (49). Of tha 12,489 genes including ESTs ana-
lyzed, 2500 (nontransgenic control mice), 2490 (line Al, transgenic),
and 2510 (line A2, transgenic) genes were expressed at a aubstantial
level (absolute call is present and average difference is above 150).
Gones were classified on the basis of the biological function of the
encoded protein, using a previous'y established classification scheme
(50). The classification scheme was composed of seven major functional
categories and several minor functional calegories within the major
categories.

Statistical Analyses—Statisties] comparisons of data from the exper-
imental groups were performed by the one-way analysia of variance,
and groups were compared using the Fisher's protected least significant
difference test (Statview 5.0, Abacus Concepts, Inc., Berkeley, CA). The
glucose and insulin tolsrance curves were compared by repeated meas-
ure analysis (Statview 5.0, Abacus Concepts). When significant, groups
were compared by the Fisher's protected least significant difference
test. Statistical significance was defined as p < 0.05,

RESULTS

Creation of FOX0O1 Mice—Thae hwinan skeletal muscle a-ac-
tin promoter (45) was used to drive the expression of the hu-
man FOXO1 transgene in mice (Fig. 1A}, During development,
cardiac muscle a-actin is the predominant isoform of sarcom-
eric «-actin in mice, and the switch to skeletal muscle a-actin
occurs postpartum (45). Thus, by using the skeletal muscle
a-actin promoter, the possibility that embryonic expression of
FOXO1 might interfere with development was minimized. We
obtained two independent lines of transgenic mice (lines Al
and A2). Southern blot analysis of DNA obtained from mouse
tails was performed as shown in Fig. 1B. The transgene copy
number of each animal was estimated by densitometric scan-
ning of the autoradiographs from the Southern blots.

Expression of the FOX0 1 transgene was evaluated by North-
ern blot analysis with RNA isclated from the tissues of FOX(1
mice and age-matched control mice at 8 weeks of age (Fig. 1C).
The use of this promoter resulted in predominantly high ex-
pression levels of the FOXOI transgene in skeletal muscle
{about 3.5 kb). The A2 line showed expression levels of the
FOXO1 transgene in skeletal muscle that were similar to or
slightly higher than that in the Al line. Transgene expression
was observed not only in the gastrocnemius and quadriceps but
also in other areas of skeletal muscle including the tibialis
anterior, extensor digitorum longus (EDL), and soleus {not
shown). The blot was then re-hybridized with a eDNA probe of
Gadd45«, an authentie target gene of FOXO1 (51, 52). As
expected, induction of the expression of Gadd45a was observed
in skeletal muscle but not in other tissues in both FOXO1
transgenic mouse lines (Fig. 1), indicating that the transgene
expressed a functional FOXO1 protein. By using an antibody
that recognizes both human and mouse FOX01, we confirmed
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Fic. 1. Creation of FOXO01 transgenic mice. A, map of the 5-kb
construct used for transgenic microinjection. The transgene was under
the control of the human skeletal muscle a-actin promoter and included
exon 1 and the intron of the human skeletal muscle a-actin gene as well
as Lhe bovine growih hormone polyadenylation site (45). B, character-
ization of FOXO1 mice. Two transgenic lines, Al and A2, were identi-
fied by Southern blot analyses of DNA obtained from the tail of each
mouse. The copy number was 2 for Al and 10 for A2, as estimated by
densitometric scanning of the autoradiographs of the Southern blot. C,
expression of the FOX(O! transgene in mice. Northern blot analysis of
human FOX0O1 mRNA expression in tissues from FOXO1 mice (line Al
and A2} and nontransgenic control mice. RNAs from brain, brown
adipose tissue (BAT), heart, kidney, liver. lung, skeletal muscle {(gas-
trocnerniua (Gastre.) and quadriceps (Quadri.}), and white adipose tis-
sue {WAT} were analyzed. The blots were re-hybridized wilh the
Gadd45a probe. Each lane contained 20 pug of total RNA. 28 S riboso-
mal RNA staining of a sample from control mice is shown. Similar
staining was observed in samples from transgenic mice {not shown). D,
expreasion of the FOXO1 protein in the skeletal muscle of FOXO1 mice.
Protein extracts (30 pg per lane) were subjected to SDS-PAGE. The
FOXO01 protein was detected by immunoblotting. The densitometric
ratic is shown below the autoradiogram (the control was set as 100). E,
comparison of representative samples of dissected skeletal muscle (T4,
tibialis anterior;, Sol, scleus; Gustro, gastroenemive, Quadri, quadri-
ceps) between FOXO1 mice and littermate control mice. Legs were
removed from 4-month-old {{ines Al and A2) transgenic mice and age-
matched control mice. Tibialis anterior. gastrocnemius, and quadriceps
contain a mixture of type 1 and Il fbera; EDL is enriched in type II
fibers, and soleus is enriched in type I fibers (control). Average dry mass
{n = 3 in each group) is shown below the panel. Muscles were smaller
in size and paler ia color in FOXQO1 mice than in control mice.
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TasLe [
FOXO1 mice are smaller in body weight and lean body mass
FOXO01 mice weighed less {body weight and lean body mass} than nontransgenic, age- and sex-matched controls, when measured at 5 months
of age (line A1) and at 4 months of age (line A2). Fat content per body weight of control and FOX01 mice did not differ significantly. Data on both
male and female mice are shown. Food intake and bleod analyses of these mice are also shown. Values represent means * S.E.

Mice  Numbers Sex Age Body waeight Mwy Fatcontent Food intake Free fatty acid  Lactate Glueose Insulin
F'4 g % glgtday mEgfliter mgimi mgld] pgimi
Control 4 Male S5months 29.0+10 241+03 208=16 0180005 0.30 0025 53.0 243 16329 1775+ 700
Al 4 Male 245 0.4° 203 04" 20805 0170004 0.34 20098 56383 17314 739+ 139
Control 4 Femala 21609 19309 12910 0250017 0390060 327 +3.1 15880 289+ 14
Al 6 Fermale 184 x 04" 164 x0.2° 158+12 024 +0.017 038 =0.049 389+25 163+53 302=+5
Control 4 Male 4months 24304 210+x04 15212 021 *0.011 040 *0.045 373 +3.7 160+ 10 373+ 19
A2 4 Male 194 £0.1° 17402 150219 018 =0.017 0.33+0.077 464 +66 184+ 14 573 169
Control 4 Female 199 +06 17607 12802 025+0.027 0450055 345+19 144+ 10 283+ 10
4 Female 17303 1501 x04° 133209 0230041 0580096 357 +59 14365 316= 10
9p < 0.01.
3 p < 0.001,
p < 0.05

the presence of the FOXO1 protein in the skeletal muscle of
FOXO1 mice (Fig. 1D). An ~2.2-fold (line A1) and 3-fold (line
A2) increase in FOXO1 protein levels was observed. These
increases were at the physiological level, since 24-h fasting has
been shown to increase FOXO1 protein content by 2.6-3-fold
(Ref. 53 and data not shown).

FOX01 Mice Are Small—The apparent phenotype observed
in FOXO1 mice was small stature and thinner legs than the
control mice. Both male and female transgenic mice weighed
about 10% less than the control mice at 5 weeks of age (not
shown). We used DEXA to measure the lean body mass (body
weight excluding fat weight} and the content of fat in the whole
body of the Al line (at 5 months of age} and the A2 line (at 4
months of age) in age- and sex-matched control mice (Table .
Both body weight and lean body mass were significantly lower
in both male and female FOXO1 mice (both lines) than in
control mice. However, the fat content per total body weight of
both FOXO1 mouse lines was comparable with that of non-
transgenic mice (Table I). Thus, the decrease in body weight of
the FOXO1 mice is not caused by a decrease in body fat but by
a decrease in lean body mass. Consistent with the data on
decreased lean body mass, the skeletal muscles in FOXO1 mice
were smaller in size and dry mass, as well as paler in color than
those of control mice (Fig. 1E}). Consumption of food per body
weight was not significantly different between FOXO1 mice
and control mice (Table ). Blood metabolite (free fatty acid,
lactate, and glucose) and insulin levels did not differ signifi-
cantly between FOXO1 mice and the controls (Table I).

Microurray Analysis—To obtain information on changes in
gene expression in FOXO1 mice, we performed microarray
analysis using RNA samples from skeletal muscle (quadriceps)
of transgenic and control mice. Most interestingly, the largest
category of genes with suppressed expression in the transgenic
mice was those involved in cell structure. Namely, about half of
the down-regulated genes were classified as cytoskeletal pro-
teins (Table II}. The FOXOl-induced genes were distributed
throughout various categories (not shown, see Supplemental
Material 1}.

In the skeletal muscle of FOXO1 mice, there was a decrease
in the expression levels of genes related to structural proteins
of the type I fiber (slow twitch oxidative, red muscle), such as
slow muscle isoforms of myosins (Table [1, line numbers 1, 4,
and 6), slow isoforms of troponins (Table {I, line numbers 2, 5,
and 7), a-tropomyosin slow type (Table I, line number 13},
myoglobin (Table 1], line number 12), and mtCK (Table II, line
pumber 15}, which are abundant in type I fibers (54). This is
consistent with the observation that the skeletal muscles of
FOXO01 mice are pale (Fig. 1E). In the microarray, the expres-
sion of mitochondrial oxidative metabolism genes, such as the

electron transport system, did not differ between FOXO1 mice
and controls (not shown). In large mammals such as humans,
type I fibers are higher in mitochondrial content and more
dependent on oxidative metabolism than type II fibers. In small
mammals (e.g. mouse and rat), a large amount of mitochondria
is seen in type 11 fibers as well as type | fibers (2). The large
amount of mitochondria in both type I and type 11 fibers in mice
would explain the unchanged gene expression of the mitochon-
drial electron transport system, although expression of type [
fiber genes was markedly suppressed. In addition, the gene
expressicn of type II fiber isoforms did not differ (not shown).
Namely, expression of genes preferentially abundant in type [
fibers appears to be suppressed in the skeletal muscle of
FOXO1 mice.

Northern Blot Analysis of Representative Genes—We recog-
nize the limitation of single microarray assays, as they can
contain certain noise in the data. Thus, to verify the changes of
gene expression found in the microarray analysis, we per-
formed Northern blot analysis by using probes for several
genes., In addition to representative genes in the list (Table ID,
we also analyzed several additionally selected genes of type I
fiber or type II fiber markers or genes that may be involved in
fiber differentiation. FOXO1 overexpression did not signifi-
cantly affect mRNA levels of the other FOXO members, FOX04
and FOX03a (Fig. 24). Consistent with the microarray data, a
reducticn in gene expression was confirmed for type I fiber
proteins, such as troponin C (slow) {Table [I, line number 2),
MLC (slow) (Table 11, line number 6), troponin T (slow) (Table
11, line nwnber 7), myoglobin (Table II, line number 12), and
mtCK (Table II, line number 15) (Fig. 24). On the other hand,
expression levels of genes for compeonents of the mitochondrial
electron transport system, such as cytochrome ¢ oxidase II and
IV(COX II and IV}, and the Fo,F,-ATPase, were not markedly
changed in the skeletal muscle of FOXO1 mice. Next, we ex-
amined type 11 fiber genes. The expression of genes for troponin
[ (fast), troponin T (fast), and MLC {fast) did not differ between
FOX01 mice and control mice. Thus, the results of the microar-
ray analysis were confirmed by Northern blot analysis. In
addition, given that Mef2, NFAT, CaMK, and PGC-1a have
been implicated recently in regulating gene expression in type
1 fibers (14 -18, 22), we also examined the level of their expres-
sion in skeletal muscle of control and FOX01 mice. PGC-1a
mRNA levels were slightly increased in the skeletal muscle of
FOXO01 mice (line A2). Most interestingly, expression levels of
Mef2c and CaMK were reduced in FOX01 mice. FOXO1-medi-
ated down-regulation of type [ fiber genes may, in part, be
regulated by Mef2¢c and CaMK.

Moreover, we examined the expression levels of genes whose
expression levels are known to be changed during skeletal
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Tase II
Gene with decreased expression in the skeletal muscle of FOX0! mice
The expression levels of 22 genes were significantly decreased in both the Al and A2 lines of FOXO1 mice. The genes are listed in the order of
greatest fold change in expression in skelotal muscle from line Al mice relative to control mice. Fold change calculations were carried out as an
indication of the relative change of zach transcript represented on the probe array. The average difference value is a marker of abundance of each
gene. Categories and subcategories are based on a previously established classification scheme {50) and literature review. Change (| } indicates

that expression is significantly decreased compared with control mice.

GenBank™ L . . Fold Fold Average Average Avernge
accession Do, Gene description Categories Subcategories tﬁi:n 5 (lc}l:]: e) cig;r;gﬁe d(hf’:;e;eAnlof ?i{t:;%of
1 AJ223362  Myosin, heavy polypeptide  Cell structure Cytoskeletal -57.6] -—418] 418 -97 10
7, cardiae muscle, 8
2 M29793 Troponin C {(cardiac/slow Cell structure  Cytoskeletal -304] -971 260 2 39
skeletal isoform) :
3 Usss23 Aquaporin 4 Metabolism Tranaport -21} -10.2] 259 10 21
4 X12972 Myosin alkali light chain Cell structure Cytoskeletal ~6.8) -2.1) 937 129 450
(ventricularfalow muscle
isoform)
5  AJ242874  Troponin I, skeletal, slow 1§ Cell structure  Cytoskeletal -6.7) -32] 313 48 169
6 M91602 Myosin light chain 2 Cell structure  Cytoskeletal -58}) -3} 1038 165 316
{cardiac ventricle isoform)
7 AV213431 Trppct).nin ;‘I‘l {alow twitch Cell structure  Cytoskeletal -44) -31) 772 174 246
1solorm
8 M74570 Aldehyda dehydrogenase I  Metabolism Sugar/glycolysis -4) -28] 567 140 209
9  U34277 Platelet-activating factor Cell defense  Homeostasis -31] -2l 238 kil 120
acetylhydrolase
10  Al646638 Clone MGC:37615 IMAGE: Not found in the list -291 -22] 150 51 68
4989784, mRNA,
11  D45203 Pentylenetetraiole-related Not found in the list -281 -31 1232 434 411
mRNA PTZ-17
12 X04405 Myoglobin Cell defense  Homeostasis -28! -18] 2484 812 1410
13 U04541 Tropomyosin 3 {slow twitch  Cell structure Cytoskeletal 2.7} -24 662 243 273
isoform)
14 X92665 Ubiquitin-conjugating Protein Post-translational -2.1] -17] 293 187 175
enzyme E2E1 expression modification :
15  AV280974  Creatine kinase, Metabolism  Sugar/ -2 -18} 671 300 339
mitochondrial 2 glycolysis
16 X57349 Transferrin receptor Cell defense  Homeostasis -19] -28] 276 121 82
17 L12447 Insulin-like growth factor- Uneclassified -19] -19] 2080 1111 1095
binding protein 5
18 Z33015 Myotonin protein kinase Cell signaling Protein -19] -18)] 684 361 374
modification
19 AB010144 Mitsugumin29, a Cell structure General -18] -24] 742 414 312
synaptophysin family
20 X63615 Caleium/calmod ulin- Cell signaling Protein ~18] -2.1] 295 160 146
dependent protein kinase modification
IL g
21 U0067TT ' Syatrophin, acidic 1 Cell structure Cytoskeletal -17] -17] 857 504 491
22  AF032059 Potassium voltage-gated Coll signaling Channeltransport -151] -16] 320 209 195
channel

muscle atrophy such as caused by fasting, cachexia, and STZ-
induced diabetes (55). Specifically, gene expression of atrogin
LMAFbx, MuRF1 (both are ubicuitin ligases), and cathepsin L
(a lysosomal protease} is up-regulated and IGFBP5 is down-
regulated during skeletal muscle atrophy (55). In our Northern
blot analysis, the level of atrogin 1 expression was increased in
the A2 line of FOXO1 mice, which has less skeletal muscle, but
not in the Al line, which also has less skeletal muscle mass
than nontransgenic controls. In both the Al and A2 lines of
FOX01 mice, the expression of cathepsin L and IGFBP5 was
increased and decreased, respectively. The MuRF1 mRNA level
was not changed. Thus, atrcphy-related gene expression
changes including that of protein degradation likely occurred in
the skeletal muscle of FOXO01 mice.

Western Blot Analvsis of the Skeletal Muscle of FOX0O1 Mice
and PGC-1a Mice—We examined the expression of various
gene products of FOXO1 mice at the protein level by Western
blot analysis (Fig. 2B). Protein extracts from the skeletal mus-
cle of FOX01 mice (Al and A2 lines) and wild-type control mice
were used. For comparison, we analyzed protein extracts from
the skeletal muscle of PGC-1a transgenic mice, which we pre-
viously analyzed (23). Protein levels of troponin I (slow) and
myoglobin, which are rich in type I fibers, were increased in

PGC-1a mice but decreased in FOXO1 mice (Fig. 2B), On the
other hand, the protein level of troponin [ (fast), which is rich
in type II fibers, was decreased in PGC-la mice but not in
FOX01 mice (Fig. 2B). Thus, Western blot analysis of the
protein expression of genea for type I and type I fibers was
consistent with the results of mRNA expression analysis.
Histological Analysis of Skeletal Muscle of FOXO1 Mice--We
examined the relationship between the change in type [ fiber
gene expression and actual muscle fiber morphology in the
skeletal muscle (soleus) of transgenic mice using light micros-
copy and histochemical procedures (Al line, 4 months after
birth; A2 line, 3 months after birth). Distinction between type
I and type Il fibers can be made by myosin ATPase staining at
different pH values, Specifically, at pH 10.5, type 1! fibers are
well stained but not type I fibers, and at pH 4.3, type I fibers
are well stained but not type I fibers (2). ATPase staining
revealed that skeletal muscle cells (both type I and type Il
fibers) in the FOXQ1 mice are smaller than those of the control
mice (average cross-sectional area of muscle fibers; Al line,
11.5 = 0.8 um? in POXO1 mice and 20.0 * 2.7 um? in control
mice; A2 line, 9.8 + 0.5 wum?®in FOXO1 mice and 14.1 * 1.9 um?
in control mice) and had fewer type I fibers than those in the
control mice (average; Al line, 28.6 * 1.3% in FOXO01 mice and
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F16. 2. Gene product levels in the skeletal muscle of FOXO01 mice. A, Northern blot analysis was performed on total RNA (20 pg per lane)
isolated from skeletal musacle (quadriceps) of FOX01 mice (/ine Af aud line A2) and nontransgenic control mice. The same RNA sample seta were
blotied onto multiple membranes and hybridized with the indicated probes, The names of genes examined are on the left of the autoradiograms,
and average densitometrie ratios {the control was st as 100) are on the right (*, p < 0.05; **, p < 0.01). Equal sample loading was confirmed by
ethidium bromide staining of 28 S ribosomal RNA. Each lane represents a sample from an individual mouse. B, Western blot analysis was
performed on protein extracts from the skeletal muscle of FOXO! mice (Af and A2 lines), PGC-1« miice, and control mice. Antibodies against
FOXO01, PGC-14, troponin 1 {slow), myoglobin, and troponin 1 {fast) were used. A typical autoradiogram, representative of three independent
experiments with similar results, is shown. Numbers below the panels are values of the densitometrie ratios (the signal of the control for each
saniple was set as 100). Corresponding bands are indicated by arrowhends. The approximate estimated molecular sizes are as follows: FOX01, 70
kDa; PGC-1a, 90 kDa; troponin 1 (slow), 30 kDa; myoglobin, 30 kDa; and troponin (fast), 40 kDa.

37.8 * 2.2% in control; A2 line, 20.2 = 2.3% in FOX01 mice and
40.4 = 2,0% in control) {Fig. 3A). Inmunohistochemistry with
antibodies to myoglobin {present at high concentrations in type
I fibers) confirmed the reduction in the number of type I fibers
in the skeletal muscle of FOXO1 mice (not shown). Skeletal
muscle samples from FOXO1 mice had no structural abnormal-
ities such as mitochondrial abnormalities, glycogen accumula-
tion, vacuolar formation, and muscle fiber degeneration (not
shown).

Running Wheel Activity of FOX0O1 Mice—The mass and fiber
composition of skeletal muscle are iinportant for physical ex-

ercise. Type I fibers are more resistant to fatigue than type II
fibers (2). As the FOXO1 mice had decreased total skeletal
muscle mass and fewer type I fibers, they may have a low
capacity for endurance, such as that needed in a marathon. We
then compared the running wheel activity (spontaneous loco-
motive activity) in FOX01 mice and control mice. Mice were
transferred to cages with a running wheel and monitored daily
for the number of wheel revelutions made for 6 days. Both lines
of FOXO1 mice showed significantly fewer wheel revolutions
(Fig. 3B). The decrease in running wheel activity suggested
that FOXO1 mice were less able to sustain continuous muscle
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Fia. 3. A. histological analysis of skele- A
tal muscle. Light microscopy of ATPase
{pH 4.3 for type I fibers and pH 10.5 for
type I fibers)-stained transverse sectiona
of gkeletal muscle (soleus) specimens
from FOXO1 mice {line A2} and control
littermates at 3 months of age. Bars, 50
um. Skeletal muscle fibera of FOXO!
mice were thinner and contained fewer
type I fibers than that of control mice. B,
runoing wheal activity of FOXO1 mice.
Mice were housed individually in cages
equipped with a running wheel (20 em in
diameter). The number of revolations
made was recorded daily for 6 days, and
the cumulative values are shown. Open
eolumn, control; closed column, FOXO1
mice. Running wheel activity was signifi-
cantly (p < 0.05) reduced in FOXO mice
(ine Al, left; line A2, right) compared
with control mice, Mice used were females
at 10 weeka (line AI) and 9 weeka (line
AZ2) of age. Numbers of animala uaed are
as follows: line Al, control, n = 6; FOX01
mice, n = 5; line A2, control, n = 4;
FOXO1 mice, n = 3. Because male mice B
responded similarly, only the data from
female mice are shown. C and D, oral
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glucose tolerance teats (C) and insulin tol-
erance tests (1) on FOXO1 mice. For the
oral glucose tolerance test. mice were
fasted overnight and given D-glucose (1
mg/g body weight) orally by a stemach
tube. Blood glucose levela were deler-
mined at the times indicated, For the in-
gulin tolerance test, mice were allowed
free access to food and then given 0.75
milliunits of human iosuling of body
weight. Bleod glucose levels were meas-
ured at the indicated time pointa. Mice
used were males at 10 weeks (line Al}and
9 weeka (line A2) of age. The numbers of
animals used were: line A1, control, n = 6;
FOXO01 mice, n = 5; line A2, control, n =
§; FOX0) mice, n = 4,
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contractions than control mice, which is consistent with the
reduction in the mass of skeletal muscle and the number of
type I fibers,

Oral Glucose Tolerance Test and Insulin Tolerance Test on
FOXO1 Mice—Skeletal muscle is important for glucose metab-
olisin. To examine whether the decreased skeletal muscle mass
of FOXO1 mice is affecting their systemic glucose homeostasis,
we examined oral glucose tolerance and insulin tolerance in
FOXO1 mice. Glucose tolerance was impaired in both lines of
FOXO01 mice, namely peak blooc. glucose values in FOX(Q1 mice
were elevated significantly above those of the control mice (Fig.
3C). The insulin tolerance test clearly demonstrated that the
glucose-lowering effects of insulin were impaired in both the Al
and A2 lines of FOXO1 mice, compared with those in age- and
sex-matched control mice {Fig. SD). FOXO1 mice showed a low
capacity for glucose metabolism and decreased insulin sensi-
tivity. Adipose tissue, another ¢rgan playing a role in glucose
metabolism, appears not to be involved in this impaired glyce-
mic control because 1} body fat did not differ between FOXO1
mice and control mice (Table I), and 2} gene expression of
glucose transporter 4, which is a rate-limiting molecule of
insulin-dependent glucose intake (56), was not decreased in
adipose tissue of FOX01 mice (see Supplemental Material 2).
FOXO1 mice may therefore represent a certain type of diabetic
state in humans.

Change in Endogenous FOXOY Expression by Physical Inac-
tivity—We performed Northern blot analysis with RNA from
the skeletal muscle of mice maintained under a long period of
physical inactivity. The right hindlimbs of wild-type mice were

100000

75000

—]—

0-
Day

immobilized in plaster casts, and the left hindlimbs were left
freely moving for the control sample. After 3 weeks in the
plaster casts, skeletal muscle {(gastrocnemius) weight of the
right hindlimbs was significantly decreased compared with
that in the controls (average, 88 * 12 mg for iinmobilized and
149 = 6 mg for freely moving controls, n = 3, p < 0.05). As
shown in Fig. 4, the gene expression of troponin C (slow),
myoglobin, and mtCK but not MLC (fast) and troponin T (fast)
was markedly decreased in the plaster—casted muscle. At the
same time, endogencus FOX0O1 mRNA was increased in the
immobilized muscle (Fig. 4). Furthermore, Gadd45a was in-
creased in the sane sample. In addition, cathepsin L, but not
atrogin 1 and MuRF1, were increased (Fig. 4). Thus, mRNAs of
endogenous FOXO01, Gadd45«, and cathepsin L were in-
creased; skeletal muscle mass was decreased, and the expres-
sion of type | fiber genes but not type II fiber genes were
decreased. The gene expression changes observed in the plas-
ter-casted skeletal muscle were similar to the changes observed
in the FOXO1 mice (Fig. 24). These results further support the
involvement of FOXQ1 in the negative regulation of skeletal
muscle mass and the expression of type I fiber genes.

DISCUSSICN

To gain insight into the role of FOXO1 in skeletal muscle in
vive, we established transgenic mice overexpressing human
FOXO01. The FOXO1 transgene was predominantly expressed
in the skeleta] muscle, and the increase in FOX0O1 protein
expression was within physiological levels. Most interestingly,
the skeletal muscle of FOX01 mice weighed less and was paler
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in color, The results of gene expression analyses showed that
type [ (red muscle) fiber-related gene expression was decreased
in the skeletal muscle of FOXO1 mice. In addition, histological
examinations showed that the skeletal muscle of FOX01 mice
bad fewer type | fibers and smaller type | and type Il fibers.
Consistently, under long time physical inactivity by immobiliz-
ing skeletal muscle in plaster casts, an increased expression of
endogenous FOXO1 mRNA and a markedly decreased expres-
sion of genes related to type I fibers were observed. These
results suggest that FOXO1 is a negative regulator of skeletal
mnuscle mass and expression of type | fiber-related genes. More-
over, FOXO1 mice showed poor glycemic control and low ca-
pacity for physical exercise, which involves the skeletal mus-
cles, especially type I fibers. These phenotypes are consistent
with the decreased mass of skeletal muscle including type [
fibers in FOXO01 mice.

How does FOXO1 affect the skeletal muscle, including the
reduction of mass of both type I and type Il fibers and the
suppressed expression of type | fiber genes? In the following,
we discuss the possibility of involvement of FOXO1 in 1D
growth, 2) protein degradation, and 3} differentiation of skele-
tal muscle.

1) FOXO1 may suppress increase of skeletal muscle mass. A
genetie study of C. elegans showed that DAF186, the worm
counterpart of FOXO, functions as a suppressor of insulin
receptor-like signaling (44). Thus, the FOXO family might act
negatively in mammals as a downstream player in insulin or
IGF signaling. IGF-1 stimulates the proliferation of skeletal

Time after insulin injection (min)

muscle satellite cells (57). Mature skeletal muscle fibers are not
able to proliferate. Skeletal muscle satellite cells, mononuclear
cells located between the basement membrane and the plasma
membrane of myofibers in mature cells, are important in post-
natal skeletal musele hypertrophy because of their ability to
add new myonuclei into growing myofibers. Machida et al. (58)
showed that FOXO1 inhibited IGF-1-mediated skeletal muscle
cell proliferation. In primary skeletal muscle satellite cells,
FOXO1 activates the promoter of p27 Kipl, an inhibitor of the
cell cycle at the G, stage, which leads to inhibition of cell
proliferation, and addition of IGF-1 reverses the FOX01-medi-
ated activation of the p27 Kipl promoter {58). Unexpectedly,
p27 Kipl mRNA expression was unchanged in the skeletal
muscle of FOX01 mice compared with that of controls (not
shown). As the ratio of satellite cells is very small in total
skeletal muscle, the increased expression of p27 Kipl in satel-
lite cells may not have been detected in our assay. On the other
hand, we showed enhanced expression of Gadd45«, an inhibitor
of the cell cycle at the G, stage (61, 52), in the skeletal muscle
of FOXO1 mice (Figs. I and 24). As a 0.7-kb stretch of the rat
skeletal muscle a-actin promoter is active in skeletal muscle
satellite cells (59}, the FOXO! transgene, driven by a 2-kb
stretch of the human skeletal muscle a-actin promoter (45), is
likely to be expressed in the skeletal muscle satellite cells of the
FOXO1 mice. Thus, the increased amount of Gadd45« and
possibly p27 Kipl in the skeletal muscle satellite cells of
FOX01 mice may have suppressed the proliferation of satellite
cells and caused a decrease in skeletal muscle mass (size).
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Fic. 4. Gene expression in skeletal muscle immobilized in
plaster casts. The right hindlimbs of mice at 9 weeks of age were
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casts, Northern analysis was performed on total RNA (20 ug per lane}
isolated from the skeletal muscle (Zastrocnemius) of right hindlimbs
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zation, respeclively. The names of the genes examined are on the right
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ratio is shown below the autoradiograms (the control was set as [t4),
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2} FOXO1 may increase the degradation rate of skeletal
muscle proteins. Gene expression of atrogin 1, MuRF1 {(both
are ubiquitin ligases), and cathepsin L {a lysosomal protease) is
up-regulated and IGFBP5 is down-regulated during skeletal
muscle atrophy caused by fasting, cachexia, STZ-induced dia-
betes, and other diseases (55). After we submitted our manu-
script, a member of the FOXO family, FOX03a, was reported to
activate the gene expression of atrogin 1, and addition of IGF-1
was found to reverse the FOXC3a-mediated activation of the
atrogin 1 promoter (60). Overexpression of an active form of
FOX03a reduces the size of skelztal muscle fibers, both in vive
and in vitre (60). In addition, another group reported that
overexpression of an active form of FOXO1 in C2C12 muscle
cells did not change the base-line expression of atrogin 1 and
MuRF1, but the active form of FOX(Q1 suppresses IGF-1-1ne-
diated repression of atrogin 1 and MuRF1 expression induced
by glucocorticoids (61). This suggests that FOXO01 expression is
not sufficient for inducing atrophy-related genes, but FOX01 is
negatively involved in IGF-1-mediated suppression of atrophy
of skeletal muscle. In our Northern blot analysis, the level of

FOXO1I Reduces Skeletal Muscle Function

atrogin 1 was increased in the A2 line but not in the Al line of
FOXO01 mice, although both had less skeletal muscle mass than
the nontransgenic controls. In both the Al and A2 lines of
FOXO01 mice, the expression of cathepsin L and IGFBP5 was
increased and decreased, respectively, MuRF1 mRNA levels
were not altered in both lines. Thus, atrophy-related protein
degradation probably occurs in the skeletal muscle of FOX01
mice and could explain, in part, the decrease in skeletal muscle
mass of the FOXO1 mice. However, the increase in atrogin 1 is
unlikely to be enough to cause the decrease in skeletal muscle
mass of FOXO! mice, because the expression level did not
change in the Al line of FOXO01 mice. This is consistent with
the description by Sandri et al. (60) that overexpression of
atrogin 1 alone does not cause myotube or muscle atrophy. On
the other hand, IGFBPS5 is reported to modulate the activity of
IGF-1 (62), and hence decreased expression of IGFBP5 may
contribute to the decrease in skeletal muscle mass by affecting
IGPF-1 action. FOXO! transgene expression was observed in
both type I fiber-rich soleus and type II fiber-rich EDL. Thus,
changes in the expression of atrophy-related genes may be an
alternative molecular explanation for the decreased skeletal
muscle mass, including the size of both type [ and type II fibers
of FOXO1 mice.

3) Does FOXO1 inhibit the differentiation of type 1 fibers?
The FOXOI transgene is expressed in muscles rich in both type
I and type 11 fibers. How does it cause the selective reduction of
gene expression in type I fibers but not in type II fibers? It is
possible that FOX01 suppresses the function of a factoi(s) that
is preferentially expressed in type I fibers and therefore acti-
vates gene expression only in type I fibers. One candidate for
such a factor is PGC-1a, which is known to be preferentially
expressed in type | fibers and enhances type I fiber gene ex-
pression {22). As the FOXO1 protein can interact with the
PGC-1a protein (43), FOXO1 may affect certain functions of
PGC-1a. FOX0O! may inhibit PGC-1« function via its binding
to PGC-1a, FOXO1 itself is a transcripton factor. In addition,
several reports (27-30) have shown that FOXO1 acts as a
corepressor of nuclear receptors, whereas PGC-1« can activate
many nuclear receptors (21, 63). Although to cur knowledge
puclear receptors have not been shown to be involved in type [
fiber-specific gene expression, a certain nuclear receptor(s) and
transcription factor(s), which can interact with both FOXO01
and PGC-1a, may be involved in a process positively and neg-
atively regulated by PGC-1a and FOXQ1, respectively. Further
studies are required to examine this possibility. Besides, al-
though PGC-1a stimulates the differentiation of type I fibers,
in FOXO1 mice, gene expression was reduced in type [ fibers
but was not affected in type Il fibers. Thus, fiber differentiation
{switching) from type [ to type Il is not likely to occur in FOXO1
mice, and FOXO1 appears not to be involved in fiber
differentiation.

Calcineurin (14, 17) and CaMK (15), downstream molecules
of calcium signaling (13), the transcription factors Mef2c (14—
16, 18) and NFAT (14, 15, 17}, as well as the nuclear receptor
coactivator PGC-1a (22) are known to promote type I fiber
differentiation and type I fiber gene expression. In skeletal
muscle of FOX0O1 mice, mRNA levels of Mef2¢ and CaMK are
significantly decreased (Fig. 24). FOX0O1 may reduce gene ex-
pression in type I iber by suppressing gene expression of Mef2e
and CaMK.

FOXO01 mice showed a clear phenotype related to the func-
tion of skeletal muscle. Specifically, spontanecus locomotor
activity was lower in FOXO1 mice than in control mice (Fig.
3B). In addition, FOXO1 mice had impaired oral glucose toler-
ance and impaired insulin-medjated glucese-lowering effects
(Fig. 3, C and D). Elderly humans have been reported to show
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a progressive loss of muscle fibers associated with diabetes,
obesity, and decreased physical activity (sarcopenia). Overex-
pression of IGF-1 in skeletal muscle prevents the age-related
decline in muscle mass {11, 57). As described above, the re-
duced skeletal muscle mass in FOXO1 mice may be caused by
the suppression of IGF signaling during skeletal musele forma-
tion, and FOXO1 may therefore be involved in age-related
sarcopenia in humans. FOX0O1 mice may be valuable as a
model for hunan diseases related to loss of muscle fibers.
Further analysis of the molecular mechanisms of FOXO1 ac-
tion in skeletal muscle is important from a clinical as well as a
Bports science perspective.
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Kano, Makoto, Shuichi Tsutsumi, Nobutaka Kawahara, Yan Wang,
Akitake Mukasa, Takaaki Kirino, snd Hiroyuki Aburatani, A meta-
clustering analysis indicates distinct pattern alteration between two
series of gene expression profiles for induced ischemic tolerance in
tats. Physiol Genomics 21; 274-283, 2005. First published February
15, 2005; doi:10.1152/physiolgenomics.00107.2004.—We have de-
veloped a visualization methodology, called a “cluster overlap distri-
bution map” (CODM). for comparing the clustering results of time
series gene expression profiles generated under two different condi-
tions. Although various clustering algorithms for gene expression data
have been proposed, there are few effective methods to compare
clustering results for different conditions. With CODM, the utilization
of three-dimensional space and colcr allows intuitive visualization of
changes in cluster set composition, changes in the expression patterns
of genes between the two conditions, and relationship with other
known gene information, such as transcription factors. We applied
CODM to time series gene expression profiles obtained from rat
four-vessel occlusion models combined with systemic hypotension
and time-matched sham control animals (with sham operation), iden-
tifying distinct pattern alteration between the two. Comparisons of
dynamic changes of time series gene: expression levels under different
conditions are important in various fields of gene expression profiling
analysis, including toxicogenomics and pharmacogenomics, CODM
will be valuable for various types of analyses within these fields,
because it integrates and simultanecusly visualizes various types of
information across clustering results.

time series; transcription factor; visualization

ADVANCES [N MICROARRAY TECENOLOGIES have made it possible to
comprehensively measure gene expression profiles. Observa-
tion of dynamic changes of gene expression levels provides
important markers to clarify cellular responses, differentiation,
and genetic regulatory networks. In particular, a comparison of
dynamic changes of time series gene expression levels under
various conditions (e.g., administration of different drugs) is
expected to make a major contribution to the understanding of
complex biclogical processes. In general, we observe the
influence of each condition through the results of clustering
analysis, which is the most popular analysis for gene expres-
sion profiles. Therefore, a comparison between the results of
clustering analyses in different conditions will allow interpre-
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tation of different macroscopic phenomenon that occurred
under those conditions. However, although many clustering
algotithms, including hierarchical clustering (1, 2, 4, 15),
k-nearest neighbor {17), and self-organizing maps (10, 13, 16)
bave been proposed, there are few effective methods to effec-
tively compare clustering results under different conditions.
We have defined four issues to be addressed for a comparison
of clustering results, especially for a comparison of time series
gene expression data under two different conditions: changes
in the comnposition of the cluster sets, changes in the expression
patterns, integration with known other gene informalion, and
threshold problems.

Changes in the Composition of the Cluster Sets

In this report, we focused on hierarchical clustering, since it
is the most popular method for gene expression analysis. Here
we define the composition of a cluster set as the hierarchical
structure of clustering results and “cluster set” as the set of all
clusters in the structure. A comparison of clusters’ composi-
tions shows which clusters are conserved in different condi-
tions and how the genes in a cluster for one condition are
distributed into a cluster set under another condition. Genes
that cluster under a single condition may possibly be regulated
by the same factors for that condition. However, under differ-
ent conditions, some of those genes would be regulated by
other factors and generate different clusters. Thus changes in
the cluster compositions could provide key information for
interpreting the effects of the different conditions. To geta full
picture of the relationships of two cluster sets, the overlap
between each pair of clusters under the two different conditions
should be evaluated. However, since clustering analysis, espe-
cially hierarchical ¢lustering, almost always generates a great
number of clusters, there are a very large number of combina-
tions of clusters. Simple line connections of the genes between
the dendrograms of two hierarchical clustering results (14)
provide insufficient information about the relationships be-
tween the clusters. Therefore, an effective presentation method
that provides a full picture of the relationships of the cluster
sets would be desirable.

Recently, a statistical model for performing meta-analysis of
independent microarray data sets was proposed (12). This
model revealed, for example, that four prostate cancer gene
expression data sets shared significantly similar results, inde-
pendent of the method and technology used. However, in a
comparison of the cluster sets based on different conditions,
the objective is not to confirm that several data sets share
significantly similar results, but to detect the differences be-
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tween them. Several statistical algorithms have been proposed
for evaluating how clusters based on expression profiles in-
clude genes with well-known functions (3. 17). However, the
number of clusters that were compared was limited, and an
effective presentation method was not required in those situa-
tions.

Changes in the Expression Pattern

Where two clusters under different conditions have a statis-
tically meaningful number of genes in common, it is also
important to examine the differences in their expression pat-
terns. The differences of macroscopic phenomena that the
conditions exhibit result from the differences of expression of
multiple, rather than single, genes. Therefore, the genes whose
expression patterns changed in a similar fashion between
different conditions provide markers for the different phenom-
ena. In other words, if the genes in a certain cluster based on
one condition also constitute a cluster for another condition,
but the expression patierns are greatly different between the
two conditions, then these genes are causally implicated in the
phenotypic difference.

In general, there will be many false candidate genes whose
expression patterns coincidentally match between the two dif-
ferent conditions. Therefore, it is important to simultaneously
evaluate the statistical significance of the overlaps between
clusters and the differences in their expression patterns.

Integration with Other Known Gene Information

In pene expression analysis, it is important to biologically
interpret the results after integrating them with other known
gene information. Therefore, changes in the composition of the
cluster sets and changes in the expression patterns between
different conditions should be associated with other known
gene information such as transcription factors.

Threshold Problems

In a comparison of cluster sets on gene expression profiles,
we have to handle four types of thresholds: ) a threshold for
generating clusters for each condition; 2) a threshold for
evaluating the number of common genes that two clusters
have; 3) a threshold for evaluating the differences in the
expression pattems between two clusters; and 4) a threshold for
evaluating the relationship with other known gene information.
Among these, determining the threshold for generating clusters
is most challenging, because the clustering result strongly
depends on this threshold, and a change of this threshold
greatly affects the number and composition of clusters. It is
generally difficult to determine optimal values for these four
types of thresholds, and the results of analysis are greatly
affected by the threshold values specified. Arbitrary selection
of thresholds involves a risk of overlooking important genes.
50 the number of thresholds should be reduced. and, if used, it
is necessary to allow users to interactively change the thresh-
olds.

We focused on visualization technology to address these
four issues. Interactive visualization is effective for handling
ambiguous threshold problems and for providing a wide vari-
ety of information at one time. In previous work, we developed
a “cluster overlap distribution map” (CODM), which is a
visualization method for comparing cluster sets based on dif-
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ferent sets of gene expression profiles (7). In this report, we
extended it for time series gene expression analysis. In the
CODM, the relationships of all possible pairing of clusters can
be examined, and both the changes in the composition of the
cluster sets and the changes in the expression patterns of the
clusters can be effectively visualized as three-dimensional (3D)
histograms, without any arbitrary thresholds. In addition,
relationships with other known gene information such as
transcription factors can also be elucidated. We applied the
CODM to a comparison between the gene expression data
sets of double ischemia rats and sham control rats (with
sham operation) and confirmed that CODM identified dis-
tinct patterns between the two.

CODM, available on our web site (http://fwww.genome.
rcast.u-tokyo.ac.jp/CODM), runs on a PC with Windows
2000 or Windows XP. Memory requirement is in proportion to
the square of the number of genes to be analyzed. The analysis
for ~4,000 genes, represented in this paper, required ~250
megabytes. In addition, since the analysis results of the CODM
are visualized by use of the OpenGL, a machine with a
graphics board with a hardware accelerator for the OpenGL is
recommended.

MATERIALS AND METHODS

Experiment Design

In this report, CODM is illustrated using time series gene expres-
sion data sets obtained from rat four-vessel occlusion models com-
bined with systemic hypotension and time-matched control animals
with sham operation. In the experiment, we used 2-min ischemia rats
with induced ischemie tolerance (tolerant rats, TOL) and rats with
sham operation {sham rats, SHAM), after confirming the histological
outcomes. Note that the sham rats did not acquire ischemic tolerance.
Three days after the operation, we conducted a 6-min ischemnia
operation oa the two groups. Because of their ischemic tolerance, very
little neuronal death of CA1 hippocampal neurons was observed in the
tolerant rats (9). With duplicate assessments of 6 time points ({0 h,
1h 3 h 12 h. 24 h, 48 h} X 2) after the second ischemia,
microdissected CAl regions from each of the two groups were
subjected to oligonuclectide-based microarray analysis.

All animal-related procedures were conducted in accordance with

guidelines for the care and use of laboratory animals set out by the -

National Institutes of Health and were approved by the committes for
the use of laboratory animals in the University of Tokyo. More
detailed experimental design is described in our previous report {8).

GeneChip Experinent

Five nicrograms of total RNA from each sample was used to
synthesize biotin-labeled cRNA, which was then hybridized to a
high-density cligonucleotide array (GeneChip Rat RG-U34A array,
Affymetrix) essentially following a previously published protocol (6).
The arrays contain probe sets for 8,737 rat genes and expressed
sequence tags (ESTs), which were selected from Build 34 of the
UniGene Database (derived from GenBank 107, dbEST/11-18-98).
Sequences and GeuBank accession numbers of all probe sets are
available from the Affymetrix home page (hitp:/fwww.affymetrix.
com/index.affx). Washing and staining was performed in a Fluidics
Station 400 (Affymetrix) using the protocol EukGE-WS2. Scanning
was performed on an Affymetrix GeneChip scanner to collect primary
data. The Affymetrix Microamay Suite v4.0 was used to caloulate the
average difference for each gene probe on the array, which was shown
as an intensity value of gene expression defined by Affymetrix using
their algorithm. The average difference has been shown to quantita-
tively reflect the abundance of a particular mRNA molecule in a

Physio! Geromics « YOL 21 + www physiolgenomics.org

5007 ‘L1 Aep uo Bio-ABojoisAyd-soiwousBioisAyd woy papeoiumoq




2
1®)
oyt
g
Q
=
¥
O
|
S
R
=¥y
Q
|
=]
2
o
a5

276 VISUALIZATION FOR TIME SERIES GENE EXPRESSION ANALYSIS

Fig. 1. Hierarchical clustering of TOL (4) and SHAM (B). We obtained time
series ({Oh, 1 h, 3h, 12 h, 24 h, 48 h} X 2) microarray data from rats with
induced ischemic tolerance {tolerant rats, TOL) and rats with sham operation
(sham rats, SHAM). In the analysis, we used these data sels as 12 time point
({Ca. Ob, 1a, 1b, 3a, 3b, ... ., 48a,48b} = (Ti) (i = 1.2,...,12)) data sets on
TOL and SHAM, respectively. After preprocessing and normalization, hierar-
chical clustering analysis based on Euclidian distances was then performed for
each data set independently.

population (6). To allow comparison among multiple arrays, the
average differences were normalized for each array by assigning the
mean of overall average difference values to be 100. This data set has
been submitted as GSE1357 to the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (http:/fwww.nebi,
nlm.nih.gov/geo/infollinking.html)

Preprocessing and Clustering

In the following analysis, we used data sets as 12 time point ({0a,
0b, 1a, 1b, 3a, 3b, ... ., 48a, 48b} = {T:} ¢ = 1,2...,12)) data seis
on TOL and SHAM, since the CODM does not depend on the
intervals of the time points.

Standard clustering analysis for gene expression profiles is based
on the comelation coefficients between genes. Therefore, this ap-
proach cannot handle genes with expression profiles that have almost
no changes for a condition. However, if the expression profiles of
those genes have meaningful changes in expression levels for other
conditions, then these provide markers to interpret the influence that
the conditions exerted, because these are possibly regulated by dif-
ferent factors. To handle those genes and to align the baselines of the
expression patterns between the different data sets, preprocessing (i.e.,
filtering and normalization) was conducted for all of the data sets
where TOL and SHAM were merged. More specifically, 3,363 probes
with mean expressions above 50 and coefficient of variance (CV =
standard deviation/mean) above 0.1 were selected. After logarithmic
transformation of the gene expression data, the expression levels were
normalized to satisfy the following equations:

12
S+y)=0 )
i
12
D=1 @

i

where x; and y; are normalized expression levels of a gene at time
point T; (i = 1,2,...12) on condition: TOL and SHAM., respectively.
Using these notmalized data sets, we: performed hierarchical cluster-
ing analysis based on Euclidian distances, for each data set indepen-
dently. Clustering analysis using Euclidian distances instead of cor-

relation coefficients allows us to handle genes whose expression
levels are downregulated or upregulated. In addition, due to the
comunon normalization, gene expression patterns can be compared
within a data set and between data sets.

In general, Euclidian-distance-based clustering after normalization,
in terms of mean and standard deviation, is equivalent with correla-
tion-coefficient-based clustering. That is, a Euclidian-distance-based
clustering analysis for the merged data of TOL and SHAM with the
above preprocessing is equivalent with a correlation-coefficient-based
clustering analysis for the original merged data. In the analysis of the
CODM, the preprocessing is conducted for the merged data, and
Euclidian-based clustering is individually conducted for each data.
Roughly speaking, this analysis provides us with results similar to
those of normal correlation-coefficient-based clusiering. while it al-
lows us to handle genes with expression profiles that have changes for
only one condition but not for the other.

As Fig. 1, A and B, shows, thete are a large number of clusters
generated at various [evels. Although the composition and number of
cluster sets depend on the threshold value of the distance, it is
generally difficult to identify an optimum value. These aspects make
it difficuit 10 compare cluster sets derived from different sources.

The Cluster Overlap Distribution Map

The CODM is a visualization methodology for pair-wise compar-
ison between cluster sets generated from different gene expression
data sets. In this methodology, two types of cluster sets (i.e., dendro-
grams of hierarchical clustering results) are mapped, respectively, to
the r-axis and to the y-axis, and the relationship between them is
displayed as a 3D histogram (Fig. 2). In this report, the dendrogram of
TOL is mapped to the x-axis, and that of SHAM is mapped to the
y-axis. The statistical evaluation values of the overlaps between two
clusters selected from the respective cluster sets are displayed as the
height of the blocks (Fig. 2). More specifically, we evaluated the
number of common genes between the two different clusters by using
hypergeometric probability distributions (17). Assuming that the gen-
eration of gene clusters is a random selection from among the total set
of genes, the probability of observing at least k overlapping genes
between randomly selected ny genes and 2 genes from among all of
the g genes is given by:

k-1

Plgnnyky=1- 2

=k :Cq

n,c e Cul—
AT =Plemm b)) (D)

When the P value is small, the overlap is regarded as statistically
meaningful. Thus we defined the evaluation value of the overlap as:

Evaluation Value of Qverlap
E@ramsk) ...

Fig. 2. Overlap block of two clusters. The dendrogram of TOL is mapped to
the x-axis, and that of SHAM is mapped to the y-axis. Then, for the area (R}
determined by a cluster on the x-axis (X,) and a cluster on the y-axis (¥,). a
block whose height represents E(g.rzinyi k) (statistical evaluation values of
the overlaps between X, and Y)) is displayed, where g is the total pumber of
genes, ny is the number of genes in X;;, ny, is the number of genes in ¥;, and &
is the number of overlap genes between X; and ¥
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Then in the area (Ry) determined by a cluster on the x-axis (X} and a
cluster on the y-axis (¥}), a block whose height represents E(g -
ity ky) is displayed, where sy is the number of genes in X;, 1y is the
number of genes in ¥}, and ky is the number of overlapping genes
between X; and ¥; (Fig. 2). We term this block an “overlap block.”
Note that the number of UniGenes. to which probes in a cluster
correspond through their original GenBank accession number, was
used as the pumber of genes. In this report, all 8,737 probes on
RG-U34A were corresponding to 5,249 UniGenes (g = 5,249).

For hierarchical clustering, there are a large number of clusters
generated at various distance levels, Our algorithm examines the
overlaps of the genes between all combinations of two clusters with
smaller “distance level” values than the “cut level,” which is a
threshold value specified by users (Fig. 1). In other words, we
evaluated and visualized any clusters with a smaller distance level
than the cut level, even if they were included in other clusters. Note
that conventional hierarchical clustering does not focus on subclusters
that are included in other clusters. Since all of the statistically
significant combinations between cluster sets can be visualized siraul-
taneously, users can grasp the overall picture of the relationships
between the two different cluster sets.

In the CODM, all of the clusters are dealt with equally without .

regard to their difference level (i.e., their homogeneity). Even if they
are included in other clusters, all of the statistical significance of the
number of common genes between clusters is simultancously visual-
ized. Therefore, there is a risk that a small overlap block may be
hidden by a large block. For example, assume that the clusters X; and
Y. are included in X; and ¥,,, respectively. Then, if the evaluation value
Ejn is less than Eym, then the small block B, will be hidden in the large
block Bi (Fig. 3A). To avoid this problem, the CODM allows the user
to change the cut level interactively. That is, if the user decreases the
cut level, some small blocks that are hidden in larger blocks will
emerge. Therefore, in consideration of the homogencity of clusters
and the relationships with other gene information, the user can find
important genes displayed as blocks in the CODM.

Color of Each (verlap Block

Since the statistical significance of the number of common genes
between two different clusters is represented as the height of a block,
the color of a block can be used to represent other information. In the
current prototype, the CODM provides three color modes.

1} Redundant visualization. The first mode is a represeatation of the
evaluation values of overlaps using a gray scale. This redundant
representation helps users comprehead the distribution of the relative
evaluation values of overlaps.

2} Similarity of expression patterns, The second mode is a repre-
sentation of the similarity of expression patterns between two clusters,
from red to blue, The similarity f{T.5) of expression patterns between
cluster T on TOL and cluster § on SHAM was defined using the
average of the square of the Euclidean distance between them.
Assuming that Nxs is the number of common genes in T and §, xy; and
¥u are normalized expression levels of a commen gene & at time T; on

A The Case of Hidden Block
En<Eim

B Te Case of Pop-out Block
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TOL and SHAM, respectively. The similarity AT,S) was defined as
follows:

Nrs 12
1

a,5=1- N_ Ez(xki - }’u)z )
TS

k=1 =}

Since {xa} and (y«} (i = 1,2,...12) satisfy Egs. I and 2, the range of
ATSy is =1 to 1, and AAT.S) can be rewritten as follows (See
APPENDIX):

N 12

TS = 1 2 D 2w ®
TS
kal i=]

In the CODM,. the similarity {T,5) was represented as the color of
the block from red ({T,5) = 1) to blue (T.5) = —1). Roughly
speaking, red indicates that expression patterns between the two
clusters are similar, and blue indicates they have a negative correla-
ticn. In addition, purple (A7.5) = 0) indicates they have no correla-
tion, or genes of one cluster have no changes in expression levels, i.e.,

Yax,=0or Vyy=0

As mentioned above, if genes in a certain cluster based on SHAM
also constitute a cluster in TOL, but the expression level in SHAM is
significantly different from that in TOL, then these genes provide
potential markers for the cause of ischemic tolerance. Strong candi-
dates will appear as tall blue ot purple blocks. CODM allows users to
easily look for such blocks, with interactively controlling the thresh-
olds.

3) Relationship with a known gene classification. The third type of
information is a representation of the relationship between overlap-
ping genes and a known gene classification. If statistically significant
representation of genes within a particular class is observed among the
overlapping genes, then the block is color coded according to the
class. The level of statistical significance of the representation of
genes within a particular class is evaluated using Eq. 3, where g is the
total number of genes that are classified by the known classification,
a1 is the number of genes that are classified by the known classifica-
tion among overlapping genes, iy is the total number of genes within
a class based on the known gene classification, and k is the observed
number of genes found in both the given overlapping genes and the
given class according to the known gene classification,

In this report, we associated overlapping genes with eight types of
wanscription factors (HIF, ARNT, and EGR families) that were
reported to have a relationship with ischemia (5, 8, 18, 19). We
extracted complete sequences of 1.0 kb upstream and 0.1 kb down-
stream for 2,816 UniGenes among the 5,249 UniGenes corresponding
to 8,737 probes on the RG-U34A microarray. The 1.1-kb sequences of
the 2,816 UniGenes were searched to determine whether they corre-
spond to the TRANSFAC matrices v7.2 (11} with the threshold set to
“minimum false negative,” Table 1 shows the names of the transcrip-
tion factors, the number of UniGenes that comrespond to each tran-
scription factor, and the thresholds for matching. In CODM, we color

Fig. 3. Relationships of two blocks. In CODM, all of the
clusters are dealt with equally, regardless of their difference
levels {i.e., their homogeneity). Even if they are included in
other clusters, all of the statistical significance of the number
of commoen genes between clusters is simultanecusly visual-
ized. There is a risk that a small overlap block may be hidden
in a large block. Assume that the clusters X, and Ya are
included in X; and Y., respectively. Then. if the evaluation
value E,, is less than E.., the small block B,s will be hidden
withits the large block Bim (A).
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Table 1. Transcription factors linked to ischemia

No. of
Transcription Factor UniGenes Thresholds
VIAHRARNT_01 540 092
VSAHRARNT_02 4 091
VIHIF1_Q3 955 0.55
VSHIF1_Q5 507 0.87
VIEGR1_01 143 0.87
VSEGR2_01 92 0.89
VSEGR3_01 26 0.93
VSENGFIC_01 143 0.88

In the cluster overlap distribution map (CODM}, changes in the composition
of the cluster sets and changes in the expression patterns between different
conditions were associated with 8 types of transcription factors (HIF, ARNT,
and EGR families), which are all known to mediate response to ischemia. We
extracted UniGenes that contain putative binding siles for the transcription
factors and correspond to probes on RG-U34A GeneChips (Affymetrix, Santa
Clata, CA). Shown are the names of the transcription factors, the number of
UniGenes, and the thresholds for matching.

coded overlap blocks that contain statistically meaningful numbers of
genes with putative transcription factor binding sites. If an overlap
block reprasents statistical significance for multiple transcription fac-
tors’ putative binding sites, then only a single transcription factor with
the highest evaluation value was visualized. However, the CODM
allows users to click overlap blocks and browse description messages
(in a console window?) for the relationships with all of the transcription
factors.

RESULTS AND DISCUSSION

Figure 4 shows the visualization results of the comparison
between TOL and SHAM in the mode of redundant visualiza-
tion, the similarity of the expression patterns, and the relation-
ships with known gene classifications (transcription factors). In
Fig. 4, the cut level for the distance for hierarchical clustering
was 0.74, and all overlap blocks with 2.0 or higher evaluation
values are displayed as a 3D histogram. As Fig. 4 shows, the
CODM provides not only a 3D mode but also a two-dimen-
sional (2D) mode where users can see a projected overhead
view of the 3D mode. In the 3D) mode, the statistical signifi-
cance of the overlaps between clusters and the differences in
expression levels between the clusters can be simultaneously
represented, since we can use the height and color of blocks.
However, it is somewhat difficult to recognize the expression
patterns of clusters that generate an overlapping block, For this
purpose, the 2D mode is better, altbough the 2D mode of
CODM can visualize only a single species of information at a
time, ie., the statistical significance of the overlaps or the
differences in expression levels between clusters, or relation-
ships with known gene classification. Therefore, it is useful to
interactively change the mode as required. Exploration by
changing the color mode and the 2D and 3D modes allowed us
to pick up three potentially important overlap blocks (Fig. 4).
The information for these three overlap blocks is shown in
Table 2, their gene lists are shown in the Supplemental Mate-
rial, and their expression pattems are shown in Fig. 5. (The
Supplemental Material is available at the Physiclogical
Genomics web site.)!

'The Supplemental Material (Supplemental Tables §1-53) for this anticle is
available online at http://physiolgenomics.physiology.org/cgifcontent/Mull/
00107.2004/DC1.

Physiol Genomics+voOL 21 »

As stated above, we assumed that there are four issues for a
comparison of clustering results: changes in the composition of
the cluster sets, changes in the expression patterns, relation-
ships with other known gene information, and threshold prob-
lems. The CODM enables us to address these issues as follows.

Changes in the Composition of the Cluster Sets

As shown in Fig. 4, A and B, the CODM can intuitively
visualize changes in the composition of the cluster sets as 3D
histograms. That is, the dissimilarity of the expression level
under SHAM divides each cluster on TOL into specific sub-
clusters. and these subclusters are displayed along the y-axis. In
the same manner, the relationships between each cluster of
SHAM and all of the clusters of TOL are displayed on the
x-axis. If a clustering analysis is conducted for the merged data
of TOL and SHAM, then these subclusters would be scattered
and it would be difficult to intuitively observe the relationships
of the compositions of the cluster sets,

Changes in the Expression Pattern

A comparison of the dynamic changes of gene expression
level across time under various conditions provides a useful
tool for interpreting complex biological processes. However,
there are generally many false candidate genes whose expres-
sion patterns between two different conditions are different
purely by chance. For the comparison between TOL and
SHAM, only 357 probes (of the 3,363 selected probes) had 0.8
or higher correlation coefficient values of expression pattern
between the two conditions. On the other hand, 756 probes had
negative correlation coefficient values. As stated above, the
difference of macroscopic phenomena that the conditions ex-
hibit results from the difference of expression of not a single
gene but of multiple genes. Therefore, it is quite important to
search for genes whose expression patterns changed in a
similar fashion between different conditions. Figure 4, € and
D, shows that the CODM can simultaneously depict the sta-
tistical significance of the overlaps between clusters and the
differences in their expression patterns. In this mode, tall
blocks colored blue or purple, such as blocks B and C, would
be good candidates, since their similarities of expression pat-
terns were negative (—0.28 and —0.23), while the two clusters
under different conditions share a statistically meaningful num-
ber of common genes (£ = 53.3 and E = 34.8). Note that the
objective of the CODM is to identify such potentially inpor-
tant pairs of clusters from massive combinations. To further
understand the significance of the expression patterns, it would
be a desirable approach to combine CODM with other visual-
ization tools for line graphical view of expression patterns. as
shown in Fig. 5. The expression of genes in TOL in block B
was upregulated, compared with SHAM, at early stage, i.e.,
1 h. 3 h, and 12 h. On the other hand, the expression of genes
in TOL in block C was downregulated, compared with SHAM,
at early stage, i.e.. 1 h. and 3 h. Once again, CODM enabled us
1o easily detect candidate genes of this type.

Integration with Other Known Gene Information

In gene expression analysis, interpretation and validation of
the results should be performed in the context of what is
already known about the genes being analyzed. CODM allows
us to associate the results with other such gene information and
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Fig. 4. Visualizations for comparison of
clustering results of TOL and SHAM. These
are visualization results of the comparisons
between TOL and SHAM in the mode of
redundant visualization (A and B}, similarity
of the expression patterns (C and D), and the
relationships with transcription factors (E
and F)}. Here, the cut level of the distance for
hierarchical clustering was Q.74, and all of
the overlap blocks with 2.0 or higher evalu-
ation values are displayed as three-dimen-
sional (3D) histograms. As shown, the
CODM provides not otnly 8 3D mode (B, D,
and F} but also a two-dimensional (2D)
mode {A, C, and E} where users can see a
projected overhead view of the 3D mode. In
the mode showing the relationships with the
transcription factors (E and F), we consid-
ered the relationships with 8 types of tran-
scription factors (HIF, ARNT, and EGR
families) that are known 1o mediate response
to ischemia. Here, only overlap blocks with
2.0 or higher evaluation values of the num-
ber of genes with putative transcription fac-
tor binding sites were color coded. Where an
overlap block represents statistical signifi-
cance for multiple transcription factors’ pu-
tative binding sites, only the transcription
factor with the highest evaluation value was
wisualized. Explomtion through changing
the color mode and the 2D and 3D mode
allowed us to pick up three poteatially im-
portant overlap blocks that represented high
evaluation values of the number of genes
with the binding sites (£ > 2.0).

narrow down candidates, Figure 4, E and F, shows the rela- representation of genes with putative transcription factor bind-
tionships between eight types of transcription factors (HIF, ing sites were color coded. Table 2 shows that overlap blocks
ARNT, and EGR families; see Table 1) that were reported to A, B. and € implied a relationship with the transcription factors
have a relationship with ischemia (5. 8. 18, 19). In Fig. 4. (E > 2.0). This example illustrates the utility of representing
overlap blocks with 2.0 or higher evaluation values for the relationships with other known gene-associated information by
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Table 2. Information abowt 3 overlap blocks

Overlap No. of UniGenes in No. of UniGenes in No. of Common UniGenes Similarity Binding Sites of Transcription
Block Cluster of TOL Cluster of SHAM (Evaluation Value) AT Factors: No. of Genes (Evaluation Value)
A 156 147 54 (E = 45.9) 042 VSAHRARNT_01:14 (£ = 2.10)
B 190 132 60 (E = 53.3) -0.28 VSEGRI_01:6 (E = 2.01)
C 99 207 43 (E = 34.8) -0.23 VSHIF1_Q3:11 (E = 2.33}

e
o
d

=
=

&

Expression Pattern of A-TOL

Exploration with CODM allowed us to pick up 3 potentially important “overlap blocks.* The *No. of UniGenes in Cluster of TOL(/SEAM)" is the number
of UniGenes which correspond to protes included in a cluster of TOL(SHAM). The “No. of Common UniGenes"™ is the number of common genes shared
between the clusters of TOL and SHAM, and its statistical evaluation vatue, (E)) is shown in parentheses. The “Similarity £ (T,8)" is the similarity of the
expression patterns between the clusters of TOL and SHAM. The range of similarity £ (T,S) is — I (dissimilar) 10 1 {similar), The “Birding Sites of Transcription
Factors™ shows the name of putative binding sites of transcription factors, the number of common genes that share the same binding sites, and the E value of
the number of common genes with the same binding sites. if the evaluation value is 2.0 or higher. TOL., induced ischemic tolerance; SHAM, shamoperation.
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Fig. 5. Expression patterns of genes in the three overlap blocks. These are the expression patterns of common genes for the three overlap blocks that were picked
up through expioration with CODM (Fig. 4). The “Expression Patterns of Cluster T,(/5))" (i = &,b,c) are the expression patterns of the common genes of the
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use of the color of overlap blocks, although it may be difficult
to extract biological conclusions because of the limited number
of genes with the putative binding sites in the overlap blocks.
If binding site information from more genes becomes avail-
able, then more detailed analysis of results will be possible.
Furthermore, representation of relationships with other known
gene classifications should provide us with deeper insights.

Threshold Problems

Arbitrary selection of thresholds involves a risk of overlook-
ing important genes. In a comparison of cluster sets on gene
expression profiles, there are four types of thresholds: [} a
threshold for generating clusters for each condition: 2) a
threshold for evaluating the number of common genes that two
clusters share: 3) a threshold for evaluating the differences in
the expression patterns between two clusters; and 4) a thresh-
old for evaluating the relationship with other known gene
infermation. The CODM reduces the number of thresholds and
allows users to interactively change the thresholds as follows.

I} Threshold for generating clusters for each condition.
Since conventional hierarchical clustering does not focus on
subclusters that are included in other clusters, there is arisk
that the important subclusters could be overlooked. In the
CODM, overlaps of genes between any two clusters of TOL

Physiol Genomics «VOL 21 »
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Fig. . Interactive changes of cut levels. In
CODM, there is a risk that a small overlap
block may dbe hidden in a large block. To
avoid this problem, CODM allows the user to
change the cut level interactively. If the user
decreases the cut level, then some small
blocks that are hidden in larger blocks will
emerge. By considering the homogeneity of
clusters and the relationships with other gene
information, the user can find important
genes displayed as blocks in the CODM.

and SHAM are statistically evaluated, even if these are
included in other clusters. In addition, the CODM allows
users to interactively change the cut level, to reduce the risk
that a small overlap block may be hidden in a large block
(Fig. 6). Therefore, by considering the homogeneity of
clusters and the relationships with other known gene infor-
mation, the user should be able to find the important genes
displayed as blocks.

2) Threshold for evaluating the number of common genes
shared by two clusters, In CODM, the statistical significance of
the number of common genes between two different clusters is
represented as the height of a block, and statistical signifi-
cances of the overlap of all combinations of clusters are
displayed as a 3D histogram at the same time. Therefore,
without the selection of an arbitrary threshold, the distribution
of the statistical significance of the overlap is effectively
displayed. Although (to reduce the rendering load) Fig. 4
shows only overlap blocks with 2.0 or higher evaluation values
of the overlap, users can interactively change this value,

3} Threshold for evaluating the differences in the expression
paiterns between two clusters. CODM represents the differ-
ences in the expression patterns between two clusters by the
color of the blocks ranging from red to blue. Therefore, the

distribution of differences in the expression patterns of all

www.physiolgenomics.org
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combinations of clusters is displayed at the same time, without
any selection of an arbitrary threshold.

4) Threshold for evaluating the relationships with other
known gene information. Although only overlap blocks with
2.0 or higher evaluation values for the representation of genes
with putative transcription factor binding sites were color
coded in Fig. 4F and Fig. 4F, users can interactively change
this value.

Conclusion

In this report we described the characteristics of the CODM
method, a visualization tool for comparing clustering results of
gene expression profiles under two different conditions. In
CODM, the utilization of 3D space and color allows us to
intuitively visualize changes in the composition of cluster sets,
changes in the expression patierns of genes between the two
conditions, and the relationships with a known gene classifi-
cation such as transcription factors. Comparison of dynamic
changes of gene expression levels across tine under different
conditions is required in a wide variety of fields of gene
expression analysis, including toxicogenomics and pharmacog-
enomics. Since CODM integrates and simultaneously visual-
izes various types of information across clustering results, it
can be applied 10 various analyses in these fields.

APPENDIX
Similarity f{T.5)
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The similarity f{T, 5) satisfies the following inequality:
-1=AT5) =1

Proof. Since f{iT,5) = 1 is obvious, we only need to prove —1 =

JIT.5). We begin by showing that

12
g=2y= - 1

=1
where

12
26+ =1

We consider the Lagrangian function

12 12
L=X2xy + ¥ 2+ -1

=1 i

where v is a Lagrange undetermined multiplier. By taking the deriv-
ative, we convert the constrained optimization problem into an un-
constrained problem as follows:

oL )
—=2n+2yx=0 (i=1...12)
ax;

2

—L=2x,+21y‘=0 {i=1...12)
ay,

1

oL

5;=2(1}+)'12)—1=0
i

The solutions of this problem are

=y (=12...12), 4= —1=¢has maximum value 1
or
x=—y {#=12...,12). ¥ =1=ghasthe minimum value -1
Therefore,
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