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ABSTRACT

Motivation: Since DNA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with statistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis (PCA} are used to
roughly visualize the distribution of high dimensiona! gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize class information
when choosing axes. Thus clearly separable datainthe original
space may not be so in the reduced space used in PCA.
Results: For visualization and class prediction of gene
expression data, we have developed a new SVM-based
method called multidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space to exhibit properties of the data
clearly and to visualize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in our method: solutions of mathematical programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our method to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algorithm is
efficient and useful for visualization and class prediction.
Contact: komura@hal.rcast.u-tokyo.ac.jp

1 INTRODUCTION

DNA microarray has been the key technology in modern
biology and helped us to decipher the biological system

*To whom correspondence should be addressed.

Komura et al. (2004) Multidimensional Support Vector Machines for Visua-
lization of Gene Expression Data, Symposium on Applied Computing,
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because of its ability to monitor the expression levels of
thousands of genes simultaneously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyred with statistical methods to
extract the meanings of experimental results.

A great number of supervised learning algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani er af., 2002; Khan et af,,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bioinformatics
including classification of gene expression data (Furey ef al.,
2000). However, SVMSs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function, As a result, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimensional space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data, Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlingar PCA (Diamantaras and
Kung, 1996) and Kernel PCA (Schélkopf et af., 1998), are
most widely used for this purpose (Huang ef al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be so in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class variance, However, itis reported that SVMs
often outperform discriminant analysis (Brown ef al., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data. To this end, we have developed multidimensional
SVMs (MD-SVMs), a new SVM-based method that generates
multiple orthogonal axes based on margin between two

Published by Oxford University Press
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the discriminability
of two classes. This method fulfills the requirement of both
visualization and class prediction. The basic properties of
SVMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear classification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of SVMs. In Section 3, we describe
the algorithm of MD-SVMs. In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction.

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R%,i = 1,...,m will be denoted by x;,j =
I,...,n. The inner product of two vectorsx € R*and y € &
will be denoted by x - y. For a vector x € R” and a scalar
a € Ra < xisdefinedasa < x; foralli = 1,...,n. For
an arbitrary variable x, x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly intreduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to separate two classes of
data based on m training samples x; € R",i = 1,...,m with
corresponding class values y; € {1},i = 1,...,m. SVMs
map a data x € R" into a higher, probably infinite, dimen-
sional space R¥ than the original space with an appropriate
nonlinear mapping ¢ : R* — RN,n < N. They generate
the linear decision function of the form f(x) = sign(w -
#(x) + b) in the high dimensional space, where w € RV
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while & € R is
a bias which moves the hyperplane parallel to itself. The
optimal decision function given by SVMs is a solution of an
optimizaticn problem

D IR
— C is
1321 2liwll + .-§=1 &

st.yi(w-¢x)+b)=21-8&, i=1....m§>0 (1)

with C > 0. Here, £ € R™ is a vector whose elements
are slack variables and C € R is a regularization parameter
for penalizing training errors. When C — oo, no training
errors are allowed, and thus this is called hard margin
classification. When 0 < € < o0, this is called soft margin

classification because it allows some training errors. Note that -
)

a geometric margin ¥ between two classes is defined as Telt
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors. The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier & € R™ and replacing
@ (x;) - p(x ;) by kernel function K (x;,x;) = ¢{x;) - ¢(x;)
to be solved in an elegant way of dealing with a high
dimensional vector space. The dual problem is

i m mn m
max —> Ez;afajyfyjK(xe.x;) + w,

i=1

m
st0<e<Cy oy =0 @)

i=1

By virtue of the kemel function, the value of the inner
product ¢(x;) - ¢(x;) can be obtained without explicit
calculation of ¢ (x;) and ¢(x;). Finally, the decision func-
tion becomes f(x) = sign(Z;":] o yi K (x;,x) +b). by using
kernel functions between training samples x;,i = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In order to overcome the drawback that SVMs cannot generate
more than one decision function, we propose a SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensional SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set (w, b, §) which corresponds to
a decision function, while our MD-§VMSs give the multiple
sets (w*, 6%, &%),k = 1,2,...,1 with 1 < n, so that all the
directions wy are orthogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensional space by means
of projection. Here the first set (w!, 5!, ') is equivalent to
that obtained by conventional SVMs, Now we only refer to
the steps of obtaining (w*, b*, £),k = 2,3, ..., . In practice,
the k-th set (w*, b*, £)k = 2,3,...,1 are found with iterative
computations of the optimization problem

m
min SR + eyt
sty plx)+6) 21 -gi=1,...,m,
0wt w/ =0,j=1,. k-1 (3)
This problem differs from that of conventional SVMs in the

last constraint w* « w/ = 0. The weight vector w/, j =
I,...,& — 1 should be computed in advance by solving
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other optimization problems (3). The optimization problem
is modified by introducing lagrange multipliers ok, y* € R™,
g% € R*~! and kemnel functions. The primal Lagrangian is

1 2 “
Lt b5, 5 =Slw I+ C )4
i=l

+ a1 — & — (k- px) +54)

i=1
k—1 . ]
+Y ko wh - vl 4
j=l isl
Consequently, the optimization problem is

1 m m
max —— ZZa{‘afy,-yjK(x.-,xj)

¢l,ﬂ* 2 =1 j=1

k-1 m
1 .
+5 2 BBk - w)+ > ok,
i=1 i=1
m
st0<eak < C,Ed}kyi =0,
i=1

Y ey -wh=0,j=1,..

i=1

k=1 (5

Here ¢(x,) - w? and w? - w” are calculated recursively as
follows:

m g-1
$p) - wi = ol yK(xpx) — 3 Bl dxp) - w),
i=l i=1
(6)
wf.wf = Zzaf‘xf)’i)’j‘r{(-‘fi,xﬂ
i=1 j=1
- p_l M p—l . »
— Y Y afupl b wh+ Y AR w w)
i=1 j=1 i=1
m p-1 -
Y Y al Bl @) wh), ™

i=] j=1

where p(x,) - w' = Y7 ol yiK(xp,x;) and w'w! =
i a} yi(p(x), w!). As can be seen, there is no need to
calculate nonlinear map of data ¢ (x) in problem (5) because
all nonlinear mappings can be replaced with kernel functions,
Note that this optimization problem is a nonconvex quad-
ratic problem when & is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2
or 3. We note the experimental results are still encouraging.

The corresponding Karush-Kuhn-Tucker conditions are

k(1 — £F — yi(w* - () + 65)} =0, ®)
thaf -0y =0,i=1,...,m. ©)

These are exactly the same as conventional SVMs. We
highlight the other properties conserved from conventional
SVMs:

« Projecting data into high dimensicnal space is implicit,
using kernel functions to replace inner products,

o The solutions e of the optimization problem is sparse.
Then the corresponding decision function depends only
on few ‘Support Vectors’.

Since each decision function is normalized independently to
hold w* - ¢ (x;) + b* = y; fori = 1,...,m, data scales of the
axes should be aligned with firstaxis (k = 1) for visualization.
The margin y*, the L2-distance between support vectors of
each class of k-th axis, is

-1
m m H

k-1
PRI LT DED I AT
i=1 j=1 i=1

(10)
So a scaling factor s* = y1/yt is

3N alajyiyiK(xi,x))

i=1 j=1

. (1D

k—~1

Zzafaf}’i)’ﬂf(xf,xj) - Zﬁf‘ﬁf‘(w" -w')
i=l j=l

i=l1

The decision function of k-th step has the form f*(x) =
sign(3°7; ey K (xi, %) + b*). Since the right hand side of
the equation has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R™ in three dimensional space is

(s51 g% (x), s% ¥ (x), sP g (x)), (12)

where g*(x) = ¥ efyK(xi,x) + b*. The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS

4.1 Method

In order to confirm the effectiveness of our algoerithm, we have
performed numerical experiments. MD-SVMs can generate
multiple axes, up to the number of features. Here we choose
three axes, k = 1,2, 3, to simplify the experiments. When & is
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2 or 3, we use local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are normalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than (.35. Then we calculate a score F(x{j)) =
Wt (D—p~ () (@* (j)+0~(j))1, forthe remaining genes.
Here g+ (7)(11™ ()} and o+ (f)(o ~ (j)) denote the mean and
standard deviation of the j-th gene of the samples labeled
+1(—1), respectively. This score becomes the highest when
the corresponding expression levels of the gene differ most
in the two classes and have small deviations in each class,
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments,

Theregularization parameter C in problem (5) is set to 1009,
This value is rather large but finite because we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kemel K (x;,x;) = x; - x; and RBF ker-
nel K(x;,x;) = exp—y|lx; —x; |]2 with ¥y = 0.001 in the
experiments of MD-SVMs.

4.2 Materials

Leukemia dataset (Golub et al., 1999) This gene expression
dataset consists of 72 leukemia samples, including 25 acute
myeloid leukemia (AML) samples and 47 acute lymphoblastic
leukemia (ALL) samples. They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are labeled +1 and ALL samples are
labeled —1. '

Lung tissue dataset (Bhattacharjee et al., 2001) This dataset
consists of 203 samples from lung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip containing probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 samples from
cancerous tissue. Test set includes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal tissue are labeled +1 and samples from cancerous
tissue are labeled —1,

5 RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables I and 2. The distributions obtained by MD-SVMs
on the leukemia dataset and the lung tissues dataset are given
inFigure 1-(1)and 1-(3), respectively. Those obtained by PCA
are given in Figure 1-(2) and 1-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2. In these tables, the class of the samples is
predicted based on decision functions f*(x),k = 1,2,3,
corresponding to each of the three axes.

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions.
However, as shown in Figure 1-(2) and 1-(4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis, These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them. Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by arrows in
Figure 1-(3)). Though this sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significantly deviates in MD-SVMs. This may arise
from the fact that MD-SVMs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-§VMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f*(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables 1 and 2. In such cases, the simplest method
for prediction is to use only the 1st axis, which corresponds to
the decision function generated by conventional SVMs. The
idea is supported by the fact that the 1st decision function clas-
sifies the samples most correctly in almost all cases in Tables 1
and 2. The more advanced method is weighted voting. Scaling
factor or normalized objective values in problem (5) are the
candidate of the weight,

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column *3 axes’
of test sample of the lung tissues dataset with RBF kernel in
Table 2. This sample is misclassified by all decision functions,
50 we can say that this data contains some experimental error.
The hierarchical clustering method also supports our result.
These results indicate that MD-SVMs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visualization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMs perform bet-
ter than the other classification algorithms, but they generate
only one axis for class prediction. (2) PCA chooses multiple
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Fig. 1. (Top row) Distribution obtained by MD-SVMs for the leukemia dataset with linear kernel. (Second row) Distribution obtained by
PCA on the leukemia dataset. (Third row) Distribution obtained by MD-SVMs for the lung tissues dataset with linear kernel. The sample
indicated by arrows appears to be an outlier. (Fourth row) Distribution obtained by PCA for the lung tissues dataset. The sample indicated by
arrows is the same as in the third row but with Jess deviates. (a) Cross shot, {b) 1st axis (x axis) and 2nd axis (y axis), {c) 2nd axis (x axis) and
3rd axis (y axis), (d) 3rd axis (x axis) and 1st axis (y axis). Black objects and white objects indicate AML samples (or normal tissues) ALL
samples (or cancreous tissues), respectively. Training data and test data are expressed as a sphere and a cube, respectively.

Table 1. Number of classification errors in the MD-SVMs for the leukemia dataset. The columns *n-th axis’, n = 1,2,3, indicates the number of samples
misclassified by n-th decision function. The columns ‘n axes’, n = 1,2,3, indicates the number of samples misclassified by n decision functions

Kemnel Sample # of samples 1st axis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 62 0 1 2 1 1 0
RBF Training 62 0 2 7 5 2 0
Linear Test 10 1 1 2 2 1 0
RBF Test 10 0 2 0 2 0 0
Table 2. Number of classification errors in the MD-SVMs on the lung dataset. See the caption of Table 1 for other explanation
Kemel Sample # of samples 1st axis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 170 0 1 1 0 1 0
RBF Training 170 0 3 5 2 3 0
Linear Test 33 1 0 0 1 0 0
RBF Test 33 1 1 1 0 0 1
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orthogonal axes, but it cannot predict classes of samples
without other classification algorithms. We have tried to
cover the shortcomings of both methods. MD-SVMs choose
multiple orthogonal axes, which cormrespond to decision
functions, from high dimensional space based on a margin
between two classes. These multiple axes can be used for
both visualization and class prediction.

Numerical experiments on real gene expression data indic-
ate the effectiveness of MD-SVMs. All axes generated by
MD-5VMs are taken into account for scparating class of
samples, while the 2nd and the 3rd axes by PCA are
not. The samples in the distributions by MD-SVMs gather
into appropriate clusters more vividly than those by PCA.
MD-SVMs can predict the classes of the samples with
multiple decision functions. We also indicate that MD-
SVMs are useful for outlier detection with multiple decision
functions.

There are several future works to be done on MD-SVMs:
(1) application of our method to wider variety of gene expres-
sion datasets, (2) investigation of gene selection for preprocess
of analysis and (3) investigation on class prediction method
with multiple decision functions. Firstly, the use of more
suitable samples may show that the axes chosen by MD-
SVMs separate samples more clearly than those by PCA.
Secondly, since the conventional SVMs show good general-
ization performance especially with large number of features,
it is expected that MD-SVMs show much better performance
than PCA with increasing the number of genes used in the
numetical experiments. Since the element of weight vector
generated by SVMs is one of the measures of discrimina-
tion poawer of the corresponding genes (Guyon ez al., 2002),
that generated by MD-SVMs can be used for gene selec-
tion, Thirdly, the classification with probability as well as
the weighted voting mentioned in Section 4 may be achieved
in our scheme since the conventional SVMs have been already
expanded for the purpose with sigmoid functions (Platt, 1 999).
We hope that our method sheds some lights on the future study
of gene expression experiments,
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infarction by activating the Jak-Stat pathway in

1

Granulocyte colony-stimulating factor {G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone
marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF
are not fully understoed. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival atter myocardial
infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes.

(3 The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial
2 infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF

2005 Nature Publishi

Myocardial infarction is the most commeon cause of cardiac morbidity
© and mortality in many countries, and left ventricular remodeling after
myocardial infarction is important because it causes progression to heart
o, failure, Several cytokines including G-CSF, erythropoietin and leukernia
@inhibitory factor have beneficial effects on cardiac remodeling after myo-
=¥ cardial infarction*-5. In particular, G-CSF markedly improves cardiac
function and reduce mortality after myocardial infarction in mice, possibly
by regeneration of myocardium and angiogenesis!>6-%. G-CSF is known
to have various functions such as induction of proliferation, survival and
differentiation of hematopoietic cells, as well as mobilization of bone
marrow cells®'1, Although it was reported that bone marrow cells could
differentiate into cardiomyocytes and vascular cells, thereby contributing
to regeneration of myocardium and angiogenesis in ischemic hearts!2-15,
accumulating evidence has questioned these previous reports'®1%, In this
study, we examined the molecular mechanisms of how G-CSF prevents
left ventricular remodeling after myocardial infarction.

RESULTS

G-CSF directly acts on cultured cardiomyocytes

G-CSF receptor (G-CSFR, encoded by CSF3R) has been reported
to be expressed only on biood cells such as myeloid leukemic cells,

induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced
apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury,

All these eftects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in
cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling
after myocardial infarction through the functiona! cormmunication between cardiomyocytes and noncardicmyocytes.

leukemic cell lines, mature neutrophils, platelets, monocytes and
some lymphoid cell lines®. To test whether G-CSFR is expressed
on mouse cardiomyocytes, we performed a reverse transcription—
polymerase chain reaction (RT-PCR) experiment by using specific
primers for mouse Csf3r, We detected expression of the Csf3r gene
in the adult mouse heart and cultured neonatal cardiomyocytes
(Fig. 1a}. We next examined expression of G-CSFR protein in cul-
tured cardiomyocytes of neonatal rats by immunocytochemistry.
Similar to the previously reported expression pattern of G-CSFRin
living cells'®, the immunoreactivity for G-CSFR was localized to the
cytoplasm and cell membrane under steady-state conditions in car-
diomyocytes (Fig. 1b). This immunoreactivity disappeared when the
antibody specific for G-CSFR was omitted, validating its specificity
(Fig. 1b). In addition to cardiomyocytes, we also detected expres-
sion of G-CSFR on cardiac fibroblasts by immunocytochemistry
(see Supplementary Fig. 1 online) and RT-PCR {Supplementary
Fig. 2 online).

The binding of G-CSF to its receptor has been reported to evoke
signal transduction by activating the receptor-associated Janus family
tyrosine kinases (JAK) and signal transducer and activator of transcrip-
tion (STAT) proteins in hematopoietic cells™'®, In particular, STAT3
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Figure 1 Expression of G-CSFR and the G-CSF-evoked signal transduction in cultured cardiomyocytes. (a) RT-PCR for mouse Csf3r. Exgression of Csf3rwas
detected in the adult mouse heart {lane 1) and cultured cardiomyocytes of neonatal mice (Jane 3). In lane 2, reverse transcription products were omitted to
exclude the possibility of false-positive results from contamination. {b) Immunocytochemical staining for G-CSFR, Cardiomyocytes from neonatal rats were
incubated with antibody to G-CSFR (red) and phalloidin (green) {upper panel), In the absence of antibody to G-CSFR, no signal was detected (lower panel).
Original magnification, x1,000. {¢) G-CSF induces phosphorylation of Jak2, Stat1 and Stat3 in a time-dependent manner in cultured cardiomyocytes.

{d) Quantification of Jak2, Stat1 and Stat3 activation by G-CSF stitnulation as compared with control {time = 0), *P< 0.05 versus contral {n = 3). (e) G-CSF
induces phosphorylation and activation of Stat3 in a dose-dependent manner in ¢ultured cardiomyocytes.

has been reported to contribute to G-CSF-induced myeloid differenti- We next examined whether G-CSF confers direct protective effects
ation and survival?®2!, We therefore examined whether G-CSF activates  on cardiomyocytes as it prevents hematopoietic cells from apoptotic
the Jak-Stat signaling pathway in cultured cardiomyocytes. G-CSF  death?). We exposed cardiomyocytes to 0.1 mM H,O, in the absence
{100 ng/ml) significantly induced phosphorylation and activation of  or presence of G-CSF and examined cardiomyocyte apoptosis by
Jak2 and Stat3, and to a lesser extent, Stat1 but not Jakl, Tyk2 or Stat5  staining with annexin V3223, Pretreatment with G-CSF significantly
ina dose-dependent manner (Fig. 1c—eand data not shown), suggesting  reduced the number of H,0,-induced annexin V-positive cells
that G-C5FR on cardiomyocytes is functional. compared with cefls that were not given the G-CSF pretreatment
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Figure 2 Suppression of Hy0induced cardiomyocyte apeptosis by G-CSF. (a) Detection of apoptesis by Cy3-labeled annexin V, Red fluorescence shows apoptotic
cardiomyocyles stained with Cy3-labeled annexin V., Nuclei were counterstained with DAPI staining (blue). Original magnification, %400, (b) Quantitative analysis
of apoptatic cells, The vertical axis indicates the ratio of the annexin V-positive cetl number relative to that of DAPI-positive nuclei. *£ < 0.0] versus nontreated
cells, *P< 0.05 versus H,0x-treated cells without G-CSF (= 3). () G-CSF prevents H,0pinduced downregulation of Bcl-2 expression {n = 3). {d} Inhibition of
antiapoptotic effects of G-CSF by Adeno-dnStat3, Bar graphs represent quantitative analysis of the apoptotic cell number relative to the total cell number, *P<
0.001 versus Hp0, (-¥G-CSF {-), #P < 0.001 versus H,0, (+¥G-CSF (-}, *P < 0.001 versus Hy0, (+¥G-CSF (+VAdeno-LacZ (n = 3).
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(Fig. 2a,b). To investigate the molecular mechanism of how G-CSF
exerts an antiapoptotic effect on cultured cardiomyocytes, we exami-
ned expression of the Bel-2 protein family, known target molecules
of the Jak-Stat pathway?4, by western blot analysis. Expression levels
of antiapoptetic proteins such as Bcl-2 and Bcl-xL were lower when
cardiomyocytes were subjected to H,0; (Fig. 2c and data not shown),
and this reduction was considerably inhibited by G-CSF pretreatment
(Fig. 2¢). AG490, aninhibitor of Jak2, abolished G-CSF-induced Bcl-2
expression {Fig. 2¢) but did not affect its basal levels (Supplementary
Fig. 3 online), suggesting a crucial role of the Jak-Stat pathway in
inducing survival of cardiomyocytes by G-CSE. To further elucidate
the involvement of the Jak-Stat pathway in the protective effects of
G-CSF on cardiomyocytes, we transduced cultured cardiomyocytes
with adenovirus encoding dominant-negative Stat3 (Adeno-dnStat3).
G-CSF treatment significantly reduced apoptosis induced by H,0,
in Adeno-LacZ-infected cardiomyocytes {Fig. 2d). This effect was
abolished by introduction of Adeno-dnStat3 (Fig. 2d), suggesting
that Stat3 mediates the protective effects of G-CSF on H,0,-induced
cardiomyocyte apoptosis.

Etfects of G-CSF on cardiac function after myocardial infarction
Consistent with the in vitro data, G-CSF enhanced activation of Stat3
in the infarcted heart (Fig. 3a). Notably, the levels of G-CSFR were
markedly increased aficr myocardial infarction in cardiomyocytes
{Supplementary Fig. 4 online), which may enhance the effects of
G-CSF on the infarcted heart. To elucidate the role of G-CSF-induced
S$tat3 activation in cardiac remodeling, we produced myocardial
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infarction in transgenic mice which express dominant-negative Stat3
in cardiomyocytes under the control of the c-myosin heavy chain
promoter (dnStat3-Tg). Administration of G-CSF was started at the
time of coronary artery ligation (day 0) until day 4 in transgenic
mice; we termed this group Tg-G mice. A control group of dnStat3-Tg
mice given myocardial infarction received saline (Tg-cont) instead of
G-CSE We also included two groups of wild-type mice given myocar-
dial infarction treated with G-CSF (Wt-G) or saline (Wt-cont). At 2
weeks after myocardial infarction, we assessed the motphology by his-
tological analysis and measured cardiac function by echocardiography
and catheterization analysis. The infarct area was significantly smaller
in the Wt-G group than the Wt-cont group (Fig. 3b). The Wt-G group
also showed less left ventricular end-diastolic dimension (LVEDD)
and better fractional shortening as assessed by echocardiography,
and lower end-diastolic pressure (LVEDP) and better +dp/dt and
~dp/dt as assessed by cardiac catheterization compared with Wt-cont
(Fig. 3¢). The beneficial effects of G-CSF on cardiac function were
dose dependent and were significantly reduced by delayed start of the
treatment (Fig. 3d,e and Supplementary Fig. 5 online}. Moreover,
its favorable effects on cardiac function became evident within 1
week after the treatment (Fig. 3f). Disruption of the Stat3 signaling
pathway in cardiomyocytes abolished the protective effects of G-CSF.
There was no significant difference in LVEDD, fractional shortening,
LVEDP, +dp/dt and ~dp/ds between Tg-G and Tg-cont (Fig. 3¢). We
obtained similar results frominfarcted female hearts (Fig. 3g)- These
results suggest that G-CSF protects the heart after myocardial infarc-
tion at least in part by directly activating Stat3 in cardiomyocytes,
"~ which is a gender-independent effect. We
have previously shown that treatment with
G-CSF significantly (P < 0.05) decreased
myocardial infarction—related mortality of
wild-type mice?, In contrast, there were no
significant differences in mortality between
G-CSF-treated and saline-treated dnStat3-Tg
mice {data not shown).

Percont infarction area

c a ¢ 4
wt g

Figure 3 Effects of G-CSF on cardiac function
after myocardial infarction. (a} Stat3 activation
in the infarcled hearts, We operated on
wild-type mice to induce myocardial infarctien
and treated them with G-CSF (G) or saline (C),
{b) Masson trichrome staining of wild-type (Wt)
and dnstat3-Tg (Tg) hearts. *P < 0.001 versus
wt-cont, #P < 0.001 versus Wt-G (n= 11-15).
() G-USF treatment preserves cardiac function
after myocardial infarction. *P< 0.01,

**p ¢ 0.001 versus sham; ¥P < 0.05,

#p 0,001 versus Wi-cont; 1P < 0.01,

HpP. 0.00] versus Wt-G (n= 10-15 for
echocardiography and n = 5 for catheterization
analysis), (4} Dose-dependent effects of G-CSF.
FS, fractional shortening. *P < 0.01 versus
saline-treated mice {G-CSF = O} n = 12-14).
(&) Wild-type mice were operated to induce
myocardial infarction and G-CSF treatment
(100 pghg/d) was started from the indicated day
for 5d. *P < 0.05, **P < 0.001 versus saline-
treated mice (C); ¥P < 0.05, P < 0.01 versus
mice treated at day 0 (d Q) {n=11-12).

{f) Effects of G-CSF on cardiac functionat 1
week. *F < 0,05 versus control (= 3). (g) Effects
of G-CSF on cardiac function of female mice.
*P < 0.05, **P< 0.00] versus Wtcont;

1P ¢ 0.05, P < 0.005 versus WIG {n = 4-5),
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Mechanisms of the protective effects of G-CSF

Our in vitro results suggest that the protective effects of G-CSF on car-
diac remodeling after myocardial infarction can be attributed in part
to reduction of cardiomyocyte apoptosis. To determine whether the
Stat3 pathway in cardiomyocytes mediates the antiapoptotic effects of
G-CSF on the ischemic myocardium, we carried out TUNEL labeling
of left ventricular sections 24 h after myocardial infarction in wild-type
mice and dnStat3-Tg mice. Although the number of TUNEL-positive
cells was significantly less in the Wt-G group than the Wt-cont group,
G-CSF treatment had no effect on cardiomyocyte apoptosis in dnStat3-
Tg mice (Fig. 4a). The effects of G-CSF on apoptosis after myocardial
infarction were also attenuated when mice were treated with AG490
{Supplementary Fig. 6 online}. Myocardial infarction—related apoptosis
was significantly increased in the Tg-cont group and AG490-treated wild-
type mice compared with Wt-cont mice (Fig. 4a and Supplementary Fig.
6 online}, suggesting that endogenous activation of $tat3 has a protec-
tive role in the infarcted heart, as reported previously?®>. It is notewor-
thy that G-CSF treatment inhibited apoptosis of noncardiomyocytes
including endothelial cells and that this inhibition was abolished in
dnStat3-Tg mice (Fig. 4a and data not shown). To investigate the
underlying molecular mechanism of the antiapoptotic effects of
G-CSF in vivo, we examined expression of the Bcl-2 protein family
by western blot analysis. Consistent with our in vitro results, expres-
sion of antiapoptotic proteins such as Bel-2 and Bcl-xL was signifi-

Figure 4 Mechanisms of the protective effects of
G-C5F. {a) TUNEL staining (brown nuclei} in the
infarcted hearts. The graphs show quantitative
analyses for total TUNEL-positive cells {left
graph) and TUNE L-positive cardiomyocytes (right
graph) in infarcted hearts. *P < .01 versus
Wicont; P < 0.05, WP < 0.005, MP<0.001
versus wild-type mice with the same treatment
{rt=5-7). Scale bar, 100 pm, (b) Infarcted
hearts treated with G-CSF (G} or saline {C) were
analyzed for expression of Bel-2, Bel-xL, Bax and
Bad by western blotting (2 = 3). {c) Mobilization
of hematopoietic stem cells into peripheral

blood (PBSC). *P < 0.05 versus saline-treated
mice (n = 4), (d) Capillary endothelial cells were
identitied by immunchistochemical staining with
anti-PECAM antibody in the border zone of the
infarcted hearts. Scale bar, 100 pm. The number
of endothelial cells was counted and shown in
the graph (n = 6-8). *P < 0.05.

*

cantly increased in the Wi-G group at 24 h
after myocardial infarction compared with
the Wi-cont group, whereas expression of
the proapoptotic proteins Bax and Bad was
not affected by the treatment {Fig. 4b). In
contrast, expression levels of antiapoptotic
proteins were not increased by G-CSF in the
Tg-G group (Fig. 4b). Immunchistochemical
analysis also showed increased expression of
Bcl-2 in the infarcted heart of the Wt-G group
but not of the Tg-G group (Supplementary
Fig. 7 online).

To determine the effects of G-CSF on mobi-
lization of stem cells, we counted the number
of cells positive for both Sca-1 and c-kit in
peripheral blood samples from mice treated
with G-CSF or saline, The G-CSF treatinent
similarly increased the number of double-positive cells in wild-type
mice and dnStat3-Tg mice (Fig. 4c). To examine the impact of G-CSF
on cardiac homing of bone marrow cells, we transplanted bone marrow
cells derived from GFP transgenic mice into wild-type and dnStat3-Tg
tnice, produced myocardial infarction and treated with G-CSF or saline.
FACS analysis showed that G-CSF did not increase cardiac homing of
bone marrow cells in wild-type and dnStat3-Tg mice (Supplementary
Fig. 8 online). We have shown that cardiac stem cells, which are able to
differentiate into cardiomyocytes, exist in Sca-1-positive populations
in the adult myocardium?®®, But G-CSF treatment did not affect the
number of Sca-1-positive cells in the infarcted hearts of wild-type or
dnStat3-Tg mice (Supplementary Fig. 9 online). Thus, it is unlikely
that G-CSF exerts its beneficial effects through expansion of cardiac
stem cells. To determine the effects of G-CSF on proliferation of car-
diomyocytes, we carried out immunostaining for Ki67, a marker for
cell cycling, in conjunction with a labeling for troponin T. The number
of Ki67-positive cardiomyocytes was increased in the infarcted hearts
of wild-type mice and dn$tat3-Tg mice compared with sham-operated
mice (Supplementary Fig. 10 online). But G- CSF did not alter the num-
ber of Ki67-positive cardiormyocytes in wild-type or dnStat3-Tg mice,
suggesting that G-CSF does notinduce proliferation of cardiomyocytes
(Supplementary Fig. 10 online). The number of Ki67-positive cardio-
myocytes was less in infarcted hearts of dnStat3-Tg mice than in those
of wild-type mice, suggesting that endogenous Stat3 activity is required
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for myocardial regeneration after myocardial infarction and that activa-
tion of Stat3 by G-CSF is not sufficient for cardiomyocytes to enter the
cell cycle in infarcted hearts of wild-type mice (Supplementary Fig. 10
online). In contrast, G-CSF treatment significantly increased the number
of endothelial cells in the border zone of the infarcted hearts (Fig. 4d).
This increase was attenuated in dn5tat3-Tg mice, indicating that the
increased vascularity is mediated by Stat3 activity in cardiomyocytes
and may partiaily account for the beneficial effects of G-CSF on the
infarcted hearts. Taken together with the result that G-CSF-induced
inhibition of noncardiomyocyte apoptosis was also mediated by the
Stat3 signaling pathway in cardiomyocytes (Fig. 4a), these findings imply
that communication between cardiomyocytes and noncardiomyocytes
regulates each others’ survival.

To further test whether G-CSF acts directly on the heart, we examined
the effects of G-CSF treatiment on cardiac function after ischemia-reper-
fusion injury in a Langendorff perfusion model. The isolated hearts
underwent 30 min total ischemia followed by 120 min reperfusion with
the perfusate containing G-CSF (300 ng/ml) or vehicle, and left ventri-
cular developed pressure (LVDP. measured as the difference between
systolic and diastolic pressures of the left ventricle) and LYEDP were
measured. There were no significant differences in basal hemodynamic
parameters including heart rate, left ventricular pressure, LVEDP and
positive and negative dpfde, between the control group and G-CSF group
(Table 1). After reperfusion, however, G-CSF-treated hearts started to
beat earlier than those of the control group (Fig. 5a). At 120 min after
teperfusion, contractile function (LVDP) of G-CSF-treated hearts was
significantly better than that of control hearts (Fig. 5a). Likewise, dias-
tolic function {LVEDP) of G-CSF-treated hearts was better than that
of control hearts (Fig. 5a). After ischernia-reperfusion, there was more
viable myocardium (red lesion) in G-CSF-treated hearts than control

ARTICLES

Table 1 Basal hemodynamic parameters

Control (n=7} GLSFin=7)
HR (b.p.m.) 326+34 334124
L¥P (mmHg) 1218124 1173132
LVEDP (mmHg) 43113 45t1.6
+dpidt (mmHg/s) 7.554 £ 643 76571377
-dp/dt (mmHg/s) 6,504 t 638 6,670 £ 602

HR, heart rate; b.p.m., beats par minute; LVP, left ventricular prassure; LYEDF, left ventricular
end-diastolic pressure; +Jpide and ~dpidt, positive and negative first derivatives for maximal
rates of loft ventricular pressure development.

hearts (Fig. 5b). The size of the infarct (white lesion) was significantly
smaller in G-CSF-treated hearts than in control hearts (Fig. 5b).

DISCUSSION
In the present study, G-CSFR was found to be expressed on cardiomyo-
cytes and cardiac fibroblasts, and G-CSF activated Jak2 and the down-
stream signaling molecule Stat3 in cultured cardiomyocytes. Treatment
with G-CSF protected cultured cardiomyocytes from apoptotic cell death
possibly through upregulation of Bcl-2 and Bcl-xL expression, suggest -
ing that G-CSF has direct protective effects on cardiomyocytes through
G-CSFR and the Jak-Stat pathway. This idea is further supported by
the in vivo experiments. G-CSF enhanced $tat3 activity and increased
expression of Bcl-2 and Bel-xL in the infarcted heart where G-CSFR
was markedly upregulated, thereby preventing cardiomyocyte apoptosis
and cardiac dysfunction. These effects of G-CSF were abolished when
Stat3 activation was disrupted in cardiomyocytes, suggesting that a direct
action of G- CSF on cardiomyocytes has a crucial role in preventing left
ventricular remodeling after myocardial infarction. Because noncardio-
myocytes also expressed G-CSFR, the possibil-
ity exists that activation of G-CSF receptorson
these cells modulates the beneficial effects of

lechemia 30 min I Repertusion 120 min

G-CSF on infarcted hearts.
The mobilization of bone marrow stem

cells (BMSC) to the myocardium has been
considered to be the main mechanism by

]

mmHg

100

i
100

| S

Q-CSF

LVEDP {mmhg)

Conkol

which G-CSF ameliorates cardiac remode-
ling after myocardial infarction'$-2, In this
study, we showed that G-CSF reduces apop-
totic cell death and effectively protects the
infarcted heart, which is dependent on its
direct action on cardiomyocytes through the
Stat3 pathway. This antiapoptotic mechanism
seems to be more important than induction
of BMSC mobilization, because disruption of

Figure 5 Direct etfects of G-CSF on cardiac
function after ischemia-reperfusion injury.
(a) Representative left ventricular pressure

120 (min) 0

G-CSF

3

Parcenl indarct sl

records of control and G-CSF-treated hearts are
shown (upper panel). The graphs show changes
in LVDP (left) and LVEDRP (right) during ischemia-
reperfusion. *P < 0.05 versus contral hearts

{nn= 7). (b) The photographs show representative
TTC staining of control hearts {Control) and
G-CSF-treated hearts (G-CSF) after ischemia-
reperfusion, The graph indicates myocardial
infarct sizes for control hearts {Controf) and
G-CSF-treated hearts (G-CSF). Infarct sizes were
calculated as described in Supplementary Methods
online, *P« 0.05 versus control hearts (n=7),
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