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Fig. 1 Overlapping audiograms caused by each genotype indicat-
ing that certain genotypes are correlated with certain phenotypes,
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V371/G45E/Y136X. Hearing of one patient associated
with V37I/T123N was within normal range (Fig. 1).

The comparison between patients- homozygous for
235delC or V371, which are the most and the second most
prevalent mutations in Japanese (Ohtsuka et al. 2003),
showed significant differences in phenotype (Figs. 1, 2).
Those homozygous for the 235delC mutation (n=11,
mean 100.68 dB, SD 21.25 dB) exhibited a significantly
severer phenotype than that caused by V371 (n=>5, mean
37.75 dB, SD 23.09 dB) (P=0.003 Fisher’s exact test).
Those compound heterozygous for the 235delC mutation
(n=19, mean 78.75 dB, SD 27.76 dB) were significantly
different from those compound heterozygous for V371
(n=7, mean 47.14 dB, SD 18.35 dB) (£=0.021 Fisher’s
exact test). Concerning the comparison between a com-
bination of inactivating mutations and a combination of
noninactivating mutations, the former {r=230, mean
88.33 dB, SD 25.67 dB) showed a severer phenotype
than that caused by the latter (n= 11, mean 47.3% dB, SD
31.19 dB) (P=0.0003 Fisher’s exact test).

Localization of Cx26 and its mutants
The inherent fluorescence of GFP determined the

intraceliular localization of the recombinant fusion
proteins. Transfected GFP-Cx26 wt (wild type) were

found to be localized as labeled puncta, which may be
representative of gap junctions along the plasma mem-
brane. In contrast, GFP- Cx26 235delC was not recog-
nized at the plasma membrane but was retained within
the cytoplasm close to the nucleus. Both GFP-Cx26
V271 and GFP- Cx26 V371 were found to be localized
along the plasma membrane as well as being dispersed in
the cytoplasm, which is a similar pattern to that shown
in the wild type. (Fig. 3.)

Discussion

The present study, using different spectrums of GJB2
mutations (Ohtsuka et al. 2003}, confirmed that certain
genotypes are correlated with certain phenotypes in
GJB2 deafness. The most common mutation, 235delC,
exhibited severer hearing impairment whereas V37I,
which is the second most common mutation, showed
significantly mild hearing impairment. Audiometric data
revealed an additional comparatively severe phenotype
as well as a relatively mild phenotype.

Among more than 90 different GJBZ mutations,
35delG, accounts for up to 75% of mutated alleles in
populations with European ancestry (Estivill et al. 1998,
Gasparini et al. 2000; Van Laer et al. 2001). A series of
reports has described that patients associated with

Fig. 2 Overlapping audiograms 235delC/maon 235delC V37l/non V371
caused by 235delC/non dB n=19 4B n=7
235delC, V37I/non V37, 20 20
inactivating mutation/ 10 | 10
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involved patients show a 80 80 “\\ <
relatively mild phenctype. It is 70 RNy - - 70 T >
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Fig. 3 Protein expression in
transfected COS-7 cells. COS-7
cells transfected with GFP-Cx26
wt, GFP-Cx26 V271, and GFP-
Cx26 V371, which were
associated with normal-mild
phenotypes, showed a
characteristic puncta along the
membrane. In contrast, only
perinuclear staining was seen in
GFP-Cx26 235delC. Red actin
filament {TRITC- conjugated
phalloidin): cell membrane, Bfue
DAPI: nucleus, Green Green
finorescent protein: chimeric
protein

35delG exhibit severe-to-profound hearing impairment
(Cohn et al. 1999; Cryns et al. 2004; Denoyelle et al.
1997, 1999; Green et al. 1999; Marlin et al. 2001; Wilcox
et al. 2000). The status of the 235delC mutation, which
seems to be a unique mutation in populations with Asian
ancestry, is comparable to the 35delG mutation in
Caucasoid populations. High prevalence of 35delG and
235delC mutations in the respective populations are due
.to a founder effect (Ohtsuka et al. 2003; Van Laer et al.
2001). Patients homozygous or compound heterozygous
for the 235delC mutation exhibit a comparatively sev-
erer phenotype (Fig. 2), indicating that this frequent
mutation should be the first to be considered when ge-
netic screening for congenitally deaf patients is per-
formed in Asian populations.

Several reports have indicated the existence of less-
severe phenotypes correlated with certain specific
mutations, especially in association with V371 (Bason
et al. 2002; Cryns et al. 2004; Marlin et al. 2001; Rabi-
onet et al. 2000, Wilcox et al. 2000). The exact pheno-
type has been rather difficult to prove because of the
relatively small number of patients with V371. The V371
mutation was originally reported as a polymorphism
(Kelley et al. 1998), but the fact that valine 37 residue is

20.00u4m

highly conserved among different connexins, and that a
series of reports identified homozygous or compound
heterozygous V371 deafness patients (Abe et al. 2000,
Bason et al. 2002; Marlin et al. 2001; Rabionet et al.
2000; Wilcox et al. 2000), indicate that it may be a dis-
ease-causing mufation. There seem to be ethnic differ-
ences in the allele frequency of V371, as it was not
detected in the control subjects from Italy, Spain, Ger-
many, Greece, Israel, Ghana, or Austria (see Discussion
in Bason et al. 2002} in spite of a high prevalence in the
Japanese population (Abe et al. 2000; Kudo et at. 2000;
Ohtsuka et al. 2003). The reported patients in whom the
ethnic background was known were all of eastern-Asian
origin (Abe et al. 2000; Bason et al. 2002; Kudo et al.
2000; Ohtsuka et al. 2003). In Japanese, V371 is the
second most frequent mutated allele, and in this study, it
was possible to collect a significant number of patients,
and the present data confirmed a less severe phenotype
caused by V37I. Due to such a mild phenotype, timing
of presentation at clinics and diagnosis may be com-
paratively delayed. For patients with V37I/V37I, hearing
impairment was noticed at the age of 20.6 (range 749,
SD 17.08) years of age in contrast with 0.33 (range 0-3,
SD 1.00) years for patients with 235delC/235delC. It
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should therefore be noted that patients with GJB2
mutations can also be found among Jess-severe hearing-
impaired populations.

A rtecent multi-center-based genotype-phenotype
correlation study clearly showed that severity of hearing
impairment is correlated with some particular genotype
and proposed a hypothetical general rule that inacti-
vating mutations (stop or frameshift mutations) cause
more severe phenotypes than thoss caused by noninac-
tivating mutations (Cryns et al. 2004). Concerning the
- comparison between combinations of inactivating
mutations and combinations of noninactivating muta-
tions, the present study also showed that the former
cause a severer phenotype than that caused by the latter.
Therefore, our study supports the above hypothetical
general rule.

Overlapped audiograms showed high-frequency-pre-
dominant sensorineural hearing loss regardless of
genotype. Overall, there seemed to be certain rules
regarding genotype and phenotype correlations. Partic-
ular genotypes tended to have similar audiograms with
minor exceptions (Fig. 1). Therefore, genotype is a
fundamental factor to predict phenotype. However,
variations among the same phenotypes still exist
(Fig. 1). These variations may be explained by the fol-
lowing factors involved in phenotypes: (1) alterations in
promoter regions, (2) additional genes such as GJB6 (del
Castillo et al. 2002), (3) modifier genes (Abe et al. 20013,
(4) environmental factors. Concerning patients with
G45E/Y 136X, there was great variability in their phe-
notypes, ranging from normal to profound. A segrega-
tion study indicated that either G45E or Y 136X situated
on the same allele or different alleles. Our subcloning
experiments confirmed the existence of two types of al-
lele: ¢is allele and trans atlele (data not shown). When
two mutations are on different alleles (compound het-
erozygous state), the patients may exhibit severe-to-
profound hearing impairment.

The present study further investigated whether the
differences in phenotype could be explained by protein-
expression study. In contrast to transfected GFP-Cx26
wt, which were found to be localized as labeled puncta
along the plasma membrane (Fig. 3), the localization of
transfected GFP-Cx26 235delC was not seen on the
cellular membrane but mainly cohered at or around the
nucleus. Such abnormal subcellular localization of
mutated Cx26 protein with 235delC is consistent with a
previous study {Choung et al. 2002). From these re-
sults, truncated mutations at the transmembrane do-
main, such as 235delC, were considered to lead to loss
of function, resulting in serious hearing impairment. In
the case of V371, which is categorized as a noninacti-
vating mutation, transfected GFP-Cx26 V371 was
found along the membrane as in the wild type, indi-
cating that the V37I protein may retain its function and
therefore results in a rather mild phenotype. As ex-
pected, V271, a known polymorphism, showed a similar
distribution pattern to the wild type and V371. To
summarize, in the present study, the results indicate

that protein expression patterns are well correlated with
clinical phenotypes. A series of in vitro studies,
including protein expression study, cell-to-cell commu-
nication properties, or physiological conductance
experiments, sometimes provided discrepant results
when compared to the phenotypic results, and limita-
tions have been suggested (see discussion in Cryns et al.
2004). In the case of V371, a complete loss of junctional
properties has been reported (Bruzzone et al. 2003) in
spite of a rather mild phenotype shown in a series of
studies. The protein expression experiments in the
current study, however, were in line with the phenotype

“associated with this mutation.

In conclusion, the present genotype—phenotype cor-
relation results supported the view that phenotypes
caused by the truncating GJB2 mutations are severer
than those caused by missense mutations. Anticipating
severity of hearing impairment is sometimes difficult, but
if such general rules can be drawn with regard to
genotype—phenotype correlation, determination of these
correlations will facilitate the prediction of the course of
hearing and help in making decisions regarding treat-
ment/intervention,
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Acute Low Tone Sensorineural Hearing
Loss | Comparison of Epidemiological
Characteristics between Typical and
Atypical Cases

Hiroaki Sato”, Kazuo Murai®, Makito
Okamoto®, and Ken Kitamura”
YDepartment of Otolaryngology, Iwate Medi-
cal University
?Department of Otolaryngology, Iwate Rosai
Hospital
“Department of Otolaryngology, Kitasato Uni-
versity School of Medicine

| "Department of Otolaryngology, Tokyo Medi-

cal and Dental University

Acute low-tone sensorineural hearing loss is de-
fined by the following criteria : the sum of hearing
levels at low-tone frequencies (125, 250 and 500Hz)
must be 70dB or more and that at high-tone fre-
quencies (2000, 4000 and 8000Hz) must be 60dB or
loss. However, several studies have suggested that
a similar etiology exists among patients in whom
the sum of hearing levels at high-tone frequencies
is 65dB or more. We compared the epidemiological
characteristics of typical cases meeting these crite-
ria to those of atypical cases, whose hearing levels
exceeded 65dB at high frequencies. All the subjects
had unilateral hearing loss {317 typical cases and
91 atypical cases) ; all patients were registered in
nationwide epidemiological surveys conducted be-

tween 2000 and 2002. Many similarities in the epi-

demiological characteristics of the two groups were
seen (more prevalent in females thanin males and
in spring/summer than in winter ; hearing recov-
ery depended on initial hearing level ; severity of
hearing loss at low-tone frequencies), but several
differences were also noted (levels of hearing im-
pairment at middle to high-tone frequencies ; cor-
relation of prognosis with age and the number.of
days from onset to the first examination), suggest-
ing differences in the pathophysiological features
of typical and atypical cases.
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