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In Vitro and In Vivo Characterization of Pigment
Epithelial Cells Differentiated from Primate Embryonic

Stem Cells

Masatoshi Haruta,? Yoshiki Sasai,®>* Hirosbi Kawasaki,* Kaori Amemiya,® Sotaro Ooto,?
Masaaki Kitada,” Hirofumi Suemori®’ Norio Nakatsuji,*’ Chizuka Ide,’

Yoshibito Honda,* and Masayo Takabashi'*

Purrost. To determine whether primate embryonic stem (ES)
cell-derived pigment epithelial cells (ESPEs) have the proper-
ties and functions of retinal pigment epithelial (RPE) cells in
vitro and in vivo.

MErHoDs. Cynomolgus monkey ES cells were induced to dif-
ferentiate into pigment epithelial cells by coculturing them
with PAG stromal cells in a differentiating medium. The ex-
panded, single-layer ESPEs were examined by light and elec-
tron microscopy. The expression of standard RPE markers by
the ESPEs was determined by RT-PCR, Western blot, and im-
munocytochemical analyses. The ESPEs were transplanted into
the subretinal space of 4-week-old Royal College of Surgeons
(RCS) rats, and the eyes were analyzed immunohistochemically
at 8 weeks after grafting. The effect of the ESPE graft on the
visuat function of RCS rats was estimated by optokinetic reflex.

Resuirs. The expanded ESPEs were hexagonal and contained
significant amounts of pigment. The ESPEs expressed typical
RPE markers: ZO-1, RPEGS, CRALBP, and Mertk. They had
extensive microvilli and were able to phagocytose latex beads.
When transplanted into the subretinal space of RCS rats, the
grafted ESPEs enhanced the survival of the host photorecep-
tors. The effects of the transplanted ESPEs were confirmed by
histologic analyses and behavioral tests.

Conciusions. The ESPEs had morphologic and physiological
properties of normal RPE cells, and these findings suggest that
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these cells may provide an unlimited source of primate cells to
be used for the study of pathogenesis, drug development, and
cell-replacement therapy in eyes with retinal degenerative dis-
eases due to primary RPE dysfunction. (fnvest Opbthalmol Vis
Sctf, 2004;45:1020-1025) DOL10.1167/iovs.03-1034

he retinal pigment epithelium (RPE) forms a single layer of

highly specialized pigmented cells located distal to the
photoreceptor cells that performs critical functions in the
maintenance of the physiology of the photoreceptors. These
functions include the absorption of stray light by its melanin
granules, formation of the blood-retinal barrier, regeneration
of visual pigments, and phagocytosis of shed outer segments of
photoreceptors.' RPE cell dysfunciion caused by environmen-
tal and/or genetic mutations can lead to ocular diseases such as
age-related macular degeneration and some forms of retinitis
pigmentosa. At present, transplantation of the fetal RPE cells is
performed in eyes with ocular diseases with primary RPE
dysfunction?; however, obtaining a sufficient number of suit-
able donor cells remains a problem.

Embryonic stem (ES) cells retain significant developmental
potential and replicative capability and are expected 1o allevi-
ate the problem of the shortage of donor cells for cell-replace-
ment therapy. The isolation and use of human ES cells** has
drawn much attention because of their potential clinical appli-
cations in patients with degenerative diseases. However, the
use of human ES cells for cellreplacement therapy is question-
able at the moment because their differentiation is poorly
controlled. Compared with the extensive potential demon-
strated by mouse ES cells,® there is no reported case showing
that primate ES cells can be successfully applied to animal
disease models. As the characteristics of rodent ES cells differ
considerably from those of primate ES cells,>*7* it is necessary
to develop methods to induce primate ES cells to differentiate
into a homogeneous population of functional cells that can be
used for cellreplacement therapy.

The purpose of the study was to determine whether pri-
mate embryonic stem-cell-derived pigment epithelial cells
(ESPEs) develop the wellknown characteristics of RPE cells
and have functional properties that would be of value in treat-
ing diseases when transplanted in an animal model of RPE
dysfunction.

MATERIALS AND METHODS

Cell Culture

A cynomolgus monkey ES cell line was obtained from Asahi Techno
Glass Co. (Tokyo, Japan), and the undifferentiated ES cells were main-
tained as described.® The methods used to induce undifferentiated ES
cells to differentiate into ESPEs have been described in detail #='2 In
bricf, undifferentiated primate ES cells were plated on PAG stromal
cells and cultured in the differentiation medium for 3 weeks. For the
expansion of ESPEs, the dishes were coated with thin synthetic matrix

Investigative Ophthalmology & Visual Science, March 2004, Vol. 45, No. 3
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(dilution of 1:20; Matrigel) according to the manufacturer’s protocol
(BD Biosciences, Bedford, MA). The ESPEs were selectively removed
with disposable scalpels and plated on the matrix-coated dishes in
DMEM supplemented with 10% FBS and 20 ng/mL bFGF.

RT-PCR Analysis

“Total RNA was isolated (RNcasy Protcct Mini Kit with RNasc-Frec
DNase Set; Qiagen, Chatsworth, CA) and first-strand ¢cDNA was synthe-
sized (First-Strand ¢DNA Synthesis Kit; Amersham Biosciences, Piscat-
away, NJ) according to the manufacturer’s protocol. The PCR reaction
was performed with the following primers: for RPEGS, 5-TG-
GAGTCTTTGGGGAGCCAA-3 and 5'-CTCACCACCACACTCAGAAC-3',
for cellular retinaldchyde-binding protein (CRALBP), 5-GTGGACAT-
GCTCCAGGATTGA and  5-CCAAAGAGCTGCTCAGCAAC-3'; for
Mertk, 5-GGGAGATCGAGGAGTTTCTC-3' and 5'-CGGCCTTGGCGG-
TAATAATC-3'; for factin, 5-CTTCAACACCCCAGCCATGT-3' and 5"
ACTCCTGCTTGCTGATCCAC-3".

Western Blot Analysis

Western Blot Analysis was performed as described.!! Rabbit polyclonal
anti-CRALBP antibody (1:40,000, kindly provided by John C. Saari,
University of Washington, Scattle, WA) was used as the primary anti-
baody.

Animals

All animal experiments were conducted in accordance with the ARVO
Statement for the Use of Animals in Ophthalmic and Vision Research
and were approved by the Animal Research Committee, Graduate
School of Medicine, Kyoto University. Pink-tved dystrophic Royal
College of Surgeons (RCS) rats and congenic nondystrophic rats were
obtained from CLEA Japan (Tokyo, Japan).

Transplantation Procedures

Patches of ESPEs were collected by carefully cutting the peripherat
margins with disposable scalpels. The patches of ESPEs were gently
dissociated with the Papain Dissociation System (Worthington Bio-
chemical, Lakewood, NP according to the manufacturer’s protocol.
Dissociated ESPEs were incubated in the CM-Dil (chloromethylbenz-
amido derivatives of 1,1'-dioctadecyl-3,3,3",3 tetramethylindocarbo-
cyanine perchlorate; Molecular Probes, Eugene, OR) solution at a
concentration of 5 pg/mL for 20 minutes at 37°C, Labeled ESPEs were
then washed three times with PBS. The viability of the ESPEs after
these procedures was morc than 95%, as assessed by trypan blue
exclusion. The cells were centrifuged and then concentrated to ap-
proximately 10,000 cells/ul in PBS.

The surgical and grafting procedures have been described in de-
tail.’*'* ESPE cells, suspended in 3 pl of PBS, were injected trans-
sclerally into the dorsotemporal subretinal space of anesthetized
4-week-old RCS rats. All transplantations were made into the left eye.
Sham-treated RCS rats received the same amount of carrier medium. A
total of 41 RCS rats received ESPE grafts, and 21 had sham injection.
Transplantation into the subretinal space was' confirmed by direct
observation of the rat fundus with a contact lens (Kyocon, Kyoto,
Japan}, and those that had successful transplantation were sclected for
histeologic analyses and behavioral tests. All the animals were main-
tained on oral cyclosporine (200 mg/L in drinking water; Calbiochem,
Darmstadt, Germany) from 2 days before transplantation until they
were killed. The blood cyclosporine levels in these animals were
measured by SRL Inc. (Tokyo, Japan).

Immunostaining

Standard immunocytochemical techniques were used for the in vitro
studies.!® The working dilution of the rabbit polyclonal anti-ZO-1
antibody (Zymed, South San Francisco, CA) was 1:50. Eyes (n = 4 for
each group) were harvested 8 weeks after transplantation at age 12
wecks and fixed in 4% paraformaldehyde. Sixteen-micrometer sections

Pigment Epithelial Cells Differentiated from ES Cells
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were cut with a cryostat, stained, and processed for light or transmis-
sion clectron microscopy as described. ™

The working dilution of the mouse monoclonal anti-rhodopsin
antibody (Sigma-Aldrich, $t. Louis, MO) was 1:2000. The nuclei were
stained with Cytox blue (1:500 in distilied water; Molecular Probes)
and the specimens were observed and photographed with a laser-
scanning confocal microscopy (TCS SP2; Leica, Heidelberg, Germany).
The maximum thickness of the outer nuclear layer (ONL) in the
dorsotemporal and ventronasal retina (# = 4 animals for each group)
was measured, and the differences were amalyzed with the Mann-
Whitney test.

Transmission Electron Microscopy and
Phagocytosis of Latex Beads

ESPEs grown on 60 mm synthctic-matrix-coated dishes (Matrigel; BD
Biosciences) were processed for transmission electron microscepy as
described.'® To examine phagocytotic ability,’” the ESPEs were incu-
bated with 1-um latex beads (Sigma-Aldrich) at a concentration of
1.0 X 10% beads/mL for 6 hours at 37°C. The ESPEs were washed five
times with PBS and then processed for transmission ¢lectron micros-
copy.

Behavioral Assessment

For behavioral assessment, a head-tracking apparatus (Hayashi Sei-
sakusho, Kyoto, Japan) that consisted of a circular drum rotating
around a stationary holding chamber containing the animal was used."?
The speed of rotation of the drum with vertical black-and-white stripcs
(10° each) was set at 2, 4, and 8 rpm. Animals (# = 4 animals for each
group) were tested at 8 weeks after transplantation at 12 weeks of age
before they were killed. A vidco camera mounted above the apparatus
recorded the head movements, The total amount of head-tracking time
was determined ar speeds of 2, 4, and 8 rpm during a 4-minute test
period for each speed. A single operator, masked 1o the type of animals
being tested, conducted all assessments, and the code was broken after
the completion of all data acquisition. Behavioral data were analyzed
with the Mann-Whitney test.

ResurTs

In Vitro Characterization of ESPEs Differentiated
from Primate ES Cells

We have reported an efficient method to induce differentiation
of cynomolgus monkey ES cells into pigment epithelial cells in
vitro.? To determine whether these primate ESPEs possessed
the characteristics of RPE cells, clusters of ESPEs were selected
and expanded into a uniform single cell layer on matrix-coated
dishes (Fig. 1A). These ESPEs reproducibly exhibited a hexag-
onal shape, and each cell contained a significant amount of
melanin pigments (Fig. 1B). Transmission electron microscopy
of ESPEs showed that these cells had the typical structures of
the RPE such as extensive apical microvilli and numerous
pigment granules (Fig. 2A). These findings indicated that the
ESPEs have the morphologic appearance of RPE cells.

The blood-retinal barrier strictly regulates the microenvi-
ronment of the photoreceptors, and the RPE cells contribute to
this barrier function by forming tight junctions between adja-
cent cells. Immunocytochemical analysis showed strong stain-
ing of the cell junctions between ESPEs by ZO-1, a tight junc-
tion protein, indicating that ESPEs form tight junctions in vitro
(Figs. 1C-E).

We next examined the expression of specific molecules
closely related to the cellular function of normal RPE cells (i.e.,
RPEGS and CRALBP, both of which are involved in regenera-
tion of visual pigment and are strongly expressed in normal
RPE cells).™ ' Mertk, a tyrosine kinase receptor gene, is es-
sential for the phagocytosis of photoreceptor outer segments
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FiGure 1. Characterization of pigment epithelial cells differentiated

from primate ES cells. (A) Clusters of ESPEs were selected and ex-
panded as patches of a uniform single cell layer on a 60-mm synthetic-
matrix-coated dish. (B) The expanded ESPEs had a hexagonal shape
with significant amounts of pigment. (C-E) Immunocytochemical
staining showed positivity to Z0-1, a tight junction protein, in the
ESPEs. ZO-1 (C, green), nuclei in cells stained with Cytox blue (D,
biue), and combined (E). (F) RT-PCR analysis of RPE gene expression
by differentiated ESPEs, differentiated ESPEs with reverse transcriptase
omitted, undifferentiated ES cells, and PAG stromal cells. (G) Western
blot analysis of CRALBP expression in ESPEs. Cell lysates from RPE
(lane D, undifferentiated ES cells (fune 2), and differentiated ESPEs
(fane 3) were probed with the anti-CRALBP antibody. Scale bar: (B)
100 pem; (C-E) 20 pm.

by RPE cells®™?! and is expressed not only in RPE but also in
undifferentiated ES cells and in various hematopoietic cell
lines.* RPEGS, CRALBP, and Mertk are essential for normal
visual functions, because a mutation in any of these three genes
in humans causes visuzl disturbances.?*> % RT-PCR dctected
the expression of the mRNA of RPEGS, CRALBP, and Mertk in
the ESPEs. In addition, Western blot analysis confirmed the
expression of the CRALBP protein in the ESPEs, which yielded
a single band of the appropriate size (Fig. 1G).

To function and be viable, photoreceptor cells require a
continuous phagocytosis of their shed outer segments by ad-
jacent RPE cells.! There are two separate mechanisms for
phagocytosis in RPE cells in vitro: a nonspecific process (as
seen with the uptake of latex beads) and a specific uptake of
shed outer segment fragments involving a receptor-mediated
event. To examine whether ESPEs had phagocytic capability,
they were incubated with I-um fluorescent latex beads.'”
When observed by a fluorescence light microscope, the abun-
dant melanin granules in the ESPE cytoplasm obscured the
bead-specific fluorescence. However, transmission electron mi-
croscopy clearly showed that the ESPEs had ingested the latex
beads (Fig. 2B).

Transplantation into a Rat Model with
RPE Dysfunction
RCS rats show a progressive photoreceptor loss, which is

mostly marked during the first 3 months after birth.”” Retinal
degeneration in the RCS rat is primarily due to the failure of the
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RPE cells to phagocytose shed outer segments,* which is the
result of a mutation of the receptor tyrosine kinase gene
(Mertk),2® Subretinal transplantation of fetal RPE cells into the
dystrophic RCS rat at an early age resulted in structural and
functional preservation of photoreceptors. !

We used this animal model to explore the ability of ESPEs to
rescue the function in host animals. The host animals were
given cyclosporine to prevent xenograft rejection of the mon-
key ESPEs. At the termination of the experiments, the mean
blood cyclosporine level in these animals was 244 * 73.0
ng/mL, and there was no histologic evidence of any inflamma-
tory immune reaction at the site of cell injection.

When the animals were 12 weeks old (8 weeks after trans-
plantation), the heavy pigmentation of the ESPEs made it easy
to identify them in the pink-eyed host RPE cells phagocytosing
pigment debris of donor cells (Fig. 3A). Prelabeling the ESPEs
with CM-Dil also confirmed that these heavily pigmented cells
in the host subretinal space were derived from the donor cells
(Figs. 3A-C).

We also measured the thickness of the ONL to determine
whether the photoreceptor cells were rescued by the ESPE
transplantation. The normal thickness of photoreceptors in the
ONL of the congenic nondystrophic rat retina was 11 to 12
cells thick (Fig. 3D), and in the nonsurgical RCS rat retina, the
ONL was reduced to an occasional cell lying at the outer
border of the inner nuclear layer (INL). In the sham-surgery
RCS rat retina, the thickness of the ONL was two to three cells
thick in the small area immediately surrounding the injection
site (Fig. 3E). When ESPEs were transplanted into the RCS rat
retina, however, the ONL directly above the pigmented ESPEs
consisted of photoreceptor cell nuclei up to eight cells thick
(Figs. 3B, 3F).

The maximum ONL thickness was significantly greater in
the ESPE-grafted RCS rat group than in the sham-treated RCS rat
group or in the untreated RCS rat group (Fig. 3G; Mann-
Whitney analysis, P < 0.05). In every ESPE-grafted cye, the
maximum ONL thickness of the dorsotemporal retina (ESPE-
grafted quadrant) was greater than that of the ventronasal
retina of the same eye (Fig. 3G). In contrast, in the nonsurgical
eyes, there was no significant difference in the maximum ONL
thickness between the dorsotemporal and the ventronasal ret-
ina (Fig. 3G).

Immunohistochemical analysis showed that the preserved
photoreceptors expressed rhodopsin, visual pigment used by
the rod photoreceptor cells to perform phototransduction (Fig.
3F). Electron microscopy of the grafted ESPEs revealed the
presence of lamellar structures within the pigmented ESPEs
(Fig. 4). These results indicate that the ESPEs developed a

Figure 2. Transmission clectron microscopy of pigment epithelial
cells differentiated from primate ES cells. (A) ESPEs had the typical
structures of the RPE, such as extensive apical microviili and numerous
pigment granules. (B) ESPEs had the ability to incorporate 1-pm latex
beads. Scale bars, 1 pm.

— 248 —



