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Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows
excessive bone formation in normal mineral condition™

Hiroyuki Tanaka*, Yoshiki Seino

Department of Pediatries, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shitara-cho, Okayama 700-8558, Japan

Abstract

In the present study, the direct role of Vitamin I in bone metabolism was investigated. Vitamin D has been suggested to be an important
hormone for bone metabolism, but there has been little evidence that Vitamin D actively participates in this process. Here, we show the
direct action of Vitamin D by transplanting the bone of the Vitamin D receptor null mutant mice (VDR—/—) to the wild4type mouse.
This procedure allowed us to investigate the changes in the bone without VDR in the norma! humoral environment. Unexpectedly, the
volume and the density of the VDR —/— bone transplanted to the wild-type mouse were signil]cantly increased compared with the control
(wild-type bone transplanted to the wild-type mouse). We show that Vitamin D has key roles in bone metabolism negatively.

© 2004 Elsevier Ltd. All rights reserved.,

Keywords: Vitamin D; Wild-ype mouse; Vitamin D receptor null mutant mouse; Transplantation

1. Introduction

Vitamin D has been suggested to be an important hor-
mone for calcium homeostasis and bone metabolism [1,2}],
but there has been little evidence that Vitamin D directly
regulates bone formation. The direct role of Vitamin D in
bone formation is still controversial. It was reported that
Vitamin D increased bone remodeling via stimulating bone
cells [3,4]. In contrast, it was also reported that Vitamin D
did not need bone formation or calciﬁcaticn [5,6].

The Vitamin D receptor null mutant mouse (VDR—/—)
has provided new insights into Vitamin D metabolism and its
role in vivo (7]. Calcium-supplement experiments aimed at
establishing physiological direct functions of VDR in many
organs including bone have been inconclusive owing to the
essential roles of calcium in biological function. Although
calcium supplementation showed an apparent cure of rickets
[8,9], we could not exclude a compensatory mechanism such
as hyperparathyroidism in this process. To evaluate the direct
action of Vitamin D on the bone without an inJuence of
calcium homeostasis, it was necessary to investigate the bone
of the VDR—/— under a normal environment. To this aid,
we performed bone-transplantation of the VDR—/— to the
wildtype mouse.

¥ Presented at the 12th Workshop on Vitamin D (Maastricht, The Nether-
lands, 6-10 July 2003},
* Corresponding author. Tel.: +81-86-235-7247; fax: +81-86-221-4745,
E-mail address: hrtanaka@hospital.okayama-u.ac.jp (H. Tanaka).

0960-0760/% — see front matter © 2004 Elsevier Ltd. All rights reserved,

doi:10.1016/j jsbmb.2004.03.021

2. Materials and methods

2.1, Animals

VDR null mutant mice were generated by gene target-
ing as described previously [7]: the locus targeted for the
disruption of the VDR gene included exon 2, and the mu-
tant locus contained the neomycin resistant gene. Mice were
weaned at 3 weeks of age, and were then fed distilled wa-
ter and a chow diet ad libitum, (MF, Orienta! Yeast, Tokyo,
Japan; ingredients: 11.1 mg/g calcium, 8.3 mg/g phospho-
rous, 1.08 IU/g Vitamin D3). The mice were maintained un-
der specille pathogen-free conditions with a 12 h light, 12h
dark cycle. They were bred as heterozygotes. The VDR
genotypes were determined by the previously reported meth-
ods [10]. The studies were reviewed and approved by the In-
stitutional Committee of Animal Care and Use of Okayama
University Graduate School of Medicine and Dentistry.

2.2. Bone transplantation

The femur and the caivaria prepared from the 2-week-old
VDR —~/— males were transplanted into the back muscle of
the wildtype males and VDR—/~ males. The femur and
calvaria from the wild-type mice were also transplanted to
the wild-type mouse and VDR—/— mice. VDR—/— bone
was transplanted to one side of the back and wild-type bone
was transplanted to the other side of the back in the same
host at the same time. The parents were the same pair both
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in the donor and the host and the host mice were 6 weeks
old. The host mice were maintained under the regular dietary
conditions, and the transplanted bones were retrieved after
2, 3 or 4 weeks,

2.3. Analysis of skeletal morphology

Bone radiographs of the transplanted femur were taken
with a micro-focus X-ray apparatus (25kV, 80 nA, Ss,
pFX-1000 digital microradiography system; Fuji Photo
Film Co., Ltd.). The projected bone area and the den-
sity of the femur were analyzed with an imaging an-
alyzer (BAS-2000 1I, Fuji Photo Film Co., Ltd). For
Villanueva—Goldner staining, transplanted femurs were
excised, Uxed with 70% ethanol, embedded in methyl
methacrylate, and sectioned into 6 pm slices.

2.4. Serum chemistries

Calcium levels were measured using the o-cresol ph-
thalein complexion method (Wako, Osaka, Japan}. Phospho-
rous levels were measured using the p-methylaminophenot
method (Wako).

2.5. Statistical analysis

Values are given as the means+8.E.M. Statistical analysis
was performed using unpaired Student’s rtest and ANOVA,
followed by Fisher’s protected least signiﬂcant difference.
P < 0.05 was considered signiUcant.

3. Results

3.1. Serum calcium, phosphorous, and ALP activity in the
wild-type host mouse

Serum calcium, phosphorous, and ALP activity in the
wild-type host mouse were measured at pre-transplantation,
and at 2, 3 and 4 weeks after transplantation. These param-
eter levels are shown in Table 1. There were no signi[]cant

Table 1
Serum calcium, phosphorous, and ALP activity in the wild+type host
mouse

Transplanted periods Ca P ALP

Pre 831 £ 026 8.18 + 0.68 934 £ 053
2 weeks 838 + .18 772 4023 982 £ 0.39
3 weeks 817 £ 0.17 757 £0.38 9.63 £ 038
4 weeks 837 £ 0.27 693 £ 0.35 9.10 £ 0.45

Values are given as means £ S.E.M. (Ca, mg/dl; P, mg/dl; ALP, nmol
pnitrophenol/30 min). n = 4-5. Serum calcium, phosphorous, and ALP
activity in the VDR—/— were 5.36 £ (.25 mg/dl, 5.26 £0.37 mg/dl, and
19.05 & 1.48 nmol p-nitrophencl/30 min, respectively. During the trans-
planted period, serum calcium, phosphorous, and ALP activity in the
wild<ype host mouse was not changed.

Table 2
The density and the projected area of the transplanted femur (transplanted
period: 4 weeks)

KO-WT WT-WT KOKO WT-KO
Density (%) 148 + 29* 100 £+ 5 58 £ 2* I
Area (%) 104 £ 2 100 £ 2 B2 x2 592

The images of the radiographs by micro-focus X-ray of the transplamed
femur were analyzed using an imaging analyzer system. Values are given
as the means £ 5. E.M. (the mean values of the density and area in the
WT-WT bone were expressed as 100% and those of KO-WT, KO-XO, and
WT-KO bones were expressed as a relative value to the WT-WT bone).
KO-WT, the bone of the VDR—/— transplanted te the VDR+/+ mouse;
WT-WT, the bone of the VDR+/+ transplanted to the VDR+/+ mouse;
KO-KQ, the bone of the VDR—/— transplanted to the VDR—/— mouse;
WT-KO, the bone of the VDR+/+ transplanted to the VDR~/— mouse.
*P<.0) vi. WT-WT, n =4.

differences between the transplantation periods. The serum
calcium and ALP levels were maintained constant during
the transplantation period. The serum phosphorous level was
slightly decreased as physiological natural course.

3.2. Analysis of the transplanted bone

Four weeks after the transplantation, bone radiographs of
the transplanted femur were taken and the density of the fe-
mur was analyzed using a micro-focus X-ray apparatus, and
the results obtained are shown in Table 2. The density of the
bone of the VDR—/— transplanted to the wild-type mouse
(KC-WT) was signiﬂcamly higher than that of the wild-type
bone transplanted to the wild-type mouse (WT-WT). The
density of the VDR —/— bone transplanted to the VDR—/—
(KO-KQ) was low. The density of the wild-type bone trans-
planted to the VDR—/— (KO-WT) was markedly decreased
compared with the WT-WT. The bone area showed a similar
trend as the bone density.

The histology by Villanueva—Goldner staining showed
that mineralized bone tissue was signiﬂcantly increased in
the KO-WT compared with the WT-WT. On the other hand,
the amount of osteoid tissue was increased in the bone of
the KO-KO. The WT-KO, mainly consisted of Obrous tis-
sue, was fragile and did not show organized bone structure.

The calvaria at 2 weeks old of the VDR—/= and the
wildtype mice were transplanted to the wildtype mouse
for 2 weeks. The thickness of the calvaria of KO-WT was
180.5 4 8.0 pm. This was 2.7-fold greater compared with
the WT-WT.

4. Discussion

Bone transplantation caused radical changes in the orig-
inal bones. Wild-type femur transplanted to the VDR—/—
mice (WT-KQ) did not show organized bone structure.
The density was markedly decreased to 35% of that of
the controls (wild-type bone transplanted to the wild-type
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mouse; WT-WT). High levels of 1,25-dihydroxy Vitamin
D3[1,25(0OH);D3} and PTH in the humoral environment of
the VDR—/— caused the decreased bone mineral density
in the WT-KO. The histology revealed that bone resorp-
tion was increased and the demineralized bone area was
replaced by Obrous tissue in the WT-KO. The increased
bone resorption in the WT-KO suggested that the trans-
plantation procedure did not destroy the cells related to
bone resorption such as osteoclasts, short live cells and its
precursor.

The density of the KO-WT was markedly increased
(1.48-fold greater than the control). Mineralized bone tis-
sue was also signillcantly increased in the bone compared
with the controls. The histology showed that increased bone
mass was normal bone tissue not abnormal pathological
mineralization. The VDR—/— and wild-type bones were
transplanted to the same wild-type mouse at the same time,
therefore, both bones were under the same humoral con-
dition. No abnormal changes were observed in the serum
levels of the systemic humoral environment by the trans-
plantation procedure. In the normal humoral environment,
the VDR—/— bone increased in density, in mineralized
bone area and in size. There was one study that reported
demineralized rachitic bone implanted into normal host rats
resulted in bone formation similar to that seen for normal
bone implants [11]. The present results suggested that there
was no difference between the bone matrix of the VDR —/—
and the wildtype and the increasing of bone formation in
the KO-WT was not caused by the original difference in
the bone matrix.

The thickness of the calvaria of KO-WT was 2.7-fold
greater compared with the WT-WT. This result sug-
gested that the lack of Vitamin D function in the bone
caused increased membranous ossillcation in the normal
environment.

In this study, a simple and primitive procedure, transplan-
tation of the VDR —/— bone to a wild-type mouse, allowed
us to investigate the VDR -dependent action of Vitamin D to
whole bone. In the present Dndings, the lack of VDR caused
increased bone formation. These ndings provide the [rst

direct evidence that Vitamin D is essentially a negative reg-
ulating factor in bone formation.
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Abstract. Skeletal unloading resulting from space flight
and prolonged immobilization causes bone loss. Such
bone loss ostensibly results from a rapid increase in bone
resorption and subsequent sustained reduction in bone
formation, but this mechanism remains unclear. Osteo-
clastogenesis inhibitory factor/osteoprotegerin (OCIF/
OPG}) is a recently identified potent inhibitor of osteo-
clast formation. We studied effects of OPG adminis-
tration on tail-suspended growing rats to explore the
therapeutic potential of OPG in the treatment and pre-
vention of bone loss during mechanical unloading, such
as that which occurs during space flight. Treatment with
OPG in tail suspension increased the total bone mineral
content (BMC g) of the tibia and femur and the total
bone mineral density (BMD g/em?) of the tibia. More-
over, treatment with OPG prevented reduction not only
of BMC and BMD, but also of bone strength occurring
through femoral diaphysis. Treatment with OPG in tail-
suspended rats improved BMC, BMD and bone
strength to levels of normally loaded rats treated with
vehicle. Treatment with OPG in normally loaded rats
significantly decreased urinary excretion of deoxypyri-
dinoline, but the effect of OPG in tail suspension
was unclear. These results indicate that OPG may be
useful in inhibiting bone loss-engendered mechanical
unloading.

Key words: Osteoprotegerin (OPG) — Tail suspension
- Rat -— Bone mineral density — Bone strength

Skeletal unloading during space flight causes bone mass
loss in humans and rats [1]. Calcaneus bone mineral
density (BMD) changed in all nine astronauts of the 28-,
59-, and 84-day Skylab missions [2]. Among Skylab
missions, bone density loss was greater during the 84-
day mission than in shorter missions. Similar bone
density changes were observed in Salyut-6 astronauts
[2). Studies using growing rats in space have revealed
decreased trabecular bone volume in the tibial proximal

Correspondence to; E-mail:

okayama-u.ac.jp

H. Tanaka; hrtanaka@md.

metaphysis [3]. Such bone loss resulted mainly from
bone formation inhibition [2, 3].

In terms of both size and scope, costs have limited the
studies addressing bone metabolism in space. Therefore,
ground-based models have been developed to study
consequences of skeletal unloading similar to those that
occur during space flight. The most popular model for
human studies is bed rest with a head-down tilt. In an-
imals, the tail suspension model is more useful and
popular than models involving tenotomy, sciatic neur-
ectomy [4], casts [5], and taping of the legs [6]. Tail
suspension is not so stressful and it may simulate fluid
shift conditions.

Various agents, including parathyroid hormone
(PTH), growth hormone (GH), insulin-like growth
factor-1 (IGF-1) and bisphosphonates have been used to
prevent bone loss induced by skeletal unloading [7-10].
Intermittent administration of PTH did not significantly
reduce the deficit in tibial fat-free weight induced by
unloading, but increased periosteal bone formation at
the tibiofibular junction and midshaft [7). GH admin-
istration in young hypophysectomized rats increased
bone mass, but responses in trabecular bone volume in
the proximal tibia and bone formation at the tibiofibular
junction to GH were reduced significantly by skeletal
unloading [8]. Continuous infusion of IGF-I increased
bone mineral density (BMD) at the metaphysical area in
unloaded rats [9]. Treatment with a bisphosphonate,
pamidronate, increased the total BMD in addition to
that of the metaphysis of the femur, but it showed al-
most no effect on the BMD of the diaphysis in both
control and tail-suspended rats [10].

Osteoclastogenesis inhibitory factor/osteoprotegerin
(OCIF/OPQG) is a recently identified potent inhibitor of
osteoclast formation and activities, Recombinant hu-
man OPG specifically acts on bone tissues and increases
BMD and bone volume associated with a decrease of
active osteoclast numbers in normal rats. It also blocks
bone loss in ovariectomized rats [11], indicating that
OPG is a potent drug for bone loss prevention.
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This study was intended to explore the therapeutic
potential of OPG in the treatment and prevention of
bone loss during skeletal unloading, such as during
space flight.

Materials and Methods
Animals

We examined 30 six-week-old male Wistar rats (Japan SLC
Inc., Shizuoka, Japan). The animals were individually housed
and fed standard laboratory rat chow (Oriental MF; Oriental
Yeast Co. Ltd.,, Tokyo, Japan) containing 1.11% calcium,
0.83% phosphorus, and 108 1U/100 g of vitamin D;. They
were maintained on a 12 h light, 12 h dark cycle. After one
week of acclimation, 24 animals were suspended by their tails
and allocated randomly to the OPG-treated group {(» = 12,
the TS-OPG group) or vehicle-treated group (n = 12, TS-ve-
hicle group). Six animals were normally loaded and randomly
allocated to the OPG-treated group (n = 3, NL-OPG group)
or vehicle-treated group (# = 3, NL-vehicle group). Data of
the normally loaded groups were not diverse, therefore few
animals were used in these groups.

A single strip of surgical tape was wrapped around the tail
of tail-suspended rats. One end of a chain was fixed to the tape
with a wire and the other end was fixed to a horizontal bar, the
height of which was adjusted to matntain the rat in a position
with about a 40° head-down tilt. Thereby, the hindlimbs were
unable to contact any supportive surface [9, 12, 13].

The animals in the OPG-treated groups were injected in-
tramuscularly with 500 pg/kg of body weight/day of recomb-
inant human OPG (rhOCIF) (Snow Brand Milk Products,
Co., Ltd., Tochigi, Japan). The animals in the other groups
were injected with vehicle every day for 10 days after which
they were sacrificed by exsanguination. Their hindlimb bones
and humeri were excised and their length was measured vsing a
vernier caliper. Immediately after excision of femora, tibiae
and humeri, all bones were used for analysis of BMD. The
femora were also used for bone strength analysis.

Plasma and Urine Biochemistry

Urine samples were obtained before tail suspension and at
days 4 and 10. Blood samples were obtained from the inferior
vena cava at exsanguinations, Serum calcium and phosphorus
concentrations were determined by the orthocresolphthalein
complexone (OCPC) method using the Wako kit 272-21801
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) and the
p-methylaminophenol reduction method using the Wako kit
270-49801.

Pyridinoline and deoxypyridinoline concentrations in urine
were measured as reported previously at the Mitsubishi Lab-
oratory [14]. The pyridinoline/creatinine and deoxypyridino-
ling/creatinine at pre-treatment were baseline, and the changes
in bone marker values from the baseline at days 4 and 10 were
expressed as a percentage of the baseline value.

Bone Analysis

Bone Mineral Density. The BMD (g/cm?) and BMC (g) of the
right femora, tibiae, and humeri were measured by dual-energy
X-ray absorptiometry (DXA) using QDR-1000 {Hologic, Inc.,
Waltham, MA, USA) at high resolution mede. In addition, the
BMD and BMC of the femora were determined in four divided
regions with equal longitudinal length (region 1 representing
the distal femur, regions 2 and 3 the midshaft femur, and re-
gion 4 the proximal femur). Regions | and 4 represented the

339
Table 1. Changes in weight of rats during experiment
Drug Pre (g) 4 days (g) 10 days (g)
TS-vehicle 2056 + 184 218.9 + 140 2473 + 16.6
TS-OPG 208.3 £ 19.1  219.7 £ 153 2514 £ 14.6
NL-vehicle 1953 £ 57 2311 £ 56 2743 £ 2.7
NL-OPG 196.5 £ 3.8 2352 £ 58  280.0 £ 7.6%

Values are mean £ SD

2 P < (.01, when compared with TS-vehicle (ANOVA Fisher's
PLSD test)

5 p < 0.05, when compared with TS-OPG (ANOVA Fisher’s
PLSD test)

¢ P < 0.01, when compared with TS-OPG (ANOVA Fisher’s
PLSD test)

proximal metaphysis and the distal metaphysis (containing a
high percentage of trabecular structures). Regions 2 and 3
represented the diaphysis {mainly cortical structure [15]).

Bone Strength. Mechanical strength of the right femur was
measured by the three-point bending method using a Bone
Strength Tester TK-252C (Muromachi Kikai Co. Ltd., Tokyo,
Japan). Tests were conducted with the femur at the midlength
supperted on anterior sides. Distance between the bottom
supports was 12 mm. Bending force was applied with a
crosshead speed of 2.5 mm/min until fracture occurred. The

ultimate force (N) was obtained from the load-deformation
curve.,

Statistical Arnalysis. Values are expressed as respective
means =+ standard deviation (SD). Data were analyzed by
one-way analysis of variance followed by a poest hoc test of
Fisher’s PLSD test to evaluate intergroup differences among
all groups. P < 0.05 was considered to be statistically sig-
nificant.

Results
Body Weight, Plasma and Urine Biochemistry

All rats remained healthy and their body weights in-
creased gradually. There was no significant difference in
the body weights of OPG-treated group rats and vehicle-
treated group rats in the same condition, but the weight
of normally loaded groups (the NL-vehicle group and
the NL-OPG group) was increased significantly com-
pared with tail-suspended groups (the TS-vehicle and
the TS-OPG group) (Table 1). Serum calcium and
phosphorus levels were not significantly different among
the four groups (Table 2).

OPG is a bone resorption inhibitor [11]. The urinary
excretion of pyridinoline and deoxypyridinoline, both
markers of bone resorption, were determined for the
purpose of evaluating total body bone resorption ac-
tivities. Treatment with OPG significantly decreased
urinary excretion of deoxypyridinoline in the normally
loaded groups (NL-OPG vs NL-vehicle), but the effect
of OPG in the tail-suspension groups (TS-OPG vs TS-
vehicle) was unclear (Table 3).
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Table 2. Effect of OPG on serum calcium and phosphorus

Group Ca (mg/dl) P {(mg/dl)

TS-vehicle 9.81 = 0.72 12.46 + 2.39
TS-OPG 9,25 £ 0.69 11.83 £ 2.55
NL-vehicle 992 + 0.76 12.40 £ 0.19
NL-OPG 9.47 £ 0.17 11.65 + 0.67

Values are mean + SD

Table 3. Percent change from
dinoline/creatinine(pyr)

(dpyr) (%)

pre-treatment value in pyri-

and deoxypyridinoline/creatinine

Drug 4 days 10 days
TS-vehicle 1790 + 32.68 -11.23 + 18.57°
~11.43 £ 11.02  -33.53 = 12,12
TS-OPG 8.74 + 2487 -6.18 * 16.30
-14.21 + 1344  -30.16 + 9.12%"
NL-vehicle -3.21 + 11.65 1.62 £+ 2.86
-6.91 + 10.49 924 + 4.41
NL-OPG  pyr ~15.20 £ 19.52 ~R.79 + 1484
. dpyr -27.65 £ 11.28% -19.41 + 10.77*

Values are mean + SD
2 P < 0.05, when compared with NL-vehicle
v p < 0.05, when compared with day 4

Bone Length and Bone Mineral Measurements. Tibia and
femur length showed no significant differences among
the four groups (Table 4). Humeri in the normally
loaded groups (the NL-vehicle group and the NL-OPG
group) were significantly longer than in the TS-vehicle
group. Regarding the tibiae, the BMC and the BMD in
the TS-OPG group were significantly higher than that in
the TS-vehicle group; the BMD in the normally loaded
groups (the NL-vehicle group and the NL-OPG group)
was significantly higher than that in the TS-vehicle
group, Femurs of the rats showed that BMD in the TS-
OPG group did not increase significantly, but BMC in
the TS-OPG group was significantly higher than in the
TS-vehicle group. The BMDs in the normally loaded
groups (the NL-vehicle group and the NL-OPG group)
were significantly higher than those in the tail-suspended
groups. For the humeri, BMC and BMD among the
four groups were not significantly different. In the re-
gional BMC and BMD of the femur, the BMC of re-
gions 1-3 and the BMD of regions 1-2 in the TS-OPG
group were significantly higher than in the TS-vehicle
group. The BMDs of regions 1 and 4 in the normally
loaded groups (the NL-vehicle group and the NL-OPG
group) were significantly higher than in the tail-sus-
pended groups (Table 5, Fig. 1). The BMDs of regions
1 and 4 in the TS-OPG group were significantly lower
than in the NL-vehicle group. Notwithstanding, the
BMDs of regions 2-3 in the TS-OPG group were nearly
equal to those in the NL-vehicle group.
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Bone Strength of Femoral Midshaft. Bone strengths of the
femoral midshaft in the TS-OPG and the NL-vehicle
group were significantly higher than in the TS-vehicle
group. Bone strength in the NL-OPG group was sig-
nificantly higher than in the other groups (Table 6).

Discussion

This study uses few animals in normally loaded groups
(NL-OPG and NL-vehicle). Tables 1-5 show that data
of normally loaded groups were not so diverse therefore
few animals were used in these groups.

Bone formation is reportedly reduced in skeletal un-
loading models [16). However, the role of bone resorp-
tion in bone loss induced by unloading appears
inconsistent because of its transient nature. For exam-
ple, most tail-suspension models [9, 17, 18] have failed to
show increased osteoclast numbers and activity in can-
cellous tissue at day 7 {17] or day 14 [%, 18]. In contrast,
urinary excretion of deoxypyridinoline in tail-suspended
rats increased at day 1 and day 3 [19, 20].

OPG is a bone resorption inhibitor [11]. Bekker et
al. [26] reported that OPG treatment in postmeno-
pausal women inhibited bone resorption dose-de-
pendently, as reflected by bone resorption marker
profiles (urinary deoxypyridinoline and N-telopeptide).
In the present study, urinary excretion of deoxypyri-
dinoline in the NL-OPG group was significantly lower
than in the NL-vehicle group at days 4 and 10, im-
plying that OPG treatment reduced bone resorption in
the normally loaded groups. Nevertheless, the effect of
OPG was unclear in the tail-suspended groups. De-
ranged bone metabolism during tail-suspension, not
only in the unloaded hindlimbs but also in the whole
body (forelimbs were overloaded), may explain that
insufficient clarity in results. Urinary exerctions of
pyridinoline and deoxypyridinoline in the TS-OPG
group tended to be lower, but not significantly lower
than those in the TS-vehicle group at day 4. Such was
not the case at day 10. Therefore, we infer that the
effect of OPG in the case of tail-suspension might be
clearer in early phases.

Matsumoto et al. demonstrated that the decrease in
BMD of the femoral diaphysis (rich in cortical bone)
was smaller than that in BMD of the metaphysis (rich in
trabecular bone) during 7-day tail-suspension. Although
14-day tail-suspension decreased the BMD of the
diaphysis markedly, the decrease in the BMD at the
metaphysis was not as advanced as with 7-day tail-sus-
pension [21-23). Bone strength of the femoral midshaft
was not affected until 7 days, but was markedly reduced
after 14 days [21]. Therefore, the trabecular bone was
reduced during the early phase, but the decrease in the
cortical bone was delayed. This delayed decrease in the
BMD of the diaphysis in 14-day tail-suspension resulted
mainly from impairment of cortical bone formation [21-
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