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Becker Muscular Dystrophy

Masafumi Matsuo

Kobe University Graduate School of Medicine, Chuo, Kobe, japan

INTRODUCTION

Becker muscular dystrophy (BMD) is an X-linked re-
cessive inherited disease with a worldwide incidence of 1
in 35,000 male births. Becker muscular dystrophy
is characterized by progressive muscle wasting but
is distinguished by delayed onset, later dependence on
wheelchair support, and longer life span from Duchenne
muscular dystrophy (DMD) that follows severe progres-
sive muscle wasting.

Dystrophin, the gene defective in not only BMD but
also DMD, was isolated in 1986. Since then, ge-
netic diagnosis of BMD has been done leading to bet-
ter understanding of the disease process, and the
difference between DMD and BMD can be explained
at the molecular level by the reading frame rule.

CLINICAL DIAGNOSIS

Becker muscular dystrophy patients show normal growth
and development in their early childhood. In BMD,
affected men start to show disturbance of walking due to
muscle weakness at 20s or over. He maintains to walk but
his muscle strength gradually decreases. Dilated cardio-
myopathy is sometimes an initiai clinical sign for the
diagnosis of BMD. The muscle weakness involved in
BMD follows a mild downward course with patients
living near normat lives.M!!

Serum creatine kinase (CK) is markedly increased.
This marked elevation of serum CK is the most important
hallmark for the diagnosis of BMD, but the level of
elevation of serum CK is not so high compared to DMD.
During the asymptomatic period, elevation of serum CK
is the sole sign for BMD. Some BMD patients are
identified accidentally becanse of elevations of AST or
ALT which are commonly examined for Yiver function as
serum CK elevation is accompanied with elevations of
AST and ALT.

Becker muscular dystrophy should be included in the
differential diagnosis of moderately elevated serum CK in
males. Pathological examination of biopsied mmscle
consolidates the diagnosis of BMD.

Encyclopedia of Diagnostic G
DOIL: 10.1081/E-EDGP 120025799
Copyright © 2005 by Marcel Dekker, Inc. All rights reserved.

and Proteomics

GENE DIAGNOSIS

Becker muscular dystrophy is caused by mutations of the
dystrophin gene that is also mutated in DMD.™ There-
fore, both DMD and BMD are sometimes called as
dystrophinopathy. Furthermore, not only types but also
locations of mutations identified in both BMD and DMD
are quite similar.”™ For gene diagnosis of BMD both
multiplex PCR and Southern blot analysis have been
employed as in the genetic diagnosis of DMD."* Nearly
two-thirds of mutations identified on the dystrophin gene
are deletions or duplications occupying a single or
multiple exons. Every mutation identified in BMD cases
would be examined based on the following reading frame
rule.” In the rest of the BMD cases it is rather difficult to
identify the responsible mutations on the dystrophin gene
as a single nucleotide change is supposed to be present.
However, some point mutations that induced exon
skipping have been reported.’”®

READING-FRAME RULE OF DMD/BMD

Although both DMD and BMD patients have been shown
to have deletion or duplication mutations of the dystrophin
gene, the extent of the deletion does not always correlate
with the severity of the disease: some BMD patients with
mild symptoms have deletions encompassing numerous
exons, whereas some DMD patients with severe symp-
toms lack only a few exons. In some cases, the long
deletions resulting in BMD and the short deletions
resulting in DMD may even overlap. The reading-frame
rule explains the difference between DM and BMD as
follows: in DMD the translational reading frame of the
dystrophin mRNA is shifted after a deletion or duplica-
tion mmiation whereas it is maintained in BMD.™
According to the reading-frame rule, BMD patients with
long deletions are able to produce dystrophin mRNA that
would still direct the production of an internally truncat-
ed semifunctional protein. Shorter deletions harbored
by severe DMD patients, on the other hand, would bring
together exons that, when spliced, would change the
translational reading frame in the mRNA, such that a
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Fig.1 Schematic description of the exon structure of the dystrophin gene. The dystrophin gene consisting of 79 exons (boxes) and at
least eight altemnative promoters (boxes under the lined boxes) is schematically described, Numbers over the bex indicate exon number,
the bold numbers being the exons that are examined by multiplex PCR. Quadhilaterals and parallelograms indicate in-frame exons (type
0 exons). Trapezoids indicate out-of-frame exons (type 1 or type 2 exons).

premature stop codon is created. This rule predicts that
milder BMD patients would produce a smaller semifunc-
tional protein whereas DMD patients would either
produce a severely truncated dystrophin Iacking the entire
C-terminal region or would not produce dystrophin at all.

Subsequent gene analyses have shown that aver 0% of
the deletion—duplication mutations that cause BMD main-
tain the dysirophin mRNA reading frame whereas those
causing DMD are frameshifts.?) Accordingly, point
mutations identified in DMD are nonsense mutations!®!
except in rare DMD cases with missense mutations.[!1:1%]

Considering that molecular therapy for DMD to change
the reading frame from out-of-frame to in-frame has been
proposed,!®1% it is important to see the resulting
translational reading frame of dystrophin mRNA after
the identification of a deletion or duplication mutation.
Exons of the dystrophin gene are classified into three
types according to the number of nucleotides encoded
in the exon (Fig- 1): 1} in-frame exon that encodes
nucleotides of multiples of-3 (type 0 exon); 2) two out-of-
frame exons that have nucleotides of multiples of 3+1 or2
(type 1 exon or type 2 exon, respectively). Among the 79
exons, 40, 18, and 21 exons are classified into types 0, 1,
and 2 exons, respectively. In cases with deletion/
duplication of the dystrophin gene the reading frame can
be determined as described in Fig. 1. Cases having a
deletion of a type 2 exon, e.g., exon 45, should be DMD
based on the reading frame rule. Although gene diagnosis
of DMD/BMD has been conducted, not all DMD/BMD
cases have been examined for its reading frame.

In other types of mutations, nonsense mutations are
expected to be identified in DMD. However, nonsenise

mutation that should result in DMD phenotype has been
identified in BMD cases,®'] where exon skipping is
shown as a mechanist that modified clinical phenotype.
Furthenmoye, BMD has been shown to have a nonsense
mutation in in-frame exons. " '®! Detailed analysis of
genotype—-phenotype correlation would lead a better un-
derstanding of molecular mechanism of dystrophinopathy.

PATHOLOGICAL DIAGNOSIS

The pathological examination of biapsied skeletal muscle
confinms the diagnosis of BMD. Immunchistochemical
analyses of normal muscle demonstrate that dystrophin is
present along with muscle cell membranes. Muscle from
BMD patients contains reduced amounts of dystrophin
that is stained discontinuously and patchy along the
muscle cell ‘membranes.!’” Western blot analysis using
dystrophin ‘antibody reveals a band corresponding to
427 kDa, close to the predicted size of dystrophin, in
extracts of normal musele tissue. Shorter or lower amount
of dystrophin is detected in muscle extracts from patients
with BMD.

Dysirophin ontains 3685 amino acids organized in
four domains; N-terminal actin binding, triple helical rod,
cystein-rich, and C-terminal domains. The internally
truncated dystrophin identified i in BMD maintains both
N-terminal and C-termina] domains, but lacks somie of the
24 repeat sequences of triple helical rod domain.
Therefore, dystrophin is stained when antibody recogniz-
ing either N-terminal or C-tenminal domains is used, but in
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some cases no dystrophin is stained as in DMD when
antibody recognizing rod domain is employed.®”

TREATMENT

For BMD patients, supportive therapies such as reha-
bilitation or ventilator support are clinically employed,
but no effective way to improve the clinical course
is avajlable. Gene therapy has been considered a
cure for BMD but no clinically applicable way has
been established.

CONCLUSION

Becker muscular dystrophy is a mild muscle wasting
disease and characterized by dystrophin abnormality in
skeletal muscle. Currently, no effective treatment is
available although a molecular undesstanding of BMD
developed well.
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Duchenne Muscular Dystrophy

Masafumi Matsuo

Kobe University Graduate School of Medjcine, Chuo, Kobe, Japan

INTRODUCTION

Duchenne muscular dystrophy (DMD) is a common in-
herited disease with a worldwide incidence of 1 in 3500
male births. DMD is a lethal disorder of childhood char-
acterized by progressive muscle wasting. Affected individ-
uals are wheelchair-bound by the age of 12 and suceumb
to cardiac or respiratory failure in their mid to late 20s.
Dystrophin, the gene defective in DMD was isolated in
1986. Since then, genetic diagnosis of DMD bas been
done leading to better understanding of the disease
process. Based on the molecular pathogenesis of DMD,
molecular therapies for DMD have been proposed.

CLINICAL DIAGNOSIS

Patients with DMD show normal growth and development
in their early childhood. In DMD, affected boys start to
show disturbance of walking and frequently fall because
of muscle weakness at 4 to 5 years of age. Patients are
shown to have a positive Gower’s sign wherein the child
climbs up his thighs to extend the hips and push his trunk
up. He manages to walk but his muscle strength gradually
decreases. He loses the ability to climb up stairs. Lumbar
lordosis becomes more exaggerated and the waddling gait
increases. Patients usually are wheeichair-bound by the
age of 12. Muscle wasting progresses as the patients get
older until finally respiratory or cardiac failure develops
due to muscle wasting.

Serum creatine kinase (CK) is markedly increased 50
times more than the normal range in infantile DMD. This
marked elevation of serum CK is the most important
hallmark for the diagnosis of DMDP. Daring the asymp-
tomatic period, elevation of serum CK is the sole sign for
DMD. Some DMD patients are accidentally identified due
to elevations of AST or ALT, which are commonly
examined for liver function, because serum CK elevation
is accompanied with elevations of AST and ALT.

GENE DIAGNOSIS

Duchenne muscular dystrophy is caused by mutations of
the dystrophin gene.™ The dystrophin gene is 3000 kb in
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size and consists of 79 exons encoding a 14-kb mRNA 2
At least eight alternative promoters that are regulated in a
tissue- or development-specific manner have been iden-
tified on the dystrophin gene. The unusually high
incidence of DMD in all human populations could be
simply a reflection of the enormous mutation target size of
the gene, but the recombination rate is reported to be four
times the rate expected for a gene of this size.’) Nearly
two-thirds of mutations identified on the dystrophin gene
are deletions or duplications occupying a single or
multiple excns, with the rest of the DMD cases having
other types of mutations including point mutations.
Remarkably, deletion mutations have been localized to
two deletion hot spots of the dystrophin gene, the 5° and
the central regions.

Multiplex PCR Analysis

Currently, multiplex PCR analyses that amplify deletion-
prone exons are used as the first step for gene diagnosis.
Two sets of PCR amplification are used to screen 19
deletion-prone exons (exons 1, 3, 4, 6, 8, 12, 13, 17, 19,
43-45, 47-52, and 60).5% Using this method of exami-
nation, one finds that nearly half of the DMD cases are
shown to have deletion mutations. Therefore, the rest of
the cases need further examination to identify the respon-
sible mutation in the dystrophin gene.

Southern Blot Analysis

To examine the deletion/duplication in every exon of the
dystrophin gene, Southern blot analysis is used, using
segments of the dystrophin cDNA as probes.!”! Two-thirds
of DMD patients are shown to have recombination events
of deletions or duplications spread in one or more exons at
the genomic DNA level.’™ However, Southern biot
analysis not only needs high-quality DNA and radioiso-
tope, but it is also time-consuming.

Detection of Fine Mutation

In DMD cases that have no large recombination event,
identification of the causative mutation remains a
laborious goal becanse of the difficelty in detecting a
single point mutation in the 3000-kb-sized gene. To
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facilitate the identification of mutations in the dystrophin
gene, more than 99% of which is made up of introns,
dystrophin mRNA that is 100 times smaller than the
dystrophin gene has been analyzed.™ Analysis of
dystrophin mRNA expressed in lymphocytes leads to
not only identification of rare genomic mutations, but also
to disclosures of nonauthentic alternative splicing.[**-1%
In addition, several ways to identify small mutations have
been proposed.™®1" In the advent of recent advances in
mutation analysis techniques, more than 90% of DMD
cases are shown to have mutations in the dystrophin
gene, [1819]

PATHOLOGICAL DIAGNOSIS

The pathological examination of biopsied skeletal muscle
confirms the diagnosis of DMD. lrnmunohistochemical
analyses of normal muscle demonstrate that dystrophin is
present along with muscle cell membranes, In DMD,
dystrophin is missing from skeletal muscle.?”! Western
blot analyses using dystrophin antibody reveals a band
corresponding to 427 kDa, close to the predicted size of
dystrophin, in extracts of normal muscle tissue, whereas
no protein can be detected in DMD.

TREATMENT

For DMD patients, supportive therapies such as rehabil-
itation or ventilator support are clinically employed but no
effective way to improve the clinical course is available.
Since the discovery of the dystrophin gene, gene therapy
is now considered an attractive way to cure the disease.
The main aim of PMD gene therapy is to establish a way
to inject comstructed dystrophin genes consisting of
partial- or full-length ¢cDNA joined to an appropriate
promoter. Although much progress has been made in this
field of study, we still seem to be a long way from
achieving a clinically significant result. As an alternative
for gene transfection, molecular therapies have been shud-
ied including antisense oligonucleotide treatment™—23 or
translational readthrough treatment using gentamicin,

Antisense Oligonucleotide Treatment

An alternative strategy for DMD treatment is to retard the
progression of the clinical symptoms, ie., to convert
DMD into the BMD phenotype. Theoretically, this
therapy can be done by changing a frame-shift mutation
causing DMD into an in-frame mutation characteristic of
BMD by modifying the dystrophin mRNA. Artificial
induction of exon skipping with antisense oligonucleo-
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tides is a way to make the ont-of-frame dystrophin mRNA
in-frame. Artificial induction of exon 19 skipping using an
antisense oligonucleotides against the splicing enhancer
sequence has been reported, and this treatment was
shown to produce dystrophin expression in exon-20-
deleted DMD myocytes.™ Disruption of the splicing

enhancer sequence to induce exon skipping was further

evidenced by the fact that in the nonsense mutation of
exon 27 the dystrophin gene resulted in exon 27 skipping,
producing an in-frame dystrophin mRNA.?% In addition,
another natural example causing conversion of DMD to
BMD was identified in a nonsense mutation in exons 25
and 29.%527) Furthermore, BMD has been shown to have a
nonsense mutation in in-frame exons,2%2%

Antisense oligonucleotides against a purine-rich se-
guence have been used to induce skipping of exons 44, 45,
46, 49, 50, 51, or 53.72%31 [ these studies, induction of
exon skipping led to the expression of dystrophin in their
respective dystrophin-deficient myocytes by correcting
the franslational reading frame. Recently, double exon
skipping of exon 43 and 44 or exon 45 and 51 has been
induced.” This extends the application of the antisense
oligonucleotide treatment to more varieties of deletion
mutations of the dystrophin gene.

Phosphorothioate DNA has been the standard choice
for the clinical application of antisense technology.*-37
However, phosphorothioate DNA is associated with a
variety of potentially toxic non-antisense effects.*®) In
order to develop less toxic antisense oligonucleotides,
nucleic acids have been modified in various ways,?94%
Recently, morpholino modified oligonucleotides were
shown to be delivered to muscle cells efficiently.[*!
Furthermore, the chimera of 2"-Q-methyl RNA and 2'-0,
4'-C-ethylene-bridged nucleic acid (ENA) was shown to
induce exon 19 skipping of the dystrophin gene 40 times
stronger than the conventional phosphorothioate oligonu-
cleotides.

Translational Readthrough of Stop Codon

Aminoglycoside antibiotics have been suggested as
possible therapeutic interventions for treating patients
who carry 2 nonsense mutation because of the ability of
these antibiotics to lead translational readthrough of stop
codons. To evaluate whether aminoglycosides can be used
to suppress the nonsense mutation in a human DMD
case, four DMD/BMD cases with various stop codon
sequences were tested once daily with intravenous gen-
tamicin at 7.5 mg/kg/day for 2 weeks. However, the full-
length dysirophin protein was not detected in posttreat-
ment muscle biopsies.¥®) The possible reason for the
failure of gentamicin treatment in human cases is the
difference in efficiency of aminoglycoside-induced read-
through among the different types of nonsense mutations.
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CONCLUSION

Duchenne muscular dystrophy is a fatal disease withont

any effective treatment. Recent studies opened a door to
the establishment of molecular therapy for DMD.
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C-Terminal Truncated Dystrophin Identified in
Skeletal Muscle of an Asymptomatic Boy with a
Novel Nonsense Mutation of the Dystrophin Gene

RYO SUMINAGA, YASUHIRO TAKESHIMA, HIROKO WADA, MARIKO YAGI, AND
MASAFUMI MATSUOQ

Departmers of Pediatrics [R.S., Y.T, M.Y., M.M.], Kobe University Graduate School of Medicine, Kobe
650-0017, Japan; and Department of Pediatrics [HW.], Sakura Ryoikuen Hospital, Sanda 669-1357, Japan

Mutations that canse premature stop codons in the dystrophin
gene lead to a complete loss of dystrophin from skeleta] muscle,
resulting in severe Duchenne muscular dystrophy. Here, a C-
terminally truncated dystrophin resulting from a novel nonsense
mutation is shown for the first time to be localized to the muscle
plasma membrane. An asymptomatic 8-y-old boy was examined
for dystrophin in skeletal muscle because of high serum creatine
kinase activity. Remarkably, no dystrophin labeling was seen
with an MAD against the C-terminal domain, suggesting the
presence of an early stop codon in the dystrophin gene. Labeling
with an antibody specific to the N-terminal domain, however,
revealed weak, patchy, and discontinuous staining, suggesting
limited preduction of a truncated form of the protein. Molecular
analysis revealed a novel nonsense mumtation {(Q3625X) as a

The severe Duchenne muscular dystrophy (DMD) and the
more benign Becker muscular dystrophy (BMD) are allelic
conditions characterized by progressive muscular degeneration
and wasting accompanied by an elevation of serum creatine
kinase (CK). DMD is a rapidly progressive disease, with those
affected starting to show muscle weakness at ~4-35 y of age and
losing the ability to walk independently before the age of 12 y.
BMD has a slower rate of progression; affected individuals
remain ambulatory beyond the age of 16 y, and a few may lead
near-normal lives (1).

DM and BMD are caused by mutation of the dystrophin gene,
which encodes a 14-kb mRNA that consists of 79 exons. The gene
is the largest in humans and covers >3000 kb on the X chromo-
some (2,3). DMD and BMD are the most common genetic muscle
diseases, affecting >1 in 3,500 male births, Two thirds of DMD/
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result of a single nucleotide change in the patient’s genomic
DNA (C10873T), leaving 1.6% of dystrophin gene product
unsynithesized at the C terminus. Dystrophin mRNA analysis did
not show rescue of the nonsense mutation as a result of exon-
skipping by an alternative splicing mechanism. This is the first
report of an asymptomatic dystrophinopathy with a nonsense
mutation in the dystrophin gene. (Pediafr Res 56: 739-743,
2004)

Abbreviations
BMD, Becker muscular dystrophy
CK, creatine kinase
DMD, Duchenne muscular dystrophy

BMD patients have deletion or duplication mutations of the
dystrophin gene, and their clinical progression can be predicted by
whether the deletion or duplication maintains (in-frame) or dis-
rapts {out-of-frame) the translational reading frame (the reading-
frame rule) (4). Dystrophin is absent from skeletal muscle of
DMD, because the dystrophin that is produced is truncated as a
result of the premature stop codon and therefore is unstable,
whereas in BMD, dystrophin that contains internal in-frame de-
letions produces protein that can be detected (5).

Single-base nonsense mutations have been suspected in
DMD patients who do not show deletion/duplication muta-
tions. However, detection of such defects in individual DMD
patients is very difficult as a result of the large size of the gene.
More than 100 nonsense mutations have been reported at
various points over a 14-kb length of the dystrophin mRNA
(http://www.dmd.nl). Despite this wide variation in coding
potential (0—98.6% of the full-length protein), these truncating
mutations are associated with a surprisingly uniform severity
of the DMD phenotype (6). However, a limited number of
single-base nonsense mutations have been reported in patients
with mild BMD that showed skipping of the exon encoding the
mutation, thus producing an in-frame mRNA (7-11).
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Dystrophin is a cytoskeletal protein that is implicated in
membrane stability and in communication between the extra-
cellular matrix and the inner cytoskeleton (12,13). The protein,
which consists of 3685 amino acids, is divided into four
distinct domains: an N-terminal domain, a large rod-like do-
main of 24 spectrin-like repeats that occupies >70% of its
length, a cysteine-rich domain, and, finally, a C-terminal do-
main (2,14). Studies conducted on DMD/BMD patients sug-
gest that the N-terminal, cysteine-rich, and C-terminal domains
are essential for dystrophin's function (15,16). Notably, the
C-terminal domain, which consists of 416 amino acids encoded
by 13 exons, shows sequence similarity with only two other
dystrophin-related proteins and is considered to exert dystro-
phin’s specific function (14,17,18). In fact, in-frame deletions
that extend into the C-terminal domain have been reported to
result in DMD, whereas large in-frame deletions of the rod
domain result in BMD (16).

Here we report a C-terminally truncated dystrophin caused
by a mutation in an asymptomatic boy with high CK activity.
We propose that nonsense mutations of the dystrophin gene
can result in a wide variety of clinical phenotypes.

METHODS

Case. The proband (KUDN 02765682) was an 8-y-old boy.
His family history disclosed no neuromuscular disease. He
started to walk independently at 1 y of age, and his motor
development was normal. He had a history of transient muscle
weakness, At the age of 3 y, he complained of pain in the lower
legs without any predisposing signs or symptoms and lost the
ability to stand up and walk by himself. His serum CK was
found to be 4901 TU/L (normal <169 TU/L). The muscle
weakness persisted for 1 wk but disappeared spontaneously
and completely.

During the following period, his serum CK remained ele-
vated but showed a strong fluctuation in value, ranging from
1,607 to 21,100 TU/L. Despite his high CK, he did not show
any muscle weakness. At the age of 5 y, he was referred to
Kobe University Hospital for examination of his elevated
serum CK activity. His mental development was normal. On
physical examination, there was no Gower’s sign, walking
abnormality, or pseudohypertrophy of the legs. An electromyo-
gram disclosed myogenic changes. A chest x-ray, electrocar-
diography, and echocardiography failed to reveal cardiac ab-
normalities. To clarify the cause of the elevation in serum CK
and myogenic pattern in electromyogram, a quadriceps muscle
biopsy was carried out after obtaining informed consent.
The protecols of this study were approved by our ethical
committee.

Immunohistochemical analysis. The muscle biopsy sample
was examined pathologically and immunohistochemically. An
indirect immunofiuorescence analysis was performed using
three dystrophin antibodies that recognize the N-terminal
{NCL-Dys3), the rod (NCL-Dys1), and the C-terminal (NCL-
Dys2) domains of dystrophin {(Novocastra Laboratories, New-
castle upon Tyne, UK) (5,19). Furthermore, utrophin, S-dys-
troglycan, <y-sarcoglycan (Novocastra Laboratories Ltd;
Newcastle upon Tyne, UK), laminin 2 (Chemicon Interna-
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tional Inc., Temecula, CA), and a-dystroglycan (Upstate Bio-
technology, Lake Placid, NY) were also stained using their
respective antibodies. Control skeletal muscle tissue was ob-
tained with informed consent and was simultaneously stained
with the same panel of antibodies. Western biot analysis of
dystrophin using an MAb that recognizes the C-terminal do-
main was performed by Athena Diagnostics (Worcester, MA).

Analysis of the dystrophin gene. For mutational analysis of
the dystrophin gene, blood samples were obtained from the
index case and family members after obtaining informed con-
sent. DNA was isolated by standard phenol-chloroform extrac-
tion methods. For screening for deletion mutations, 19 dele-
tion-prone exons were amplified from the genomic DNA by
PCR essentially according to methods described previously
(20). Southern blot analysis using dystrophin cDNA as a probe
was performed with HindIII restriction enzyme—digested DNA
as a ternplate, as described by Koenig et ¢l. (21). For analyzing
genomic mutations, the region that encompasses exon 76 was
amplified by PCR with g76F:5-GGAGGGCTTCTAAAG-
TAGG-3' as the forward primer and g76r:5'-ATGTCCCTG-
TAATACGACTCTACC-3' as the reverse primer under condi-
tions described elsewhere (20).

Analysis of dystrophin mRNA. Reverse-transcription PCR
(RT-PCR} was used to analyze the dystrophin mRNA ex-
pressed in lymphocytes or skeletal muscle as described by
Roberts er al. (22,23). Full-length dystrophin ¢cDNA was ampli-
fied as 10 separate, partially overlapping fragments and se-
quenced directly. For obtaining a fragment showing aberrant
splicing, including exon 76 skipping, a region that encompasses
exons 70—79 was amplified using a forward primer correspond-
ing to a segment of exon 70 (70f:5-CAGGAGAAGATGTTC-
GAGAC-3") and a reverse primer complementary to a segment
of exon 79 (Sf:5-ATCATCTGCCATGTGGAAAAG-3".

Sequencing of the amplified product. The amplified product
was purified and subjected to sequencing either directly or after
subcloning into a pT7 blue T vector (Novagen, Madison, WI)
(24). The DNA sequence was determined using an automated
DNA sequencer (model 373A; Applied Biosystems, Foster
City, CA).

RESULTS

For elucidating the cause of the elevation in serum CK, the
biopsied muscle sample was examined pathologically. Micro-
scopic examination disclosed slight dystrophic changes such as
size variation in muscle fibers, fibers with central nuclei, and
degenerated and regenerated fibers. Immunofluorescence stain-
ing for dystrophin revealed a complete absence of C-terminal
domain labeling (Fig. 1). In contrast, both N-terminal and
rod-domain staining was weak, patchy, and discontinuous
along the plasma membrane (Fig. 1). These findings clearly
indicated dystrophinopathy, but the paiterns of dystrophin
staining were not typical for either DMD or BMD. Western
blot analysis of dystrophin using an antibody that recognizes
the C-terminal domain of dystrophin revealed no significant
bands {data not shown). These staining patterns indicate that a
nonsense mutation in dystrophin is present in this patient,
leading to production of a protein truncated somewhere up-
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Control DMD

Patient

N-terminal |§

Rod

C-terminal

Figure 1. Immunofluorescence staining of biopsied muscle for dystrophin.
The biopsied muscle was stained for dystrophin vsing antibodies against the
N-terminal, red, and C-terminal domains. Staining of N-terminal and rod
domains was weak, patchy, and discontinuous. In contrast, no reactive material
was visualized for the C-terminal domain (patient). In unaffected individuals,
all domains were clearly stained along the plasma membrane (control) but not
in DMD.

stream of the C-terminal epltope recognized by the aforemen-
tioned antibody.

For clarifying the molecular pathogenesis of the abnormal
dystrophin, the dystrophin gene was scanned for mutations.
Neither PCR amplification of 19 selected exons nor Southern
blot analysis of the dystrophin gene revealed any gross gene
rearrangements. The possibility of deletion mutation therefore
seemed unlikely. To find a single-base mutation, we analyzed
dystrophin mRNA extracted from peripheral lymphocytes us-
ing RT-PCR as described previously (22). Ten fragments
covering the full-length dystrophin ¢cDNA could be amplified
as normal-sized products. Direct sequencing of a fragment that
encompasses exons 70-79 disclosed a single nucleotide
change: a transition from a cytosine to a thymine at nucleotide
10873 (C10873T) in exon 76 (14). The same nucleotide change
(C10873T) was present not only in his muscle dystrophin
mRINA (Fig. 2) but also in his genomic DNA (data not shown)
(25). His mother was found to be a carrier of the same mutation
(data not shown). Because sequencing of other fragments of
dystrophin cDNA disclosed no other significant nucleotide
changes, it was concluded that this mutation (C10873T) is the
canse of the dystrophinopathy. The nucleotide change con-
verted a CAG codon, which encodes glutamine at the 3625th
amino acid position, to a stop TAG codon (Q3625X; Fig. 2).
Therefore, a truncated dystrophin lacking 60 amino acids at its
C terminus (1.6% of the total dystrophin sequence) was ex-
pected to be produced.

This truncation of dystrophin is compatible with the failure
of the C-terminus—specific antibody to labe] the protein (Fig.
1), because this antibody recognizes amino acids 36693635,
an epitope that is downstream of the premature stop codon
(Q3625X). However, that dystrophin did stain positively with
antibodies against its N-terminal and rod domains (Fig. 1) does
not seem consistent with this truncation mutant, because other
truncated dystrophin mutants have been found to be very
unstable and undetectable inumunohistochemically (4,6). In
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Figure 2. Analysis of dystrophin mRNA prepared from muscle. (4) The
amplified product encompassing exons 70-79 is shown. One clearly visible
product was obtained from the index case (P), and the size of the amplified
product is the same as that of the control (C). M refers to a DINA size marker,
Haelll-digested ¢X174 DNA. (B) Nucleotide sequence around the mutation
site. Direct sequencing of the amplified product disclosed a single nuclectide
change from C to T at nuclectide 10873 (C10873TF). This nucleotide change
converted a CAG codon to a TAG stop codon {Q3625X). Nucleotide and
amino acid numbering are based on those preseated by Keenig et al. (14).

other cases, it has been hypothesized that the positive staining
of dystrophin is the result of rescue of nonsense mutations by
exon skipping or aberrant splicing (8,26). However, the RT-
PCR—amplified product encompassing exons 70-79 disclosed
only one visible band upon agarose gel electrophoresis (Fig. 2).
In addition, both direct sequencing and sequencing after sub-
cloning the product confirmed the presence of normal exon
structure, indicating that only one mRNA was produced from
the mutated gene. These observations do not support the
possibility of exon-76 skipping or aberrant splicing.

Although the patient in our case harbored a Q3625X non-
sense mutation, his clinical phenotype was unusually mild.
Utrophin, a dystrophin-related protein, has been proposed to
compensate for the function of dystrophin (27). Therefore,
overexpression of utrophin might account for the clinical phe-
notype seen in the present case. The expression of utrophin was
studied in muscle (Fig. 3) and was not found to be elevated in
the index case in comparison with that typically seen in DMD,
Therefore, enhanced expression of utrophin does not seem, to
be modifying the clinical phenotype. Furthermore, the dystro-
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Figure 3. Immunofluorescence staining for dyswophin-associated and dys-
trophin-related proteins. The dystrophin-associated proteins - and B-dystro-
glycan, y-sarcoglycan, and laminin o2 were labeled with immunoflucrescence.
The staining patterns seen in the patient’s muscle were similar to those
observed in DMD. Also as in DMD, no labeling was seen for utrophin, a
dystrophin-related protein.

phin-dystroglycan axis was examined (Fig. 3). Laminin o2, an
extracellular matrix protein, stained weakly, Neither a-dystro-
glycan, an extracellular S-dystroglycan—binding protein, nor
B-dystroglycan, a transmembrane dystrophin-binding protein,
was stained. y-Sarcoglycan, a member of the sarcoglycan
complex, was stained very weakly. All of these staining pat-
terns were similar to those found in DMD (Fig. 3), indicating
no difference in the stabilization of the dystrophin-
dystroglycan axis from that observed in DMD (Fig. 3). There-
fore, no explanation for the mild phenotype was obtained
through studies of protein staining. .

DISCUSSION

A novel nonsense mutation {((Q3625X) in the dystrophin gene
was identified in a Japanese boy who was as yet asymptomatic
at the age of 8 y. Although a severe DMD phenotype would be
expected to develop from his mutation type, his clinical course
has been extraordinarily mild. The case has raised an important
question to be answered: What is the mechanism that deter-
mines the severity of the dystrophic phenotype?.

A somatic mosaic for a nonsense mutation has been shown
to atienuate the clinical phenotype (28). However, this possi-
bility seems to be excluded in the index case for the following
reasons: 1) the mutation was inherited through the mother, and
2) a single genomic clone harboring C10873T was obtained not
only from his lymphocytes but also from his muscle (data not
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DMD

shown). To rule out this possibility unequivocally, it is neces-
sary to examine other muscle tissues, but this has not yet been
done.

Another possible attenuating mechanism would be the mod-
ification of mRNA by either exon skipping or aberrant splicing,
which would remove the nonsense mutation and produce a
more complete dystrophin mRNA. Examples of exon skipping
have been reported in nonsense mutations identified in exons
25,27, 29, and 72 of the dystrophin gene (7-11), and aberrant
splicing has been reported in intermediate dystrophinopathy
(26). In our case, however, not only the RT-PCR product of
dystrophin mRNA but also subcloning sequencing disclosed
the existence of only one kind of mRNA consisting of a normal
exon structure (Fig. 2). The possibility of either exon skipping
or aberrant splicing thus was ruled out. Therefore, the discrep-
ancy between genotype and phenotype could not be explained
at the mRNA level.

Elevated expression of utrophin has been speculated to
convert a severe phenotype to a mild one without affecting
dystrophin expression (27). However, level of utrophin expres-
sion was the same in our case as in DMD (Fig. 3). Furthermore,
the staining of proteins encompassing the dystrophin-
dystroglycan axis was identical 1o that seen in DMD (Fig. 3).
These similarities show that protein-level changes do not un-
derlie the observed phenotypic differences.

The truncated dystrophin produced in the index case seems
to be unusually stable, as demonstrated by the weak but
significant staining of the N-terminal and rod domains (Fig. 1).
This may be because the truncated dystrophin retains function-
ally important binding sites, such as actin binding sites in the
N-terminal and rod domatns (29,30), a B-dystroglycan binding
site in the cysteine-rich domain (31), and syntrophin and
dystrobrevin binding sites and a phosphorylation site in the
C-terminal domain (Fig. 4) (32-35). In fact, it has been dem-

Q3625X
B -dystroglycan V

() R <

[} - =
BAA A

actin

syntrophin

Figure 4. Dystrophin domain structure. Dystrophin consists of 3685 amino
acids and is divided into four domains: the N terminus (box N), the rod (box
R) and eysteine-rich (box Cy) domains, and the C terminus (box C). Three
actin-binding sites have been identified in the N terminus (AB1 1837 amino
acids, ABS3 86-120 amino acids, and ABS2 128-149 amino acids), and one

_site (amino acids 1416-1880) has been found in the rod domain (all four sites

indicated by arrowheads). In the cysteine-rich domain (amino acids 3115—
326), dystrophin interacts with transmembrane 3-dystroglycan (inverted trian-
gle), which in turn binds to e-dystroglycan. Syntrophin binds to a region in the
C-terminal domain (3446-3481; open triangle), and a serine at the 3552nd
residue and threonine at the 3675th residue serve as phosphorylation sites
(open arrowheads). Antibodies that recognize the N-terminal, rod, and C-
terminal domains react to aminoe acid residues 321-494, 1181-1388, and
3669-3685, respectively (bars). The novel nonsense mutation (Q3625) is
located at the end of the C-terminal domain (vertical bar). Numbers at both
ends of the boxes indicate amino acid residues. The figure is not drawn to
scale.
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onstrated that dystrophin lacking the amino acids encoded by
exons 71-78 is stable in muscle membranes of the mdx mouse,
an animal model of DMD (36). However, this hypothesis is not
supported by a previous report that Q3625X, a nonsense
mutation just 10 amino acids downstream of the one reported
here (Q3635X), gave rise to clinically typical DMD (6) (Fig.
4). Furthermore, examination of laminin alpha 2, a- and B-dys-
troglycans, and +y-sarcoglycan disclosed no difference in their
staining patterns between our case and DMD (Fig. 3), indicat-
ing that augmented stabilization of these proteins does not
contribute to the mildness of the phenotype. Clearly, further
study is required to clarify these complex results.

Activation of transcription of the dystrophin gene may lead
to overproduction of dystrophin mRNA. It has been proposed
that an abnormality in a transcription factor(s) or in its binding
site in the promoter of the dystrophin gene is a factor in
phenotypic severity. In fact, mutation of the MYF6 gene results
in a severe phenotype of BMD (37). However, modifier(s) that
make the phenotype mild have not been reported to date
(38,39), although mdx mice characterized by dystrophin defi-
ciency do not show a severe DMD phenotype (40). We are now
following up the index case, and a future study analyzing not
only the dystrophin gene but also other genes may clarify the
molecular mechanism explaining his mild phenotype.
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