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CHAPTER

Do Familial Parkinson’s Disease Genes

Share a Common Pathway Involved
in the Nigral Degeneration?

Nobutaka Hattori, Yasuko Hatanoe, Yuanzhe Li, Hiroyuki Tomiyama,
Yutaka Machida, Kenichi Sato and Yoshikuni Mizuno

Introduction
arkinson’ s disease (PD) is the most common progressive movement disorders characterized
P by resting tremor, cogwheel rigidity, bradykineasi, and impaired postural reflexes with
a prevalence of approximately 200/100,0000 among white populations' and 100/100,000
in Japanese.” Considering the age at onser, this disease affects 1 to 2 percent of persons older
than 65 years of age.

The exact cause of this disease has been unclear, however, there has been growing evidence
that mitochondrial dysfunction, oxidative stress, and genetic factors contribute the pathogenesis
of PD. Moreover, progress in understanding the pathogenesis of this disease has been done after
the identification of causative genes or loci for familial PD {FPD). Therefore, there is no ques-
tion about the genetic influence on the development for PD. Studies on the frequency of PD
among the first relatives of index patients with PD was reported as twice and three times than
that in the control population.’> Furthermore, the role of genetic factors in FPD is supported
by the high concordance in twins using PET scans.®3 Thus, it is now clear thar clinically defined
PD represents a heterogeneous group of disorders that encompasses a small proportion of indi-
viduals with inherited disease and a larger population with seemingly sporadic disease.

To identify susceptibility gene for PD, eatlier efforts to identify a genetic defect in PD were
mainly based on the candidate gene approach. Many polymorphisms have been screened by
linkage analysis or association studies with PD, including those involved in mitochondrial
respiratory chain, dopamine biosynthesis, neurotransmitter, and enzymes regulating the me-
tabolism of neurotoxins or free radicals. Although controversies exist with regard to the results
of genetic association studies so far, there may be genetic risk factors that increase the likeli-
hood of developing PD, much in the same way that the ApoE4 allcle increases the risk of
developing AD. On the other hand, several genes for inherited forms of PD have been mapped
(Table 1). The classification of FPD was divided as two groups based on the presence of Lewy
bodies. At least, six causative genes have been identified such as ct-synuclein, parkin, UCH-LI,
PINKI, DJ-1, and dardarin or LRRK2 forSNCA and Park4, Park2, 5, and 6, 7, and 8, respec-
tively.”'® In addition, NR4A2 has been identified as a causative gene of autosomal dominant
form of FPD.!” Furchermore, other loci in families with PD have been mapped to chromo-
somes 2p13'® as Park3 and 1p36 as Park9."? In addition, the susceptibility gene of the late
onset form of PD has been map?ed to 1p32 locus as Parkl0? and additional locus for Park11
has been mapped to 2q36-37.%' The presence of several causative genes and loci for FPD

Molecular Mechanisms in Parkinson's Disease, edited by Philipp Kahle and Christian Haass.
©2005 Eurekah.com Springer Science+Business Media.



2 Molecular Mechanisms in Parkinson's Disease

Table 1. Classification of familial Parkinson’s disease

Gene Locus Hereditary Form Lewy Body
PARK 1 o-Synuclein 4g21-23 AD +
PARK 2 Parkin 6¢25.2-27 AR -
PARK 3 ? 2p13 AD +
PARK 4 o-Synuclein 4q13-22 AD +

triplication
PARK 5 UCHL-1 4p14-15 AD ?
PARK 6 PINK1 1p35-36 AR ?
PARK 7 DJ-1 1p36 AR ?
PARK 8 Dardarin/LRRK2 2p11.2-q13.1 AD -+
PARK 9 ? 1p36 AR ?
PARK10 ? 1p32 AD ?
PARK11 ? 2q36-37 AD ?
NR4A2 Nurr 1 2g22-23 AD ?

AD, Autosomal dominant form; AR, autosomal recessive form.

indicates the mechanisms of pathogenesis of sporadic PD are also complicated. However, con-
sidering the selective dopaminergic neuronal cell death, the gene products could share a com-
mon pathway including oxidative stress, mitochondrial dysfunction, and proteasome pathway.
In this communication, we review recent progress in the molecular genetics of FPD.

SNCA (a-Synuclein) and Park4 (Triplication of a-Synuclein)

Golbe and colleague firstly reported the autosomal dominant form of FPD in the Contrursi
family.? The average age of onset was 45.6 years, and initial symptoms were variable including
resting tremor, bradykinesia, or postural instability. The affected members of this family re-
sponded well to levodopa, however, the average duration of the illness was reported to be 9.2
4.9 years, somewhat shorter than that of sporadic PD. Dementia was not uncommon in this
family. Pathologically, Lewy bodies and cortical Lewy bodies were observed. The disease gene
has been mapped to chromosome 4q21, and subsequently, mutations in the a-synuclein, lo-
cated within the disease region were found to be associated with the autosomal dominant form
of FPD, similar to the Contursi family.” Firstly, two separate point mutations such as A53T
and A30P have been identified.**? In addirion, another mutation such as E46K has been
reported.? Totally, only three different mutations have been identified so far. Although this
form of FPD is very rare, this molecule has been found to be one major component of Lewy
bodies that characterize the pathological hallmark of PD.%

In 1962, Speliman reported a family with autosomal dominant form of FPD in the United
State.?® Muenter et al made extensive studies for the clinical features of chis family.”” Clinical
features of this family consisted of levodopa responsive parkinsonism and dementia. In addi-
tion, Walter and Miller reported another family with autosomal dominant FPD that has simi-
lar clinical features reported by Spellman and Muenter.”® In autopusied brains from the pa-
tients from this family, many cortical Lewy bodies were observed and the pathological diagnosis
suggested diffuse Lewy body disease. Later, the family by Walter and Miller tirned out to be
blood-related to be the family reported by Spellman and Muenter. This family was mapped to
the short arm of chromosome 4 that was assigned as Park4.? Very recently, assignment of this
family to this region appears to be an error of the linkage analysis. Instead, triplication of
osynuclein in the affected members of this family; the 1.5 Mb region including several genes
on both sides of ct-synuclein was tripliacted in a tandem fashion.?® Therefore, the protein level
of a-synuclein is expected to be two-fold higher than that of normal individuals. Thus, it would
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be possible that overproduction of this protein could cause developing to PD. Very recently,
duplication of this gene has been reported in the autosomal dominant from of FPD.3!"32 There-
fore, there are two different types of multiplication of this gene at least. In contrast, the patients
with duplication of the ot-synuclein had no dementia. Taken together with autosomal domonant
FPD with multiplication of this gene, overproduction of a-~synuclein from a single gene may
relate to the phenotype of PD, PD with dementia (PDD), or dementia with LB (DLB). These
findings provide us that genetic variations including single nucleotide polymorphisms pro-
moter region of this gene.

Recently, reduced mRINA expression of the G209A allele was reported in a Greek-American
family. Very recently, we reported that the mRNA expression of the mutant G88C and G209A
alleles of the a-synuclein gene is significantly reduced relative to the wild-type allele in
lymphoblastoid cell lines established from affected individuals, who had murarions either G88C
and G209A alleles, with a severe clinical phenotype. In contrast, these mutanr alleles are ex-
pressed at levels similar to the wild-type allele in lymphoblastoid cell lines established from less
severely affected idividauals or asympromatic carriers. This suggests thar the ratio of expression
levels of the wild type to murant a-synuclein alleles may be able to be developed as a clinical
marker of this type of FPD, particularly since a-synuclein is normally expressed in lympho-
cytes. Therefore, this haploinsufficiecy is a common mechanism for this form of FPD. Why
the expression level in lymphobiastoid cells associated with the severity of clinical phenotypes
remained to be determined. Furthermore, the expression level of wild type o-synuclein in the
lymphocytes of PD may be also related to the progression of the disease. Considering the
potential that overproduction of a-synuclein in brains may trigger the onset of PD, the expres-
sion of a-synuclein in even though the lymphocytes may be also useful to differentiate PD
from PDD and DLB.

a-Synuclein is identical to NACP (nonamyloid component precursor);® NAC is deposited
in the amyloid plaques of AD.*> Furthermore, a-synuclein has been identified as a major
component of the Lewy bodies in both familial and sporadic PD as well as in demenria with
Lewy bodies (OLB).? Furthermore, ci-synuclein is deposited in the cytoplasm and neuronal
processes. In addition, o-synuclein aggregation occurs in the parkinsonian disorder of multiple
system atrophy (MSA).* In this discase, there is abnormal oligodendroglial staining for
a-synuclein, but no Lewy bodies. The identification of &-synuclein in pathological deposits in
these neurodegenerative disorders such as PD, dementia with Lewy bodies, MSA, AD, and
some prion diseases suggest that they may share common pathogenic mechanisms. Thus, the
discovery of o-synuclein arose the concept that PD may be one part of a boarder group of
“synucleinopathies”, in which there is a fundamental defect in protein processing.

Why dopaminergic neurons in the substantia nigra are particular vulnerable to the gain of
a-synuclein funcrion including wild or mutant forms of this protein remains to be efucidated.
Although a-synuclein is expressed ubiquitously, oxidative conjugation of dopamine to
a-synuclein leads to the accumulation of the o-synuclein protofibril.”” The conjugation of
a-synuclein into oxidative form of dopamine, dopamine quinone provides an answer for the
selective cell death of dopaminergic neurons. Thus, ot-synuclein toxicity in dopaminergic neu-
rons requires endogenous dopamine production and its toxicity could be related to reactive
oxygen species. This adduct may form the complex proteins such as 54- to 83-kDa soluble
proteins that contain a-synuclein and 14-3-3.% As a-synuclein contains no cystein residue, it
would not be possible that dopamine quinone adduct does not modify the a-synuclein. The
above-mentioned complex may be formed indirectly mediated by conjugation of o-synuclein
into dopamine quinone. The question arises about the formation of cortical Lewy bodies in
dementia with Lewy bodies (DLB). This difference berween cortical and brain stem Lewy
bodies on the structure and its distribution may be related to the neurotransmitters themselves
on the location of Lewy bodies. Indeed, synphilin-1 as a marker of brain stem type Lewy bodies
has been reported. In contrast, this immunoreactivity for cortiacal Lewybodies was less than
brain stem type ones.? Further studies will be needed to elucidate the mechanism of the for-

mation of Lewy bodies.
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Ubiquitin (Ub) has also been identified as a major component of Lewy bodies, thus impli-
cating abnormal protein degradation in the pathology of PD. The colocalization of both
o-synuclein and Ub in Lewy bodies suggests that dysfunction of Ub-proteasome pathway may
play a role in the pathogenesis of PD. Indeed, overexptession of a-synuclein is sufficient to
induce inclusion formation and proteasome inhibition leads to an increase of o-synuclein accu-
mulation.®® Although it would be possible that a-synuclein is degraded by 26S proteasome,
whether or not proteasomal pathway is involved in a-synuclein degradation has been controves-
sial. However, recent works revealed that c-synuclein could be directly degraded in vitro assay,
suggesting that an ubiquitin-independent mechanism of proteasomal degradation. The 26S
proetasome requires the polyubiquitination chains, in contrast 20S particle that contains the
protease active site does not require its multiubiqurination for degradation.! Thus, as a-synuclein
belongs to the class of proteins known as natively unfolded, ¢ is likely to that a-synuclein is
directly degraded by 20S particle. Considering the colocalization of immunoreactivity for ubiquitin
and a-synuclein within Lewy bodies, it would be possible that a~synuclein and ubiquitinated
proteins incidentally accumulate during the process of Lewy body formation. Therefore further
studies are warranted to investigate the mechanism of formation of Lewy bodies.

Oxidative stress and protein modification may be a common event for neurodegenerative
disorders.?? Indeed, phospolylated a-synuclein deposited in human synucleinopathies as Lewy
bodies and other hallmark lesions.*® In addition, c-synuclein overexpressed in fly also un-
dergo phosphorylation at the same site of this molecule, suggesting that a similar manner
between fly model and human PD could be involved in formation of Lewy bodies.* This
hyperphosphorylation could be also a common event in neurodegenrative disorders such as
PD, AD, and various tauopathies. Thus, The a-synuclein studies including the mechanism
of phosphorylation may help facilitate dissection of pathophysiologic mechanisms of various
synucleinopathies and rauoopathies.

PARK?2 (Parkin)

Park?2 is characterized by early onset before 40 years (average onset, 26.1 years), mild dysto-
nia, diurnal fluctuation, spontaneous improvement of movement of disability after sleep or
nap, a good response to levodopa, and less frequent resting tremor compared with sporadic
PD.% Gait disturbance was the initial symptom in 60.5% of patients. The pathological changes
include selective degeneration of pigmented neurons in the SN and locus coeruleus, and gen-
erally lack of Lewy bodies.* Pzrkin mutations are the most frequent cause of autosomal reces-
sive early-onset parkinsonism (AREP) including autosomal recessive juvenile parkinsonism
(AR-JP); their frequency being estimated at 50% in AREP families with potentially autosomal
recessive inheritance.#*® The clinical features of AREP with parkin mutations are highly vari-
able compared with the AR-JP. Thus, AREP with parkin mutations are considered as
parkin-related diseases that also include AR-JP. In this regard, autopsied cases of parkin-related
diseases, with the exception of a single case, commonly lack Lewy bodies , suggesting that
normal function of parkin is essential for Lewy body formation. In addition, the discovery that
patkin is an ubiquitin ligase provides information suggesting that the ubiquitin-proteasome
system may play an important role in maintaining dopaminergic neurons.*® Furthermore,
ubiquitin positive inclusions have reported in various neurodegenerative disorders such as
Alzheimer disease (AD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP),
and poly-Q diseases. Thus, it is clear that ubiquitin-proteasome pathway may be a common
cascade in the various neurodegenerative diseases. Therefore, the function of parkin provides a
hint to elucidate the mechanisms of all the neurodegenerative disorders.

Mutations in Parkin

Parkin contains 12 exons spanning over 1.4 mega bases and encodes a protein of 465 amino
acids, with moderate homology to ubiquitin at its amino-terminus (ubiquitin like domain, Ubl)
and two RING finger motifs (RINGs) at the carboxy-terminus. In the preliminary study, parkin
mutations are the most frequent in the young-onset PD. If the mode of the inheritance is
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autosomal recessive, approximately half of such patients could have parkin mutations. To date,
various parkin mutations have been identified such as exonic deletion, insertions, and several
missense mutations in the patients with FPD originating from various races (Fig. 1).7%>® Muta-
tions in parkin gene have been distributed all over the world. Thus, this form is now considered to
be one of the most frequent in FPD. In addition to homozygous mutations, compound heterozy-
gous states that are different mutations in each allele are also frequent among the patients without
affected members in the same family. Ir is difficult to detect the compound heterozygotes using
conventional PCR due to its giant size of this gene. Thus, the gene dosage technique, that is
quantitative analysis, is useful strategy to detect the compound heterozygotes. In the Orientals,
the frequency of the point mutations is less than that of the white populations. In the Orientals,
exonic deletions are high frequent compared to other types of mutations. The sites of the exonic
deltions are located from exons 2 to 5. Thus, these regions are a hot spot for exonic deletions. In
contrast, point mutations have been found from exons 6 to 12 of which involves two RING
finger motifs and In-between RINGs. The clinical phenotype of this form is expanding with
slowly progression, cexebellar ataxia. In addition, there are more than a few patients with parkin
mutations who have psgchiarric/behaviora.l symptoms. These sighs started prior to or after the
onset of patkinsonism.”’ In this point, psychiatric problems are characterized symptoms for this
form of parkinsonism. Therefore, it would be possible that some patients with parkin mutations
have only the psychiatric/behavioral symptoms even though without parkinsonism.

Positron emission study (PET) using fluoro-dopa revealed that reduction of uptake was
observed in even though carriers.” This finding indicates that carrier states potentially have a
phenotype of PD. In addition, single heterozygous mutations also in exon 7 act as susceprible
alleles for late-onset form of PD.>® Furthermore, the recent association of haploinsufficiency of
parkin with sporadic PD further implicates a role for parkin in the more common form of
PD.* In this point, single heterozygous state could be also related to not the dominant nega-
tive effects, but the haploinsufficiency effects. In contrast, Lohmann et al® reported that some
missense mutations might have a dominant negative effect as missense mutations in functional
domains resulting in an earlier onset than mutations in other regions of this protein. Thus, we
should examine whether or not all mutant parkins have no ligase activities according to the
loss-of-function effects. We speculate that some mutant parkin may have ligase activities.

Parkin Function and Dopaminergic Cell Death

Ubiquitin (ub) is attached to covalently to target proteins. Protein ubiquirination is cata-
lyzed by three enzymes, E1 (Ub-activating enzyme), E2 (Ub-conjugating enzyme), and E3
ubiquitin ligase. Mutations in the parkin gene result in a loss-of-fucntion of E3; subsequently,
substrates for parkin could be accumulated within dopaminergic neurons and its accumularion
may {ead to young onset PD. Thus, it is important to identify the substrates for parkin. To
date, ten candidate proteins have been reported to be degraded by parkin® (Table 2). Other
types of proteins have been shown to interact with parkin such as E2s, multiprotein ubiquitin
ligase complex such as cullin-1, CASK/Lin2 as a scaffolding protein containing postsynaptic
density-95, disc large, zona occludens (PDZ) domain, actin filaments. In addition, CHIP and
Hsp70 have been reported as biding partners.%? Although it remains to be elucidared why
parkin has two RING finger motifs, parkin may interact with various proteins including sub-
strates due to two RING finger motifs.

To elucidate the mechanism of parkin, the parkin knockout animal model is good strat-
egy. Very recendy, parkin null mice have been reported. Parkin null mice demonstrated that
motor and cognitive deficits, inhibition of amphetamine-induced dopamine release and in-
hibition of glutamate neurotransmission.® In addition, the levels of dopamine were in-
creased in the limbic brain areas and the merabolism of dopamine was shifted towards
monoamine oxidase (MAQ). The latter observation suggests the presence of oxidative stress
in parkin related diseases. Indeed, iron accumulation in autopsied brains with AR-JP in-
creased than that of controls and sporadic PD. Thus, oxidative stress is also a common
cascade of pathogenic factors in both parkin related diseases and PD. However, why no
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Table 2. Candidate substrates for parkin

Substrates Function

CDCrel-1 Exocytosis (Dopamine storage?)
CDCrei-2 Exocytosis (Dopamine storage?)
Pael-receptor ER stress (Unfolded protein response)
O-glucosylated a-synuclein Lewy body formation

Synphilin-1 Lewy body formation

Cyclin E Apoptosis (Kainate excitoxication)
3/aTubulin Microtubules (assembly dysfunction)
p38 subunit

{(Amynoacy] tRNA synthase? Protein biosynthesis or apoptosis
Synaptotagmine (X Exocytosis

Expanded poly-Q 2

Lewy bodies formation is commonly observed in parkin related diseases is unclear. At least,
patkin-could be involved in the formation of Lewy body.

The presence of Ubl domain in parkin is an important clue to investigate the function of
this protein. Very recently, the three-dimensional structure of this Ubl domain has been deter-
mined by NMR.% This study revealed that the parkin Ubl domain binds the Rpn10 subunir of
26S proteasome via the region of parkin that includes amino acid position 42. Rpn 10, so
called S5a, can bind polyubiquitin conjugates in vitro, and could possibly function as a
polyubiquitin-binding subunit. This site, position Arg 42, has been repotted as a pathogenic
muration, in which Arg is substituted with Pro in one patient. According to the structure of
partkin using NMR, the Arg 42 mutation induces a conformation change in the Rpn 10-bind-
ing site of Ubl, resulting in impaired proteasomal binding of parkin. Indeed, muent parkin
carrying the Arg-to-Pro mutation was extremely difficult to dissolve at a submillimolar concen-
tration for NMR analysis; this insolubility might be associated with loss of the correct func-
tional conformation in the mutant form of parkin. It suggests that this hampers the formation
of an efficient assembly line for protein degradation, and thereby causes the accumulation of
parkin substrates regardless of the degree of ubiquitin ligase activity.

Pathologic findings of brains with parkin mutations revealed severe neuronal loss with gliosis
in the substantia nigra (SN} and mild neuronal loss in the locus coeruleus (LC), suggesting that
pathology of the mutated brains is mainly in the SN, in which the ventrolateral | group is mote
severely affected than in sporadic PD, whereas the LC is less severely affected.® In addition,
several atypical findings have been reported in the brains of this form. One of them is the accu-
mulation of tau protein: neurofibrillary tangles (NFTs) in the SN, LC, red nucleus, and posterior
hypothalamus, and NFTs and thorn-shaped astrocytes in the frontal, temporal, and parietal cor-
tices. % In addition, accumulation of tau protein in the form of tu&ed astrocytes, but not NFTs,
was reported in a patient with compound heterozygous mutations.®” In this respect, a part of the
pathology of parkin related diseases’ brains is very similar to that of progressive supranuclear
palsy. Therefore, parkin-related diseases are also considered as one of tauopathies, although which
either isoforms of 3 or 4 repeat tau increased in this form of FPD remains to be determined.

To investigate the toxicity of the substrates for patkin, the fruit fly is a good model to
elucidate the mechanism of dopaminergic neuronal loss. Yang et al used a transgenic fly to the
expression of human Pael receptor (Pael-R}, one of candidate substrates, under conditions of
altered parkin act1v1ty S This fly revealed the age-dependent degeneration of dopaminergic
neuronal loss in spite of the same expression levels in all neurons. This Pacl-R mediated neuro-
toxicity in the dopaminergic neurons was attenuated by the coexpression of human parkin and
exacerbated by blocking the activity of endogenous parkin in the fly by RNA interference
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(RNAiJ}. In addition, overexpression of parkin can suppress @-synuclein-induced toxicity. How-
ever, there is no evidence that parkin directly interacts with a-synuclein. These findings suggest
that parkin plays a central role in maintaining dopaminergic neurons. Put another way, parkin
is an essential factor for the survival of dopaminergic neurons.

PARKS (UCH-LI)

Only one family with autosomal dominant FPD caused by mutation of UCH-L1 has so far
been reported.'? Thus, UCH-LI is one of candidate gene responsibel for EPD. Furthermore,
no autopsy data are available at present; therefore, it is unclear whether or not the formation of
Lewy bodies is observed in this form of FPD. However, considering the function of this pro-
tein, UCH-L1 could play an important role for FPD. In only one family with an UCH-L1
mutation, the affected member had 2 missense mutation (Ile93Met)} in UCH-L1 and the mu-
tation was segregated with the disease phenotype.’* As no additional families have been identi-
fied so far, whether this muration is responsible for familial PD remains to be determined and
further studies are necessary to describe further cases. On the other hand, a common polymor-
phism (Ser18Tyr) has been frequently observed in various races. The Ser18Tyr is associated
with decreased risk of PD and thar the protective effect is dose-dependent manner.®’

UCH-L1 hydrolyzes terminal small adducts of ubiquitin and generates free monomeric
ubiquitin.®® Mutation of UCH-L1 causes partial loss of its catalytic activity. In addition, im-
munoreactivity for UCH-L1 is present in Lewy bodies.®’ Thus, abnormalities of this enzyme
may result in accumulation of structurally altered proteins that may interfere with normal
cellular function.

Recently, UCH-L1 is also shown to exhibit a second, dimerization-dependent, ubiquirin
ligase activity.”® This ubiquitin ligase activity may be dependent on the K63-linked polyubiquitin
chain on o-synuclein in a dimerization form. The Ser18Tyr polymorphism has reduced ligase
activity but comparable hydrolase activity as well as wild-type UCH-LI1. Thus, UCH-L1 pos-
ses both opposing enzyme activities such as a beneficial effect of hydrolase activity and
dimerization-dependent ligase activity that is at least partly pathogenic. In a brief, the UCH-L1
gene encodes two opposing enzymatic activities that affect the degradation of a-synuclein.

PARKG (PINKI)

Recently, mutations of PINK1 have been identified as the causative gene for PARKG. Sev-
eral mutations of this gene have been reported so far (Fig. 2).1%7172 Therefore, the PINK1
murtations may be more frequent next to the parkin mutations. Hatano et al reported thar six
families of 39 families with AREP had PINK1 mutations. Thus, the PINKI mutations have
been detected in approximately 15% of cases without parkin mutations.”! In addition,
PINK1-positive AREP are not limited to Europeans but also in Asians. Furthermore, different
point mutations seem to be more frequently responsible for the disease phenotype than are
deletions. Of course, it would be possible that deletion mutations may take place in this gene as
nonsense mutations have been reported.

It is difficult to distinguish PINK-1-positive AREP from the PINK-1 negative one. The
clinical features of Park6 included slow progression and commonly lack of dystonia at onset of
the disease. Thus, the presence or absence of the dystonia provides us good information to
differentiate the PINK1- positive from PINK1-negative one. In addition, the identification of
a higher frequent ratio in patients with PD than thac of normal controls carrying a single
heterozygous mutation supports the hypothesis that haploinsufficiency of this gene as well as
parkin and DJ-I may represent a susceptibility factor for developing to parkinsonism. Alterna-
tively, some mutation types may have the dominant negative effect for this disease.

Although PINKI1 function is unclear, it origina.llay was reported to be upregulated by the
tumor suppressor gene, PTEN, in cancer cells.” Preliminary results revealed that the
loss-of-function effect of this gene might be associated with mitochondrial function thar was
known as one of causative factors for sporadic form of PD. In addition, this gene product,
PINKI, has the kinase domain. Thus, the loss-of-function effect of PINK1 may be related the
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Figure 2. Sites of PINK1 mutations.

phosphorylation mechanisms. In this point, it is clear that the approach to pathogenesis of
monogenically form of PD could be a useful strategy for elucidating that of common form of
sporadic PD in which phosphorylated a-synuclein is accumulated.

PARK? (DJ-1)

Very recently, Bonifati et al identified the causative gene for Park7.' The causative gene was
named as DJ-1. DJ-1 was first cloned independently by Ariga and his colleagues.” This gene
product is a candidate of the oncogene product that interacts with c-mye and increases cell
transformation in the presence of myc or h-ras. In addition, DJ-1 was also found to be an
infertility-associated protein that was reduced in rat sperm treated with roxicants that cause
infertility in rats.” This gene product, DJ-1, has been identified as a causative gene for Park7.
The mutations appear to be a rare cause of FPD, accounting for 1-2 % of all early-onset cases
with parkinsonism and PD. Several mutations such as exonic deletion, truncations, and, ho-
mozygous point mutations have been reported in this gene. In addition, heterozygous missense
mutations such as A104T and D149A have been identified as a cause for developing to
young-onset patkinsonism. This finding for this heterozygous mutations indicates the gene
mutations have dominant negative effects or haploinsufficiency as well as parkin mutcations.
The clinical phenotypes of this form are very similar those of Park2 and Park6. Based on the
clinical examination and ima_)ging study indicates nigral neuronal loss although pathological
findings are not yer reported.’®

Although the biological function of the DJ-1 remains obscure, several possible functions
have been proposed. Firstly, DJ-1 may function as an anti-oxidant protein as DJ-1 was identified
as a h;rdorperoxide-responsive protein that becomnes a more acidic isoform followin; oxidative
stress.”’””® Secondly, DJ-1 is sumoylated through binding the SUMO-1 ligase PIAS.”” SUMO-1
is a small ubiquitin-related modifier. Although the homology between ubiquitin and SUMO is
only 18%, the three-dimensional steucture is very similar ecach other. SUMO-1 is covalently
attached to other proteins as well as ubiquicin in a similar multistep process to ubiquitination,*
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Surmoylation does not participate the degradation of proteins like unigitin-proteasome system.*

In addition, the modification of SUMO-1 is reversible unlike ubiquitination. Although the
function of SUMO-1 is unknown, sumoylation might act as a modifier to alter the conforma-
tion of the sumoylated proteins. Furthermore, sumoylation competes ubiquitin for specific lysines
in targert proteins, suggesting that 1J-1 may be related to the regulation of protein degradation
and its stability.3? Indeed, the L166P mutant protein is impaired in its ability to form homo-dimers
and markedly reduced protein stability. Moreover, there is evidence that sumoylation is actively
involved in the nuclear import of substrates. Indeed, a number of transcription factors are
sumoylated.¥*%* Considering the modification of DJ-1 by SUMO-1, DJ-1 may be also linked
to U-P pathway like parkin. Although several possibilities of DJ-1 function have been proposed,
how DJ-1 induces the dopaminergic neuronal death in PD remains to be determined. To ad-
dress this question, further studies will be needed.

Park 8(Dardarin/LRRK?)

Very recently, two independent groups have identified the causative gene for Park8-linked
PD. The gene product was named as dardarin and leucine-rich repeat kinase 2 (LRRK2) by
cach group, respectively.!>!¢ In this review, we used the gene as Par£8 gene and used the gene
product as Park8 product.

Most of Park8-linked families have a clinical phenotype of typical PD. In contrast, the
pathological findings range from pure nigral degeneration in the absence of Lewy bodies as
reported in the Sagamihara kindred that has been noted as an index family for Park8% w0
typical Lewy bodies formation in the Western Nebraska kindred.*¢ Several missense muta-
tions segregating with Park8-linkied families have been reported so far. The Park8-linked
families distributed in the world-wide populations based on the haplotype analysis and mu-
tation screening. Thus, this form may be high frequent compared with the frequency of
o-synuclein mutations.

The clinical features of Park8-linked families revealed the typical PD, diffuse Lewy body
disease, PD with dementia (PDD), and parkinsonism with amyotrophy or PDD with amyo-
trophy. In addition, pathologic findings also exhibited variable changes representing aspects of
several of the major neurodegenerative disorders such as synucleinopathies and trauopathies.
Thus, Park8 product may be central to the pathogenesis of several major neurodegenerative
disorders associated with parkinsonism.

The Park 8 product remained to be determined. Considering the domain structure, this
gene structure consisted of five functional domains such as leucine-rich repeat (LRR), a Roc
(Ras in complex proteins} domain, a COR domain (C-terminal of Roc),a tyrosine kinase cata-
lytic domain (TyrKc), and a WD40 domain. As the Park8 product may have the kinase activ-
ity, this protein potentially may be responsible for the phosphorylation of both a-synuclein
and tau. Therefore, the kinase activity of Park8 product could be a key event in the accumula-
tion and aggregation of these unfolded proteins within disease neurons.

Conclusions

The recent explosion of genetic information has indicated that PD is not a single entity but
is rather a highly heterogeneous disorder. Indeed, there are several genetically, clinically, and
pathologically distinct forms of FPD that can be caused by mutations of o-synuclein, parkin,
UCH-L1, PINK1, DJ-1, and dardarin or LRRK2 as well as yet unknown causative genes. Al-
though mutations underlie a minority of the larger PD population, they nevertheless represent
a cascade of events that culminates in the death of nigral neurons. Indeed, the causative gene
products for FPD share a common biochemical pathway such as ubiquitin-proteasome path-
way, mitochondrial function, oxidative stress, and phosphorylation for proteins. For examples,
o-glycosylated o-synuclein is one of candidate substrates®” and DJ-1 mutants specifically buc
differentially associated with parkin.?” The experimental results suggest that FPD gene prod-
ucts may link each other in a common pathway that may have important implications for
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understanding the pathogenesis of FPDD and sporadic PD. Moreover, identification of the can-
didate genes will enhance our understanding of the mechanisms of nigral degenerauon of PD
as well as for developing methods to prevent nigral neuronal death.
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