The NOS inhibitors such as nitroarginine or Nw-nitro-L-arginine methyl ester (L-NAME) have been
shown to prevent the induction of NOS activity and the subsequent motoneuron death after
avulsion.”®*! Taken together, these results indicate the neuroprotective effects of AxCAhGDNF,
AxCAmBDNFME, AxCAmTGFf2, and AxCArGIFM on the injury and death of adult facial
motoneurons. In contrast, the treatment with AXCANrCNTF, AxXCANrCT1 and AXCARIGF1 failed
to prevent the loss of facial motoneurons after avulsion; neither improvement of ChAT
immunoreactivity nor suppression of NOS activity was observed. Additionaily, we also examined
pairwise combinations of these adenoviral vectors and demonstrated additive neurotrophic effects of
AxCAhGDNF and AxCAmBDNFME on injured motoneurons after avulsion (Fig. 6). Such
combined effects of GDNF and BDNF have been demonstrated in vitro using fetal rat
motoneurons.”

Neuroprotective activity of GIF (MT-III)

Among these neuroprotective factors that rescued injured motoneurons in our avulsion
experiments, GIF (MT-III) is a unique molecule whose expression is reduced in Alzheimer’s disease
brains. GIF, a CNS-specific member of MT family, is a 68 amino acid small, cysteine-rich protein
that binds zinc and copper with high affinity.* GIF exhibits protective effects against glutamate-,
nitric oxide-, and b amyloid-induced neurotoxicity.>*>* GIF acts as a hydroxy radical scavenger and
inhibits tyrosine nitration by peroxynitrite.”® The formation of hydroxy radical-modified DNA and
RNA as well as peroxynitrite-modified proteins have been demonstrated in injured motoneurons after
avulsion.'® Our results therefore indicate that GIF may protect injured motoneurons from oxidative
stress by hydroxy radical and peroxynitrite. '®

GIF mRNA is down-regulated in postmortem spinal cord tissues of human sporadic ALS,”
whereas up-regulated in the spinal cord of human mutant SOD1-tg mice (G93A mice) as the animais
age and develop weakness.*** G93A mice deficient of GIF exhibit reduced survival and accelerated
motoneuron death compared with G93A mice with normal GIF expression.®® These reports suggest
that GIF may have protective roles against motoneuron degeneration in ALS. In addition, zinc is
important in maintaining the SOD1 structure, and some variants of mutant SOD1 in vitro exhibit
markedly reduced affinity for zinc and enhanced nitration activity by peroxynitrite.®! The induction of
either wild type or mutant SOD1, depleted of zinc, into cultured motoneurons is found to provoke
nitric oxide-dependent neuronal death that is accompanied by elevated level of nitrotyrosine.™** Since
GIF is an important regulator of zinc in CNS and has a scavenging effect for peroxynitrite,’® GIF may
protect motoneurons in patients with ALS by modulating zinc and/or preventing tyrosine nitration by
peroxynitrite. It is therefore conceivable that GIF may prevent the degeneration of motoneurons in
patients with motoneuron injury and motor neuron diseases such as ALS. *°



ORAL ADMINISTRATION OF T-588
R(-)-1-(benzo[b]thiophen-5-y1)-2-{2-(N,N-diethylamino)ethoxylethanol  hydrochloride (T-
588) has been developed as a candidate for a neuroprotective agent against neurodegenerative
diseases. This low molecular weight (330 Dalton) compound is a synthetic derivative of
acetylcholine.’? Orally administered T-588 is efficiently transported into the central nervous system.**
It has been demonstrated that T-588 promotes neurite outgrowth of cultured spinal ventral horn cells®
and delays the progression of motor deficits in the wobbler mouse.* We investigated whether oral
administration of T-588 can protect injured motoneurons after facial nerve avulsion in adult rats. *!
After avulsion of the right facial nerve, the animals were freely administered solution of 0.05%
(wiv) T-588 or received T-588 (3-30 mg/kg/day) through an oral tube for 1-4 weeks. The loss of
injured motoneurons was significantly prevented in rats freely administered 0.05 % T-588 solution
(62.7 + 53 %, n=8 and 50.1 + 4.8 %, n=11 at 3 and 4 weeks postoperation, respectively) in
comparison with vehicle-treated animals (42.4 * 6.4 %, n=8 and 31.2 + 6.4 %, n=10at3 and 4
weeks postoperation, respectively). In separate experiments, the loss of injured motoneurons was
also significantly prevented by oral tube administration of 30 mg/kg/day T-588 (52.4 + 8.0 %, n=10)
as compared to vehicle (34.8 + 13.8 %, n=8) at 4 weeks after avulsion. T-588 treatments also
ameliorated ChAT immunoreactivity in injured motoneurons and the tissue ChAT enzyme activities at
1-week postoperation examined. These results indicate that oral administration of T-588 ameliorates
the survival of injured motoneurons and supports their neuronal function after facial nerve avulsion in
adult rats. It has been shown that T-588 activates mitogen-activated protein (MAP)/extracellular
signal-regulated kinase (ERK) pathway in cultured rat newborn astrocytes and inhibits astrocyte
apoptosis induced by Ca’* stress.®® T-588 may therefore modify MAP/ERK pathway in injured
motoneurons and surrounding glial cells after facial nerve avulsion. Our results indicate that T-588

may be a promising therapeutic agent for motoneuron injury and motor neuron diseases in humans.

CONCLUSION

Using peripheral nerve avulsion models, we have identified neuroprotective activities of
GDNF, BDNF, TGFB2, GIF, and T-588 against degeneration of adult motoneurons. These factors
may prevent the degeneration of motoneurons in adult humans with motoneuron injury and motor
neuron diseases. Further investigations are required to elucidate pathomechanisms of motoneuron

degeneration after peripheral nerve avulsion that may help understand pathogenesis of ALS in
humans.
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LEGENDS FOR FIGURES

Fig.1 Facial nerve avulsion of adult rat. (a-d) Avulsion surgery. The right facial nerve (VII) is
exposed at its exit from the stylomastoid foramen (a). The distal portion of the facial nerve is cut (b),
and the proximal facial nerve is avulsed by gentle traction using microhemostat forceps (¢). An arrow
in (d) indicates stylomastoid foramen after avulsion. Bars = 1 mm. (e) Perfusion-fixed brain tissue 4
weeks after avulsion showing the absence of extra-axial portion of facial nerve on the lesioned side
(arrow). Bar = 2 mm. (f-g) Photomicrographs of facial motoneurons at the contralateral (f,h) and
ipsilateral (g,i) side 4 weeks after the right facial nerve avulsion stained with HE (f,g) and
immunolabeled with GFAP (h, i). Bars = 100 mm. Note the loss of motonenrons with gliosis on the
lesioned side.

Fig. 2 Spinal root avulsion of adult rat. (a-d) Avulsion surgery. The right sixth (C6) and seventh
(C7) cervical segment nerves are identified underneath the ventral plate (vent.pl.) (a). The C7 distal
portion is cut, lifted upon the phrenic nerve (ph.n.) (b), and the C7 nerve is exposed until the point
where the vertebral foramen was identified. Using microhemostat forceps, the C7 ventral and dorsal
roots and dorsal root ganglia (DRG) were avulsed and removed (¢). An arrow in (d) indicates C7
intervertebral foramen after avulsion. Bars = 1 mm. (e, f) Perfusion-fixed spinal cord tissue 6 weeks
after avulsion showing the absence of C7 ventral (e) and dorsal (f) roots and DRG on the lesioned
side (arrows). Bars = 2 mm. (g, h) Photomicrographs of spinal cord 6 weeks after C7 root avulsion
stained with KB (g) and immunolabeled with GFAP (h). Bars = 200 mm. Note the atrophy of C7
ventral horn with loss of motoneurons and gliosis on the lesioned (right) side.

Fig. 3 Photomicrographs of Epon-embedded semithin sections of facial nucleus at the contralateral
(a) and ipsilateral (b-d) side 1 (b), 2 (c¢), and 4 (d) weeks after avulsion. Shrunken motoneurons
show dispersed Niss! substance, nuclear caps (arrows) and intracytoplasmic granules (arrowheads)
but no morphological features of apoptosis after avulsion. Decreased numbers of neurites in neuropil
and degradation of myelin are also noted. Toluidine Blue stain. Bars = 30 mm.

Fig. 4 The percentages of surviving facial motoneurons at the ipsilateral (lesion) side relative to the
contralateral (control) side after facial nerve and seventh cervical (C7) root avulsion.
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Fig. 5  Adenoviral vectors encoding human glial cell line-derived neurotrophic factor
(AXCARGDNF), mouse brain-derived neurotrophic factor (AxCAmBDNFME), rat ciliary
neurotrophic factor (AXCANrCNTF), rat cardiotrophin-1 (AXCANrCT1), respectively), human
insulin-like growth factor-1 (AxCAAIGF1!), mouse transforming growth factor-b2 (AxCAmTGFb2),
and rat growth inhibitory factor (AxCArGIFM).

mNGF-ss; mouse nerve growth factor (NGF) signal sequence.

Fig. 6 The percentages of surviving facial motoneurons at the ipsilateral (lesion) side relative to the
contralateral (control) side after avulsion and treatment with PBS, AxCALacZ (white Dbars),
AxCAhGDNF, AxCAmBDNFME, AxCANTCNTF, AxCANrCT1, AxCAhIGF1, AXCAmTGFb2,
or AXCArGIFM (shaded bars) as well as pairwise combinations of these vectors {black bars). Results
are presented as mean + SD (PBS: n=8, others: n=4). Statistical comparison was done by Mann-
Whitney U test. *p<0.05 vs. PBS-, AxCAlacZ-, AxCANrCNTF-, AxCANrCT1- and
AxCAQIGF1-treated groups; **p<0.05 vs. AXCAhGDNF- and AxCAmBDNFME-treated groups.
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