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RESULTS

Northern Blot Hybridization

As shown in FIGURE 1, a single band of 4.4 kb for Dnmt2 was detected with
antisense riboprobe. Our result was consistent with a previous report for the cloning
and functional analysis of murine Dnmt2, which detected three transcripts of 1.6,
2.6, and 4.4 kb.*

A :V 7 ..@' AR, iy

.
itk ;f;:»

5 50

FIGURE 2, Representative
in situ image of Dnmt2 and ree-
tin. (A) Dnmt2 mRNA in ros-
tral stice, including hippo-
campus; (B) reelin mRNA in
caudal slice, including stria-
tum; and (C) reelin mRNA in
rostral slice, including
hippocampus.
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In Situ Hybridization

Representative in situ images are shown in FIGURE 2. Strong hybridization signals
of Dnmt2 and reelin were observed in brain regions: piriform cortex, hippocampus,
and habenular nucleus. FIGURE 3 shows changes in Dnmt2 mRNA after MAP treat-
ment, which significantly decreased by 27% to 39% in hippocampus dentate gyrus
(DG), CAl, and CA3 24 h after MAP. No change was observed in habenular nucleus.
Changes in reelin mRNA are shown in FIGURE 4, which significantly decreased by
28% in frontal cortex 3 h after MAP. Reelin mRNA was not changed by MAP in pir-
iform cortex, striatum, hippocampus, and habenular nucleus.
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¢h 1h 3h Sh 24h oh 1h 3h Sh 24h
time aftar MAP time after MAP
DNMT2 habenular nucleus
8
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0

Oh 1h 3h 9h 24h
time after MAP

FIGURE 3. Dnmt2 mRNA in the rat brain: time¢ course after single MAP treatment.
Values are expressed as mean £ 5.1, **P < 01; ***P < .0001; analyzed by ANOVA.
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FIGURE 4. Reelin mRNA in the rat brain: time course after single MAP treatment.
Values are expressed as mean + S.D. *P <.03; analyzed by ANOVA.,

DISCUSSION

Thus far, four mammarian Dnmts (Dnmtl, 2, 3a, and 3b) have been identified.
While Dnmt1 is a maintenance methyltransferase to preserve the preexisting meth-
ylation pattern of DNA, Dnmt3a and 3b are de nove methyltransferase. Damt2, de-
spite having all the conserved DNA methyltransferase motifs, may be involved in
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cellular processes other than DNA methylation, such as DNA repair, DNA recombi-
nation, and carcinogenesis.* We observed decreased Dnmt2 mRNA in the hippo-
campus 24 h after MAP treatment, but not in the habenular nucleus. In our previous
experiment, we also observed decreased Dnmti mRNA in the hippocampus of
Fischer 344 rats, 3 h after acute MAP treatment. Hippocampus plays an important
role in adaptive behavior, including drug dependence and psychaosis.’ Decreased hip-
pocampal Dnmt2 mRNA by MAP might reflect long-term alterations in gene expres-
sion, which is responsible for the persistence of MAP-induced mental disorders.

Epigenetic differences (i.c., differences in DNA methylation status) in genomic
DNA might explain the discordance for schizophrenia in monozygotic twins.® So far,
we only have data on MAP-induced changes in Dnmtl and Dnmt2 for mRNA, Fur-
ther studies will be necessary to discover whether MAP can affect the protein expres-
sion and function of Dnmts, and whether MAP can alter DNA methylation of genes

" related to the pathogenesis of schizophrenia, including reelin,

We observed changes in reelin mRNA only in the frontal cortex, which was de-
creased by 30% 3 h after MAP treatment, but returned to baseline by 24 hafter MAP.
Because the MAP-induced decrease in reelin mRNA was temporary, the functional
significance of this alteration remains unclear. However, our results are partially
consistent with a previous report, which found a significant decrease in reelin mRNA
in the frontal cortex, temporal cortex, cerebellum, caudate nucleus, and hippocam-
pus in schizophrenic patients.2 Our results suggest that MAP can cause a decrease
in reelin mRNA exclusively in the frontal cortex, which is similar te changes ob-
served in schizophrenic patients and a possible animal model for schizophrenia, the
heterozygous reeler mouse. Because the expression of reelin is regulated by DNA
methylation, it should be elucidated if MAP can alter the methylation status of the
CpG island in the promoter of the mouse reelin gene, as well as its mRNA and pro-
tein expression in the rat frontal cortex. If this is the case, a MAP-induced decrease
in reelin mRNA might be related to the pathogenesis of schizophrenia-like symp-
toms in MAP psychosis.
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Regional Differences in Extracellular Dopamine and Serotonin

Assessed by In Vivo Microdialysis in Mice Lacking Dopamine
and/or Serotonin Transporters

Hao-wei Shen', Yoko Hagino', Hideaki Kobayashi', Keiko Shinohara-Tanaka', Kazutaka lkeda',
Hideko Yamamoto', Toshifumi Yamamoto?, Klaus-Peter Lesch®, Dennis L Murphy‘. F Scott Halt®,
George R Unl® and Ichiro Sora*'*¢
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Medicine, japan

Cocaine conditioned place preference (CPP} is intact in dopamine transporter {DAT) knockout (KO) mice and enhanced in serotonin
transporter (SERT) KO mice. However, cocaine CPP is eliminated in double-KO mice with no DAT and either no or ane SERT gene
copy. To help determine mechanisms underlying these effects, we now report examination of baselines and drug-induced changes of
extracellular dopamine (DA, and serctonin (5-HT.} levels in microdiatysates from nucleus accumbens {NAC), caudate putamen
(CPu), and prefrontal cortex (PFc) of wild-type, homozygous DAT- or SERT-KO and heterozygous or homozygous DAT/SERT double-
KO mice, which are differentially rewarded by cocaine. Cocaine fails to increase DA, in NAc of DAT-KO mice. By contrast, systemic
cocaine enhances DA, in both CPu and PFc of DAT-KO mice though local cocaine fails to affect DA, in CPu. Adding SERT to DAT
deletion attenuates the cocaine-induced DA, increases found in CPu, but not those found in PFc. The selective SERT blocker fluoxetine
increases DA, in CPu of DAT-KQO mice, while cocaine and the selective DAT blocker GBR!290% increase 5-HT ., in CPu of SERT-KO
mice. These data provide evidence that (a) cocaine increases DA, in PFc independently of DAT and that (b), in the absence of SERT,
CPu levels of 5-HT . can be increased by blocking DAT. Cocaine-induced alterations in CPu DA levels in DAT-, SERT-, and DAT/SERT
double-KO mice appear to provide better correlations with cocaine CPP than cocaine-induced DA level alterations in NA¢ or Pfe.

INTRODUCTION

Cocaine increases extracellular levels of dopamine (DA),
serotonin (5-HT) and norepinephrine (NE) by blocking the
neural plasma membrane transporters for those neuro-
transmitters. Increased extracellular DA (DA,;) levels in
mesocorticolimbic DA systems have been postulated to
mediate cocaine reward (Kuhar et al, 1991; Koob and
Nestler, 1997; Bardo, 1998; Kelley and Berridge, 2002).
However, homozygous dopamine transporter (DAT) knock-
out (KO} mice (DAT—/~ mice) express intact cocaine
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reward in conditioned place preference (CPP) (Sora et al,
1998) and drug self-administration paradigms (Rocha et al,
1998). Cocaine reward is eliminated in double-KOQ mice
with no DAT gene copies and either no or one copy of the
SERT gene (Sora et al, 2001), but not in double-KO mice
with neither DAT nor NET gene copies (Hall et al, 2002).
Further, serotonin transporter (SERT) blockade with
fluoxetine or norepinephrine transporter (NET) blockade
with nisoxetine can yield rewarding effects in DAT-KO
mice, which are never seen in wild-type animals (Hall et al,
2002).

We and others have postulated that the retention of
cocaine reward in DAT-KO mice may be due to (a} roles for
non-DA systems in normal cocaine reward and (b)
adaptations to the lifelong loss of DAT found in DAT-KO
mice (Kirkpatrick, 2001; Sora et al, 2001; Ukl et ai, 2002).
Some of these adaptive changes could come from involve-
ment of redundant monoaminergic systems in cocaine
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reward. Since each transporter displays significant affinities
for each monoamine (Faraj et al, 1994; Giros et al, 1994; Gu
et al, 1994; Eshleman er al, 1999), the absence of its cognate
transporter might allow a moncamine to diffuse further
from its site of release and be accumulated by another
transporter,

Cocaine and selective norepinephrine transporter {NET)
blockers (eg reboxetine) are each reported to increase DA,
in NAc of DAT-KO mice, suggesting that NET could act as
an alternative uptake site for DA in such animals and that
NET blockade might be 2 mechanism for both the cocaine-
and nisoxetine-induced rewards found in DAT-KO mice
(Carboni et al, 2001; Hall et al, 2002). However, in vitro data
fail to identify cocaine influences on CPu or NAc DA uptake
in DAT-KO mice (Budygin e! al, 2002; Moron et al, 2002).
The simple idea that NET mediates cocaine reward in the
absence of DAT is also inccmpatible with observations that
cocaine reward is ablated in DAT/SERT double-KO mice
that express normal levels of NET (Sora et al, 2001).

Roles for 5-HT systems in cocaine reward (or aversion)
are also less than clear from current data (Cunningham and
Callahan, 1991; Kleven et al, 1995; Rocha et al, 1997; Kleven
and Koek, 1998; Lee and Kornetsky, 1998; Parsons et al,
1998; Shippenberg et al, 2000; Baker et al, 2001; Sasaki-
Adams and Kelley, 2001). Homozygous SERT-KO mice
display enhanced cocaine CPP that is increased even more
in combined SERT/NET double-KO mice (Sora et al, 1998;
Hall et al, 2002). SERT-KO mice, in themselves and in
combination with DAT-KOs, thus provide interesting
models in which to investigate 5-HT, DA, and 5-HT/DA
interactions important for psychostimulant reward.

In this present study, we have therefore examined
baselines and drug-induced changes of DA, and 5-HT,,
in several brain regions implicated in psychostimulant
effects, the NAc, CPu and prefrontal cortex (PFc) in DAT-
KO, SERT-KO, and both heterozygous and homozygous
DAT/SERT double-KO mice. We have studied the effects of
both the nonselective blocker cocaine and the selective
SERT and DAT blockers fluoxetine and GBR12909, These
investigations provide insights into adaptive processes
found in these mice and into 5-HT, DA, and 5-HT/DA
interactions of the possible importance for cocaine reward.

MATERIALS AND METHODS

Animals

Mutant mice lacking DAT, SERT, and littermate wild-type
mice were obtained from heterozygote crosses on 129/C57
mixed genetic backgrounds. DAT/SERT double-KO mice
were obtained by intercrossing single KO lines as described
previously (Sora et al, 2001). DNA extracted from tail
biopsies was genotyped using PCR. Mice were group-
housed (two to four per cage) with food and water ad
Libitum in a room maintained at 2242°C and 65+5%
humidity under a 12h light-dark cycle. Male and female
mice from 10-24 weeks old of each genotype group
{nequals;4-8) were used in each experiment equally. All
animal experiments were performed in accordance with the
Guidelines for the Care of Laboratory Animals of the Tokyo
Institute of Psychiatry.

Neuropsychopharmmacology

For the CPu cocaine study, all the nine DAT x SERT
genotypes were examined (DAT +/+ SERT+/4, DAT 4+ /4
SERT+/—, DAT+/+SERT—/—, DAT+/-SERT+/+,
DAT+/-SERT+/-, DAT+/-SERT-/-, DAT-/-
SERT +/+, DAT~/-SERT + /-, and DAT—/—SERT-/-).
For NAc and PFc cocaine studies and for fluoxetine CPu and
NAc studies, the four homozygous genotypes were exam-
ined (wildtype, DAT~/—SERT +/+, DAT +/+SERT~/—,
DAT~—/-SERT-/-). GBR12909 effects on CPu 5-HT,, levels
were examined in wild-type and DAT + / + SERT—/— mice.

Surgery

Mice were stereotaxically implanted with microdialysis
probes under sodium pentobarbital anesthesia (50 mg/kg)
in CPu (anterior +0.6mm, lateral 4+ 1.8mm ventral
—4.0mm from bregma), NAc (anterior + 1.2mm, lateral
+ L.0mm ventral -5.0mm from bregma) or PFc {anterior
+ 2.0 mm, Jateral + 0.5 mm ventral —3.0 mm from bregma)
according to the atlas of Franklin and Paxinos (1997). Probe
tips were constructed with regenerated cellulose membranes
that provided 50kDa molecular weight cutoffs, outer
diameters of 0.22mm, and membrane lengths of either
1mm (NAc) or 2mm (CPu and PFc) (Eicom, Kyoto, Japan).
Dialysis probe placements were verified histologically at the
ends of each experiment (Figure 1), and experimental data
were excluded if the membrane portions of the dialysis
probes lay outside the central CPu, medial PFc or NAc core
or shell regions, respectively.

Figure | Location of dialysis probes in coronal sections of PFc {3}, NAc
(b), and CPu {c). The arrows illustrate the implantation sites of dialysis
probes.
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Microdialysis and Analytical Procedure

At 24h after implantation, probes in freely moving mice
were perfused with Ringer’s solution (147 mM Na‘t, 4mM
K*, 1.26mM Ca**, 1mM Mg**, and 152.5mM CI7, pH
6.5) at 1 p/min for 180 min. DA, and 5-HT,, baselines were
obtained from average concentrations of three consecutive
10 min, 10 ul samples. These and subsequent 10 min, 10 ul
dialysate fractions were analyzed using an AS-10 auto-
injector (Eicom), high-performance liquid chromatography
(HPLC), with a PPS-ODS reverse-phase column (Eicom)
and a ECD-100 graphite electrode detector (Eicom). The
mobile phase consisted of 0.1 M phosphate buffer (pH 5.5)
containing sodium decanesulfonate (500mg/l), EDTA
(50mg/1), and 1% methanol. Detection limits for DA and
5.HT were 1fmol/sample with signal-to-noise ratios of at
least 2. In vitro recoveries from the 1- and 2-mm membrane
length probes were 10 and 15%, respectively.

Drugs

Test drugs were dissolved in saline for systemic adminis-
tration or in Ringer’s solution for local infusion via
microdialysis probes. After establishment of stable base-
lines, cocaine HCl (10 mg/kg for subcutaneous injection or
100 pM for local infusion; Dainippon, Osaka, Japan),
fluoxetine (20mg/kg, Sigma, Tokyo, Japan), GBR12909
(10 mg/kg, Sigma) or saline (10 ml/kg) was administered
subcutaneously (s.c.) and dialysates collected for 3 or 2h,
respectively. '

Statistics

Baselines of DA, and 5-HT. were compared across
genotype groups using two-way ANOVAs (DAT genotype,
and SERT genotype). DA and 5-HT responses to drugs were
expressed as percentages of baselines. Effects of drugs on
DA,, and 5-HT., were assessed by calculating the areas
under time-response curves (AUC) for the first 120 or
180 min after drug administration. AUCs were analyzed
using two-way ANOVAs (Drug, Genotype). Least significant

DA and 5-HT in DAT/SERT-KO mice
H-w Shen et af

difference tests were applied for multiple comparisons and
P-values less than 0.05 were considered statistically
significant. Statistical analyses used STATISTICA (StatSoft
Inc., Tulsa, OK).

RESULTS
Baselines of DA, and 5-HT,, in CPu, NAc, and PFc

The mean {+SEM) baselines of DA,, and 5-HT. in
dialysates from the CPu, NAc, and PFc in mice, who were
subsequently treated with either vehicle or test drugs, are
shown in Table 1. Two-way ANOVA of DA, baselines
confirmed that DAT-KO had significant effects on DA,
baselines in CPu (F(1,91) =299.77, P<0.00001) and NAc
(F(1,55) = 101.49, P<0.00001), but not PFc (F(1,33) =0.07,
P=10.79). Dialysate DA in homozygous DAT-KO mouse
CPu and NAc was approximately 10-fold higher than that in
mice with either one or two copies of the DAT gene. 5-HT
baselines were unaffected by DAT-KO in any region.

SERT-KO exerted significant effects on 5-HT,, baselines
in each of these three regions (F(2,91) = 87.06, P<0.00001;
F(1,55) =29.95, P<0.00001; F(l,33)=80.37, P<0.00001,
respectively). In CPu, NAc, and PFe, 5-HT,, baselines in
mice with no SERT gene were six to ten times as large as
that found in mice with one or two copies of SERT gene.
DA, baselines were unaffected by SERT-KO in any region.

Interestingly, there was a significant interaction between
DAT and SERT genotype effects on basal NAc dialysate DA
levels (F(12,55) = 4.33, P« 0.05). DA, levels in NAc of mice
with no DAT or SERT genes (DAT-/—-SERT—/—) were
higher than those of mice with no DAT genes but two SERT
genes (DAT—/-SERT +/+).

Systemic Cocaine Effects on DA,, in CPu, NAc, and PFc

DA, level changes in CPu, NAc, and PFc following systemic
cocaine administration are shown in Figure 2a, ¢, and e, DA
responses to cocaine in the CPu of wild-type and DAT +/—
mice peak at 40-60 min (Figure 2a). Cocaine also induces
a slower DA response curve in the CPu of homozygous

Table | The Baselines (fmol/Gmin) of DAL and 5-HT,, in CPu, NAc and PFc

Genotype CPu NAc PFc
DAT  SERT n DA S-HT n DA 5-HT n DA S.HT
-/t ++ 18 738844597 1.82+0.15 16 1779+ 1.6% 194008 10 2114041 3054036
++ +— 8 822841376 2394029 — — — - - _
++ - 13 69824712 16334258™ 15 16234223 1550 £ 4.20* g 2524035  2555+3.18*
+/— ++ g 796941232 1284013 - — — _ _ _
+- +f— 10 10512+ 10.70 2504033 — — — —_ — _
+/— —I— 9 93104 + 1409 1773+3.30™ — - — _ _ -
- ++ 15 687.18+58.16™" 161 +0.10 14 188.17£23.00% 1194043 9 2324032 3281047
R += ¢ 667.67+42397% 2384031 — — — — - _
- —i— g 54878+ 31.42™ 12784 1.46™* 14 27534+ 384774 13424 2.36* 9 2224015 17061261

DA, or 5-HT,, baselines were obtained from average concentrations (fmal/ |0 min} of three consecutive stable samples before injections, Values are the mean
(£ SEM) of basetines. *P< 00001 compared to wild-type mice; ¥P <0000 compared to mice with one copy of DAT gene; *P < 0.00G| compared to mice with one

copy of SERT gene; ®P<0.001compared to DAT—/— mice.
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Figure 2 (a ¢, and €) Temporal pattemn of DA response to cocaine (10mg/kg, s.c) in CPu, NAc, and PFe, respectively. Each point represents the mean
{ 1 SEM) of the percentage of DA, baselines. The time of injections is indicated with an arrow. (b, d, and f) Histogram represents the mean AUC (+SEM)
of DA response to salfine or cocaine in CPu, NAc, and PFc during |80 min interval after injection. **P < 0.01, ***P <0.001 compared to the safine group of
the same genotype; *P <005, **#P <0001 compared to the cocaine-treated wild-type group.

DAT-KO mice (DAT—/—SERT-/4), peaking at about
90 min (Figure 2a). This pattern is not observed in NAe,
where DAT—/—SERT +/+ mice do not exhibit any larger
increments in DA,, levels (Figure 2c). In further contrast,
wild-type, DAT—/-SERT+/+, and DAT-/-SERT-/-
mice each exhibit indistinguishable cocaine-induced DA
responses in PFc (Figure 2e).

Drug effects on DA, levels can be assessed by studying
AUCs {Figure 2b, d, and f}. ANOVAs of mean AUC (1 SEM)
for drug effects on DA, levels reveal that drugs have
significant effects on DA AUC in CPu (F(1,62)=132.32,
P<0,0001), NAc (F(1,34)=280.60, P<0.0001}, and PFc
(F(1,28)=67.59, P<0.0001). Genotype and drugx
genotype interactions were significant for DA AUC in CPu
(F(8,62) =5.45, P<0.0001; F(8, 62) =3.41, P<0.01; respec-
tively) and NAc (F(3,34)=23.82, P<0.0001; F(3,34)=
36.09, P<0.0001; respectively), but not in PFc (F(3,28) =
0.89, P=046; F(3,28)=0.94, P=043; respectively).
In CPu (Figure 2b), DAT-KO mice exhibit statistically
significant cocaine-induced increments in DA, levels,
although these increases are less than those found in wild-
type mice. By contrast, in DAT-/—SERT+/— and
DAT—/—SERT—/— mice, the same genotypes that do not
exhibit rewarding effects of cocaine also do not exhibit
cocaine-induced increases in DA, in CPu. No significant
differences are observed in cocaine-induced DA AUC
increases in CPu between the DAT +/+ and DAT+/-
mice. In NA¢ (Figure 2d), cocaine fails to increase DA, in
DAT—/— SERT +/+ or in DAT—-/-SERT—/— mice. There
are no significant differences in cocaine-induced DA
increases in NAc between wild-type and DAT+/+

Neuropsychopharmacology

SERT—/— mice. In PFc (Figure 2f), cocaine produces
significant increases in DA, in all genotypes,

Systémic Cocaine Effects on 5-HT,, in CPu, NAc, and
PFc

The temporal patterns of SHT responses to cocaine in CPu,
NAc, and PFc are shown in Figure 3a, ¢, and e, DAT +/+
SERT—/— and DAT +/—SERT—/— mice show gradual 5HT
responses to cocaine in CPu (Figure 3a) and NAc
(Figure 3c), but not in PFc (Figure 3e). 5-HT response
curves produced by cocaine are observed in CPu (Figure 3a)
and NAc (Figure 3c) in all genotypes except DAT—/-
SERT-/— mice. The peak of 5-HT response are smaller for
SERT—/— mice than for either SERT+/+ or
SERT + /— mice. SERT~/— mice exhibit no 5-HT response
to cocaine in PFc (Figure 3c), while wild-type mice exhibit
robust increases,

Drug effects on 5-HT,, levels are expressed as mean AUC
(£ SEM) in Figure 3b, d, and f. Two-way ANOVAs of
the AUC for 5-HT responses to cocaine show significant
effects of Drug, Genotype, and Drug x Genotype inter-
actions in CPu (F(1, 62) = 181.49, P <0.0001; F(8,62) = 5.01,
P<0.0001; F(8,62)=4.88, P<0.0001; respectively), NAc
(F(1,34)=31.57, P<0.0001; F(3,34)=6.44, P<0.0001;
F(3,34)=8.41, P<0.0001; respectively) and PFc
(F(1,28) =57.74, P<0.0001; F(3,28)=1155, P<0.0001;
F(3,28)=15.59, P<0.0001; respectively). In CPu
(Figure 3b) and NAc (Figure 3d), multiple AUC compar-
isons reveal that cocaine significantly increases 5-HT,, in
DAT +/+SERT—/— and DAT+4/-SERT-/— mice, but

—126—



=0 CPuy

5-HT (% of basal level) o

DA and 5-HT In DAT/SERT-KO mice
H-w Shen et ol

5 2o

g

20 D 20 40 60 80 100 120 140 140 180
Time (min)

o

d
00, CPuU 0 NAC

L]
.
5
+

1l

S-HT (AUC)
[ |

LXNREH

§

20 0 0 40 80 80 100 120 140 180 180

Time {min)

20 0 20 40 80 0 100 120 140 100 180
Time {min}

i

PFc

3

Salina Cocaine

Figure3 (a c and e) Temporal pattern of 5-HT response to cocaine (| 0mg/kg, s.c) in CPu, NA, and PF, respectively, The time of injections is indicated
with an amow. () Histogram represents the mean AUC (£ SEM) of 5-HT response to saline or cocaine in CPu, NAC, and PFc during the 180 min interval
after injection. *P<0.05, #**P <0001 compared to the saline group of the same genotype; *P.<005, *¥*P <0.00] compared to the cocaine-treated wild-

type group.

not in DAT—/—SERT—/— mice. SERT +/— mice display
cocaine-induced increases in 5-HT,, in CPu that are similar
to those found in wild-type values. PFc 5-HT, levels are
not altered significantly by cocaine in SERT—/— mice
(Figure 3f).

Systemic Fluoxetine Effects on DA, in CPu and NAc

The temporal patterns of DA response to fluoxetine in CPu
and NAc of DAT+/+ SERT +/+, DAT—/-SERT +/+,
DAT +/+ SERT—/—, and DAT-/-SERT-/— mice are
shown in Figure 4a and c. In CPu (Figure 4a), DAT—/-
SERT +/ + mice exhibit gradual DA responses to fluoxetine
that display time courses similar to those of cocaine and
persist for at least 3h (Figure 4a), Two-way ANOVAs of DA
AUC responses show significant effects of Drug
(F(1,33) =9.62, P<0.01) and Drug x Genotype interactions
(F(1,33) = 4.94, P<0.01). Multiple comparisons reveal that
fluoxetine significantly increases DA AUC only in the
CPu of DAT-—/—SERT +/+ mice (Figure 4b). In NAc,
DA responses to fluoxetine display no significant effects
of either Drug (F(1,29)=0.0076, P=0.93), Genotype
(F(1,29)=0.49, P=0.69), genotype (F(1,29)=0.69,
P=0.41) or Drug x Genotype interaction (F(3,29)=1.55,
P=0.22) (Figure 4d).

Systemic GBR12909 Effects on 5-HT, in CPu

The temporal pattern of CPu 5-HT response to GBR12909 is
shown in Figure 5a. DAT+/+ SERT—/— mice exhibit
remarkable 5-HT,, increases after administration of
GBR12909, which are not seen in WT mice. These SERT-

KO mice continue to display elevated CPu 5-HT,, levels for
at least 3h. Two-way ANOVA of the AUC of the DA
response to GBR 12909 shows significant effects of Drug
(F(1,13) =14.43, P<0.01), Genotype (F(1,13)=7.63,
P<0.05), and Drugx Genotype interactions (F(1, 13) =
5.74, P<0,05). Multiple comparisons show that GER12909
administration significantly increases CPu 5-HT in
DAT +/ + SERT—/—, but not in wild-type mice (Figure 5b).

Local Cocaine Effects on DA, and 5-HT,, in CPu

DA,, and 5-HT., level changes in CPu following local
cocaine infusion are shown in Figure 6a and c. Local cocaine
cannot induce DA response curve in CPu of DAT-/-
SERT +/+ and DAT—/~SERT—/— mice, but produces
gradual 5-HT response curve in DAT +/ + SERT—/— mice.

ANOVAs of mean AUC (£ SEM) for DA responses reveal
significant effects of Drug, Genotype, and Drug x Genotype
interactions in CPu (F(1,24)=161.46, P<0.0001;
F(3,24) =48.20, P<0.0001; F(3,24)=47.30, P<0.0001;
respectively). Multiple AUC comparisons show that
local cocaine fails to increase DA, in CPu of DAT—/-
SERT+/+ ot in DAT—/-SERT—/— mice {Figure 6b).
ANOVAs of mean AUC (+SEM) for 5-HT responses also
reveal significant effects of Drug, Genotype, and
Drug x Genotype interactions in CPu (F(1,24) =43.26,
P<0.0001; F(3,24)=9.55, P<0.0001; F(3,24)=9.70,
P <0.0001; respectively). Multiple comparisons reveal that
local cocaine significantly increases 5-HT., in wild-type,
DAT +/+ SERT—/— and DAT—/—SERT+/+ mice, but
not in DAT—/—SERT ~/— mice {Figure 6d). Moreover, there
were no significant changes in NAc DA, in DAT-/-
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SERT +/+ and DAT—/—-SERT—/— mice after local cocaine
infusions (data not shown).

DISCUSSION

These microdialysis results reveal parallels with and
differences from the patterns of KO effects on reward
elicited by cocaine and fluoxetine that we have previously
reported in these mouse strains, We can thus evaluate
hypotheses about the pharmacological prefiles and brain
localization of processes hypothesized to mediate cocaine
reward with regard to their convergence or divergence with
this microdialysis data.

Differential DA Responses in to Cocaine in CPu, NAc,
and PFc and Correlations with Assessments of Cocaine
Reward

The current data do not provide simple correlations with
models that postulate that enhanced NAc DA, levels alone
are necessary and sufficient for cocaine reward. Although
this hypothesis has been supported by data from micro-
injection and lesion studies (Kuhar et al, 1991; Koob and
Nestler, 1997; Bardo, 1998; Kelley and Berridge, 2002), many
results from gene KO studies fail to support the simple
hypothesis that DA alone mediates the rewarding effects of
cocaine. Our current observations that cocaine does not
increase DA, in NAc of homozygous DAT-KO mice
contrasts with the nearly-intact cocaine reward found in
these animals (Rocha et al, 1998; Sora et al, 1998). These in
vive microdialysis data are also consistent with studies
which document failure of cocaine to block DA uptake in
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NAc samples taken from DAT homozygous mice in in vitro
experiments (Budygin et al, 2002; Moron et al, 2002).

The current data also fail to provide simple correlations
with models that postulate that enhanced PFc DA levels are
necessary and sufficient for cocaine reward. This hypothesis
has also been supported by a substantial body of lesion and
microinjection data (Goeders and Smith, 1983; Goeders et al,
1986; Bardo, 1998; Tzschentke, 2001). Cocaine increases
DA,, in PFc of both wild-type and homozygous DAT-KO
mice that exhibit cocaine reward and DAT/SERT double
homozygous KO mice that do not display cocaine reward.

Intriguingly, the current results for DA in CPu appear to
provide the best fit with studies of cocaine-induced place
preferences. Although intra-CPu cocaine does not affect
DA, levels in DAT-KO mice, systemic cocaine causes about
1.5-fold increase in peak DA, concentrations in CPu
dialysate from DAT-KO mice that are rewarded by cocaine,
but not from DAT/SERT double homozygous KO mice that
lack cocaine CPP, Systemic fluoxetine also increases CPu
DA,, levels in homozygous DAT-KO mice in which this
compound is rewarding, but not in wild-type mice or
homozygous SERT-KO mice in which fluoxetine does not
produce a place preference.

Differential 5-HT Responses to Cocaine in CPu, NA¢,
and PFc and Correlations with Assessments of Cocaine
Reward

Although cocaine-induced increases in CPu and NAc
5-HT,, are found in SERT-KO mice that exhibit enhanced
cocaine CPP, the magnitude of the increases in 5-HT,, after
cocaine administration is attenuated when it is compared
with wild-type mice. Interestingly, chronic SERT blockade
with fluoxetine can also potentiate cocaine reward (Cun-

ningham and Callahan, 1991; Kleven and Koek, 1998). It is
conceivable that the attenuation of cocaine-induced 5-HT,
rise may lead mice more sensitive to the reward effect of
cocaine. These sorts of data, and the current results,
continue to point to possible roles for 5-HT in cocaine
reward, especially in light of the more complex hypotheses
of the basis of cocaine reward discussed below.

5-HT,, Clearance by DAT, DA, Clearance by NET, and
opportunities for ‘Promiscucus Uptake’

Removal of a transporter that usually provides inactivation,
re-accurnulation, and recycling of a released monoamine
neurotransmitter provides opportunities for greater diffu-
sion of the monoamine, documented by higher extracellular
dialysate concentrations noted here. Removal of a cognate
transporter also enhances the opportunities for transmitter
uptake by a transporter that normally recognizes another
monoamine, The presence of the same vesicular transporter
in DAT-, SERT-, and NET-expressing neurons provides the
opportunity for the monoamine that has been taken up by a
non-cognate plasma membrane transporter to be accumu-
lated into vesicles, and to be re-released as a ‘false
transmitter’ (Liu and Edwards, 1997; Uhl et al, 2000). DA
accumulation by NET-expressing neurons also provides the
opportunity for DA to be subjected to f-hydroxylation to
produce norepinephrine, providing a ‘true’ transmitter for
noradrenetgic neurons, It is interesting to note that
elimination of monoamine transporters has different effects
on basal monoamine levels in different brain regions,
supporting ideas that factors that mediate DA and 5-HT
clearance from synaptic clefts may differ substantially from
one terminal field to another.
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Many of the present and previously reported results
appear to provide evidence for uptake by non-cognate
transporters, and even for possible ‘false transmission’ in
these transporter-KQ mice. Cocaine and the selective DAT
blocker GBR12509 produces a substantial increase in
dialysate 5-HT in SERT-KO mice that is not found in
wild-type animals. These findings were supported by
previous reports that have documented 5-HT uptake by
cultured neurons from SERT-KO mice that could be
blocked by selective DAT blockers (Pan et al, 2001), and
5-HT-like immunoreactivity in substantia nigra and ventral
tegmental area dopaminergic neurons (Zhou et al, 2002).
False transmission may be region-dependent, with dif-
ferences in the relative densities of DAT- SERT- and
NET-expressing neural elements providing differential
opportunities for such processes.

Moreover, our observations of virtually identical PFc
DA,, baselines in each of these KO strains appear to support
a relatively reduced prominence of DAT-mediated DA
uptake in this region even in wild-type mice. These
observations are compatible with the relatively sparse
distribution of PFc DAT in several species (Freed et al,
1995; Sesack et al, 1998), in contrast with more prominent
NET and SERT expression. They are also in accord with
pharmacological and other evidence for significant NET-
mediated DA uptake in rodent PFc (Di Chiara et al, 1992;
Tanda et al, 1997; Yamamoto and Novotney, 1998). DA may
thus be accumulated by NET in PFc of both wild-type and
DAT-KO mice.

The current observations in DA response to cocaine and
fluoxetine in CPu of DAT-KO mice may provide a different
picture. Although systemic cocaine and flucxetine increase
significantly CPu DA,, in DAT-KO mice, local cocaine fails
to change it. These results demonstrate that SERT does nt
play a role of ‘promiscuous uptake’ in DA clearance.
Systemic cocaine- or fluoxetine-induced DA increase in CPu
of DAT-KO mice may result from DA release from activated
DA neuron rather than local clearance by SERT.

Comparisons with Other Results

Observations that CPu dialysate monoamine levels appar-
ently provide the best parallel with the loss of cocaine CPP
found in current results could be consistent with a
previously underappreciated role for CPu structures in
mediating some of the ‘learned’ features of cocaine reward
that are manifest in conditioned place preference testing
(White and McDonald, 2002). These structures can be
critical for stimulus-response ‘habit’ learning, including that
related to reward (Jog et al, 1999; Reynolds et al, 2001). It is
conceivable that this structure may play an even greater role
in DAT-KO mice that lack cocaine-induced DA,, elevations
in NAc.

The failure of dialysis resuits for DA alone in NAc or PFc
to parallel cocaine reward effects of various KOs and the
apparent parallel in CPu should not prevent further
consideration of; (a) multiple compensating contributions
of monoamines to the rewarding effects of cocaine; (b)
contributions of cocaine effects on monoamines in other
brain regions, for example, ventral pallidum (Gong et al,
1996, 1997), ventral tegmental area (Roberts and Koob,
1982; Ranaldi and Wise, 2001) for cocaine reward; (c) effects

Neuropsychopharmacology

of nonmonoaminergic adaptations to the retained cocaine
reward in the transporter KO mouse strains that retain such
reward. Monoamine actions in brain regions such as the
ventral tegmental area have been postulated to be central to
the rewarding actions of major drug classes, such as opiates
(Wise, 1989; Garzon and Pickel, 2001) and stimulants. It is
quite conceivable that monoamine actions in areas not
sampled in the current studies could play roles in normal
cocaine reward mechanisms, and in adaptations that may
underlie the retention of cocaine reward in DAT- and in
SERT-KO mice. Mice with single or multiple transporter
deletions display many adaptive alterations, as assessed
through behavioral, neurochemical, per- or post-synaptic
receptor binding, gene expression, and other analytical
approaches. None of the current data should hinder
attempts to add more explanatory power for the remarkable
behavioral pharmacological profiles displayed by these KO
mice through use of any or all of these alternative
approaches.

The current results in NAc and CPu DA response to
cocaine in DAT-KO mice produced in our laboratory, while
highly reproducible in our hands, differ from those
obtained in reports from another line of DAT-KO mice
that which showed that systemic cocaine and reboxetine
(NET blocker} increased DA,, remarkably in NAc¢ of DAT-
KO mice (Carboni et al, 2001). The different DA response to
cocaine in NAc and CPu between Carbeni’s and our DAT
KOs may be due to the different DNA construction which
was used to disrupt DAT gene. Moreover, our findings are
consistent with other reports which demonstrated that
cocaine could not affect DA clearance in NAc of DAT-KQ
mice via in vitro experiments. It is noteworthy that (1) DA,
baseline in NA¢ of DAT-KO mice is about 10 times greater
than that in wild-type mice, and that (2) the capacity for DA
uptake of NET is far weaker than that of DAT (Giros et al,
1994; Gu et al, 1994). These may be the reasons why NET
cannot show redundancy for DAT in NAc.

In summary, the present work adds to previous data
concerning the behavioral consequences of DAT and SERT
deletion, by suggesting that cocaine CPP does not
necessarily correlate with simple elevations of DA the NAc
or PFc. It points out unanticipated correlations with DA,
elevations in CPu. It is interesting that the CPu findings
parallel behavioral observations of the rewarding profiles of
not only cocaine but also of fluoxetine in these varying
mouse strains. While these correlations do not prove
causation, the data support careful re-examination of CPu
roles in psychostimulant reward {or reward learning) in
both wild-type and DAT-KO mice, including both the dorsal
and ventral CPu regions likely to be sampled with our
microdialysis approaches. Another view of the current
results is that the double homozygous DAT/SERT combined
KO mice that failed to display either cocaine-induced DA,
or 5-HT,, elevations in NAc also failed to exhibit cocaine
CPP, suggesting perhaps that either DA, or 5-HT,,
elevation can mediate cocaine reward and that the absence
of both effects is required to eliminates the cocaine CPP.
The current data also add to the growing body of evidence
that may indicate uptake of released monoamines by non-
cognate transporters when their cognate transporters are
deleted, and provide evidence for the brain-region specifi-
city of these processes in wild-type and in transporter KO
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mice. Each of these findings adds pieces to the complex
puzzle of the mediation of cocaine reward by monoami-
nergic brain systems.
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