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peaicillin (50 units/ml), streptomycin (50 ug/ml), and FBS
(10%).

HuH-7 cells (RCB1366) were obtained from the
RIKEN Cell Bank (Tsukuba, Japan). HeLa cells (JCRBS004)
were obtained from the JCRB Cell Bank (Osaka, Japan). HEK
293 cells were purchased from Clontech. All cell lines were
cultured at 37°C under 5% CO, in high-glucose DMEM
supplemented with penicillin (50 units/ml), streptomycin (50
#g/ml), and FBS (10%).

In vitro cartilage formation by Sex gene transfer.
Embryoid bodies were formed by 3-dimensional (3-D) suspen-
sion culture for 5 days and subsequent 2-D adhesive culture on
gelatini-coated plates for 3 days. Then, the embryoid bodies
were transduced with adenoviruses -expressing the various
genes listed above, induding the SOX trio at 100 multiplicities
of infection (MOJ). Chondrogenic differentiation was detected
as fluorescence by confocal fluorescent microscopy.

For spheroid culture, human MS$Cs and adult human
DFs were cultured in 100-mm dishes until confluency, and
adenoviruses expressing the SOX genes were transduced at 50
MOI. Two days after transduction, cells were trypsinized and
500,000 cells per tube were gently centrifuged to form sphe-
roids. Spheroids were cultured in serum-free high-glucose
DMEM or in chondrogenic medium, which consisted of 300
ng/ml of BMP-2 (Yamanouchi, Tokyo, Yapan) and 10 ng/ml of
TGF@3 (Techne, Princeton, NJ) in addition to high-glucose
DMEM supplemented with 10°M dexamethasone, S0 ug/ml
of ascorbate, 40 pg/m! of proiine, 100 pg/m! of pyruvate, and
1X insulin~transferrin—selenium+1 (Sigma). Cells were col-
lected at 3, 7, 14, and 21 days after spheroid formation for
histochemical analyses and real-time PCR.

For analysis of monolayer-cultured human MSCs and
adult human DFs, SOX genes were transduced at 50 MOL
Cells were collected at 5, 9, 16, and 23 days after transduction
for real-time PCR. Three-dimensional culture ¢n collagen gel
was performed with 3-D Collagen Cell Culture system (Koken,
Tokyo, Japan), according to the manufacturer’s instructions.
The transduced human MSCs and adult buman DFs were
trypsinized 2 days after transduction and seeded onto a
DMEM-containing collagen gel at a density of 250,000 cells/
em? in 24-well plates and then culired in serum-free DMEM,
Cells were collected at 7, 14, and 21 days of 3-D culture. In
each culture system, the medium was replaced every 3-4 days.

Transfections of HuH-7, HeLa, and HEK 293 cell lines
with GFP-SOX expression vectors were performed with Fu-
GENE 6 transfection reagent (Roche, Mannheim, Germany).
In cotransfection, the same amount of total DNA was used,
and all plasmids were added in an equal ratio.

Real-time PCR analysis. Total RNAs from cells were
isolated with an RNeasy mini kit (Qiagen, Hilden, Germany),
according to the manufacturer’s instructions, All total RNA
samples were treated with DNase 1. Total RNAs (50 ng to 1
ug) were reverse-transcribed with MultiScribe reverse tran-
scriptase (ABI, Foster City, CA) and random hexamers in a
50-ul reaction volume, according to the manufacturer’s in-
structions, and 1 pl of each reverse transcriptase reaction was
used as a template for the second-step SYBR Green real-time
PCR. The full-length or partial-length cDNA of target genes,
including PCR amplicon sequences, were amplified by PCR,
cloned into pCR-TOPQ Zero Il or pCR-TOPO II vectors
(Invitrogen, Carlsbad, CA), and used as standard templates

after linearization. QuantiTect SYBR Green PCR Master Mix
(Qiagen) was used for the second-step SYBR Green real-titne
PCR according to the manufacturer’s instructions. SYBR
Green PCR amplification and real-time fluorescence detection
were performed with an ABI 7700 Sequence Detection system.
All reactions were run in quadruplicate. Copy numbers of
target gene messenger RNA (mRNA) in each total RNA were
calculated by reference to standard curves and were adjusted
to the human or mouse standard total RNA (ABI) with the
human GAPDH or rodent Gapdh as an internal control,

Each primer position in the coding sequences of target
genes is described below. SOXS and SOX6 primer sets were
designed on the N-terminal domain of their long isoforms. The
human set was as follows: for aggrecan, 6497-6796; for chon-
dromodulin 1, 175-431; for COL2A1, 3856-4123; for
COLSAL1, 338-635; for COL10A1, 1641~1843; for COL11A2,
2543-2836; for matrilin 3, 232-422; for SOXS, 354-854; for
S0OX6, 315-593; for SOX9, 651-762; for RUNX?2, 1270-1447;
for COL1A1, 1184-1411; and for osteapontin {OPN), 251-
446,

The mouse set was as follows: for aggrecan, 6013-6177,
for chondromodulin 1, 192-474; for Col2al, 3713-3951; for
Col9al, 1969-2196; for Collla2, 910-1120; for Sox5, 1775~
2010; and for Sox6, 2114-2271.

Western blot analysis. Western blot analysis was per-
formed with cell extracts from SOX-overexpressing cell lines,
human MSCs, and adult human DFs. Whole cell lysates or
nuclear extracts (5 pg) were separated by 5-15% sodium
dodecyl sulfate—polyacrylamide gel electrophoresis and trans-
ferred to polyvinylidene difluoride filters. The filters were
incubated with an anti-GFP antibody (1:200; Clontech), anti-
SOX antibody mixture (1:200~1:1,000 each; Santa Cruz Bio-
technology, Santa Cruz, CA, and a generous gift from Dr.
Yoshihiko Yamada, National Institutes of Health, Bethesda,
MD, and Dr. Tomoatsu Kimura, Toyama Medical and Phar-
maceutical University, Toyama, Japan). Antigen-antibody
complexes were detected with horseradish peroxidase—
conjugated secondary antibodies and visualized with the use of
an ECL-Plus system (Amersham, Piscataway, NT).

Histologic analysis. Spheroids and mouse tibias were
fixed overnight at 4°C in 4% paraformaldehyde/phosphate
buffered saline, transferred to 70% ethyl alcohol, and stored at
4°C until they were used. Subsequently, the samples were
either frozen in OCT compound and then sectioned at 10 pm
or embedded in paraffin and sectioned at 5 pm, Sections were
stained with Alcian blue, toluidine blue, or Safranin O to
evaluate the cartilaginous matrix, and with hematoxylin and
eosin to evaluate the morphology, as previously described (32).
Immunohistochemistry for Col2 and LacZ was performed as
previously described (32),

In vivo SOX gene transfer, Ten 8-week-old C57BL/6]
mice were divided into 2 groups and anesthetized with an
intraperitoneal injection of pentobarbiturate (5 mg/100 gm of
body weight). Then, 10 ul of a suspension of adenovirus vector
expressing LacZ or the SOX trio (10° MOI) was injected into
the subcutaneous tissue in front of the anteromedial diaphysis
of the tibia. The mice were killed 1 week after surgery, and the
entire tibia and surrcunding tissue were harvested for histo-
logic and immunohistochemical analyses. Whole tibias were
dissected and fixed for 2 hours in 4% paraformaldehyde/
phosphate buffered saline, pH 7.4, and decalcified for 2 weeks
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Figure 1. Induction of chondrocytic phenotypes in embryonic stem (ES) cells by the SOX trio. A,
Fluorescence of growth plate chondrocytes from the Cof2-GFP-transgenic mouse at embryonic day 18.5,
The tibias from wild-type (Wt} and Cel2-GFP neonate mice were sectioned, and the distal portions were
examined by fluorescence microscopy. The morphology of the growth plate is shown at the left with
hematoxylin and eosin staining. p = proliferating layer of growth plate chondrocytes; b = hypertrophic
layer of growth plate chondrocytes. Bar = 100 pm. B, Fluorescence of Col2-GFP ES cells treated with the
combination of SOXS5, SOX6, and SOX9 (the SOX trio). LacZ, $OX9, or the SOX trio was adenovirally
expressed in embryoid bodies (EB) of ES cells established from the Col2-GFP-transgenic mouse, and
fluorescence was gvaluated on day 3 after transduction (arrowheads). The left half of each panel shows
green fluorescence protein (GFP) fluorescence; the right half shows a merging of the GFP fluorescence
image and the transmitted image. Bar = 200 um. C, Expression of the cartilage marker genes Col2al,
Aggrecan, and Chondromodulin 1 by ES cells treated with LacZ, SOX9, or the SOX trio for 7 days. Levels

of mRNA expression were analyzed by real-time polymerase chain reaction.

in 10% EDTA, pH 7.4, After processing and embedding in
paraffin, 3-pm sagittal sections were cut and stained with
Safranin O and fast green. Immunohistochemistry for type 1I
collagen was performed as previously described (32).

Animal care was in accordance with the policies of the
University of Tokyo School of Medicine.

GenBank sequences. Human gene sequences were
obtained from GenBank (accession nos. M55172 for AGGRE-
CAN, AB006000 for CHONDROMODULIN 1, X16468 for
COL2AI, X54412 COL9AI, X50382 for COLIQAIL,
NM_080679 for COLI1A2, AJ224741 for MATRILIN 3,
ABO081589 for SOX3, AF305034 for SOX6, Z46629 for SOX9,
NM_004348 for RUNX2, Z74615 for COLI1A1, and AF052124
for OPN).

Mouse gene sequences were also obtained from Gen-
Bank (accession nos. L.07049 for Aggrecan, NM_010701.1 for
Chondromodulin 1, NM_031163 for Cel2al, D17511 for

Col9al, NM_009926 for Collla2, ABO06330 for Sox5, and
U32614 for Sox6). ’

Image acquisition. An Axioskop 2 Plus (Carl Zeiss,
Oberkochen, Germany) microscope was used for microscopic
observation (bright and fluorescence fields at X100, X200, and
X400 magnifications). Photographs were taken with an Axio-
Cam HRe¢ (Carl Zeiss) camera, and images were acquired with
AxioVision 3.0 software (Carl Zeiss).

RESULTS

Induction of cartilage marker gene expression in
ES cells by the SOX trio. To sereen for sufficient
conditions for chondrogenesis, we needed a monitoring
system that could detect chondrocyte differentiation in
an easy, precise, and noninvasive manner. For this
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purpose, we established transgenic mice expressing the
chondrocyte-specific Col2al promoter-GFP reporter
gene and isolated totipotent, undifferentiated ES cells
from them. Since GFP expression was specifically local-
ized to the cartilage in these mice (Figure 1A), ES cells
from these mice were expected to fluoresce solely upon
chondrocyte differentiation. Using this system, we exam-
ined the effects of gain and loss of function of represen-
tative factors that are known to be important for chon-
drogenesis: SOXS, SOX6, SOX9, IGF-1, FGF-2, IHH,
BMP-2, TGFB, and Wnt proteins.

Since we intended to find factors affecting chon-
drocyte differentiation directly rather than indirectly,
the assessment of fluorescence was done within 3 days
after transduction. As a result, no single factor caused
fluorescence; hence, we screened for all possible combi-
nations of these factors. It turned out that GFP expres-
sion was observed only upon treatment with the combi-
nation of SOXS5, SOX6, and SOX9 (the SOX trio)
(Figure 1B), while there was no fluorescence upon
treatment with the other combinations, including each
SOX alone, within this period (results not shown).

We then examined the expression levels of the
cartilage marker genes, which included the cartilaginous
collagens (such as Col2al, Col9a1, and Collla2), carti-
laginous proteoglycans (such as Aggrecan), and other
cartilage-specific proteins that play key roles in main-
taining cartilage structures (such as Chondromodulin 1)
(33,34). Real-time PCR analysis confirmed that the
SOX trio markedly up-regulated the levels of expression
of Col2al, Aggrecan, and Chondromodulin 1 compared
with SOX9 alone or the LacZ control (Figure 1C).

Induction of chondrocytic phenotypes in human
MSCs by the SOX trio. We next examined the effect of
the SOX trio on the chondrocyte differentiation of
human MSCs. Expression of each SOX protein by
adenoviruses was confirmed by Western blot analysis
with specific antibodies (Figure 2A). To characterize
human MSCs treated with SOX proteins, we evaluated
the levels of expression of the cartilage marker genes by
real-time PCR (Figure 2B). When cultured with serum-
free DMEM in spheroids, human MSCs treated with the
LacZ virus did not express detectable Ievels of the
cartilage-specific collagen genes COL24I, COL9A1, or
COL1142 during 3 weeks of spheroid culture. In con-
trast, when the SOX trio was overexpressed, expression
of these genes was detected as early as 3 days after
spheroid formation. The number of copies of their
mRNA continued to rise during the 3 weeks of spheroid
culture. After 3 weeks of spheroid culture, the copy
number of COL241 mRNA from human MSCs ex-

ceeded that of COL241 from the tracheal cartilage and
articular cartilage.

When an individual SOX gene was transduced,
expression of COL241, COL9A41, and COL11A42 was not
detected after 1 week of spheroid culture. After 2 weeks,
only human MSCs treated with SOX9 expressed low
levels of their mRNA. In contrast, AGGRECAN was
already expressed at a moderate level even in untreated
human MSCs, and its expression was substantially up-
regulated by treatment with SOX9 alone or with the
SOX trio after 2 weeks of spheroid culture. CHONDRO-
MODULIN I and MATRILIN 3 were also induced by
treatment with the SOX trio. The induction was first
observed after 3 days of spheroid culture, and the copy
number of their mRNA gradually increased up to 3
weeks.

We then performed histologic examinations of
human MSCs treated with LacZ or the SOX trio and
cultured in spheroids with serum-free DMEM or the
chondrogenic medium containing TGF8 and BMP-2
(Figure 2C). Human MSCs treated with the SOX trio
and cultured in spheroids with serum-free DMEM pro-
duced a proteoglycan-rich extracellular matrix charac-
teristic of cartilage, which showed purple staining (meta-
chromasia) with toluidine blue as early as 1 week after
spheroid formation, whereas those treated with an indi-
vidual SOX failed to show any staining at this stage.
After 3 weeks, induction of proteoglycan-rich matrix by
the SOX trio became more prominent. At higher mag-
nification, cells in the spheroid were found to be com-
pletely surrounded by a proteoglycan-rich matrix, resem-
bling the lacunar structure of cartilage (Figure 2D).

When cultured in the chondrogenic medium,
accumulation of proteoglycan-rich matrix was acceler-
ated (Figure 2C). After 1 week, the SOX trio induced
abundant matrix production, whereas human MSCs
treated with each SOX alone showed only weak produc-
tion. After 3 weeks, although all spheroids including the
LacZ control produced proteoglycan-rich matrix, human
MSCs treated with the SOX trio showed the most
abundant production. Staining with Alcian blue and

* Safranin O showed similar results (results not shown).

Production of type II collagen protein was de-
tected by immunohistochemistry (Figure 2E). Human
MSCs cultured in spheroids with the chondrogenic
medium and treated with the SOX trio produced the
most abundant type II collagen protein. Human MSCs
cultured with serum-free DMEM and treated with the
SOX trio and those cultured in the chondrogenic me-
dium and treated with LacZ produced the second most
abundant type II collagen protein. No type II collagen
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Figure 2. Induction of chondrocytic phenotypes in human mesenchymal stem cells (MSCs) by the SOX
trio. A, Levels of adenovirally expressed SOX protein expression by human MSCs, as detected by Western
blot analysis 5 days after transduction {expected sizes: 82 kd for SOXS, 87 kd for SOX6, and 56 kd for
S0X9). B, Levels of mRNA expression of the cartilage marker genes COL241, COL9AI, COL1142,
AGGRECAN, CHONDROMODULIN 1, and MATRILIN 3 by human MSCs. Cells were treated with
LacZ, SOX5, SOX6, SOX9, or the SOX trio and cultured in spheroids with serum-free Dulbecco’s
modified Eagle’s medium (DMEM) for 3 days, 1 week, 2 weeks, or 3 weeks, and mRNA expression was
analyzed by real-time polymerase chain reaction. As positive controls, COL24] mRNA levels were
measured in tracheal and articular cartilage. C, Production of proteoglycan-rich matrix by human MSCs
treated with LacZ, SOX5, SOX6, SOX9, or the SOX trio and cultured in spheroids with serum-free
DMEM (SFM) or chondrogenic medium {(CGM) for 1 week or 3 weeks. Spheroid sections were stained
with toluidine blue. Proteoglycan-rich matrix stained purple (metachromasia). Bar = 100 pm. D,
Higher-magnification views of proteoglycan-rich matrix produced by human MSCs treated with LacZ or
the SOX trio and cultured in spheroids with SFM or CGM for 3 weeks. Spheroid sections were stained
with toluidine blue. Bar = 20 pm. E, Expression of type II collagen protein by human MSCs treated with
LacZ or the SOX trio and cultured in spheroids with SFM or CGM for 3 weeks. Type IT collagen protein
was detected by immunohistochemistry (brown staining), Bar = 100 pm.
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production was observed in human MS3Cs cultured in
spheroids with serum-free DMEM and treated with
LacZ (Figure 2E). Interestingly, the presence of the
chondrogenic medium did not cause an increase in
mRNA levels of the cartilage marker genes (data not
shown).

Induction of chondrocytic phenotypes in non-
chondrogenic human immortalized cell lines by the
SOX trio. So far, we had found that the SOX trio can
induce chondrocytic phenotypes in totipotent ES cells
and multipotent MSCs. If the SOX trio constitutes

signals sufficient for the induction of chondrogenesis,
it may induce chondrocytic phenotypes in cells already
committed to other lineages. To test this possibility,
we chose 3 human nonchondrogenic cell lines: Hela
cells derived from the cervix, HuH-7 cells derived
from the liver (35), and HEK 293 cells derived from
the embryonic kidney (36). Since these cell lines did
not tolerate adenoviral transduction well, probably
due to rapid proliferation of adenoviruses in these
immortalized cells, we used plasmid transfection for
gene delivery,
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Figure 3. Induction of chondrocytic phestatypes in nonchondrogenic human cell lines by the SOX tric. A,
Expression of green fluoresceace protein (GFP)-tagged SOX proteins in HuH-7 cells. Each of the
plasmids expressing GFP-tagged SOX genes was transiently transfected, and their expression levels and
subcellular localization were detected as fluorescence using confocal fluorescence microscopy. Bar = 100
pm. B, Temporal mRNA expression profiles of exogenous SOXS, SOX6, and SOX9 in HuH-7, HEK 293,
and Hela cells transiently transfected with plasmids expressing these GFP-tagged SOX genes. Cells were
cultured in monclayer with Dulbecco’s modified Eagle’s medium containing 109 fetal bovine serum.
Levels of mRNA expression were analyzed by real-time polymerase chain reaction (PCR). C, Temporal
mRNA expression profiles of endogenous COL241 in HuH-7, HEK 293, and HeLa cells transfected with
plasmids expressing GFP, 80X, or the SOX trio. Levels of mRNA expression were analyzed by real-time

PCR.

When each of the plasmids expressing GFP-
tagged SOX genes was transiently transfected into these
cells, each GFP-tagged SOX protein was well expressed
and localized in the nuclei (Figure 3A). Real-time PCR
analysis revealed that the peak expression of all SOXs
was achieved at 24-72 hours after transfection (Figure
3B). The SOX trio induced COL24I mRNA expression
within 3 days (Figure 3C). The temporal profile of
COL2A1 up-regulation correlated well with those of the
exogenous SOX genes. Similar results were obtained
with COL941 and COL11A42 (data not shown). It is
noteworthy that overexpression of SOX9 zlone up-
regulated COL2A41 to some extent in HuH-7 cells ex-
pressing moderate levels of endogenous SOX5 and
SOX6 (37), but not in HelLa cells expressing no endog-
enous SOXS5 or SOXG.

Induction of chondrocytic phenotypes in adult
human DFs by the SOX trio. We further examined
whether the SOX trio could induce chondrocytic pheno-
types in well-differentiated primary mesenchymal cells
such as adult human DFs, Since adult human DFs can be
easily harvested and cultured, and grow faster than
human MSCs, they could be an alternative cell source
for cartilage tissue engineering. Adult human DFs
treated with the SOX trio were cultured in spheroids
with serum-free DMEM. The SOX trio rapidly induced
COL2A1, COLIIA2, AGGRECAN, and MATRILIN 3
within 3 days, and their levels continued to increase for
up to 3 weeks (Figure 4A). COL9A41 and CHONDRO-
MODULIN 1 were induced at 7 days after spheroid
formation, and their expression levels continued to rise
for up to 3 weeks as well, Unlike the human MSCs, adult
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Figure 4. Induction of chondrocytic phenotypes in adult human dermal fibroblasts (DFs) by the SOX
trio. A, Levels of mRNA expression of the cartilage marker genes COL24I, COL9AL, COLILA2,
AGGRECAN, CHONDROMODULIN 1, and MATRILIN 3 by adult human DFs. Cells were treated with
LacZ, SOXS, SOX6, SOX9, or the SOX wio and ¢ultured in spheroids with serum-free Dulbecco’s
modified Eagle’s mediom (DMEM) for 3 days, 1 week, 2 weeks, or 3 weeks, and mRNA expression was
analyzed by real-time polymerase chain reaction. B, Production of proteoglycan-rich matrix by adult
human DFs treated with LacZ, SOXS3, SOX6, SOX9, or the SOX trio and cultured in spheroids with
serum-free DMEM (SFM) or chondrogenic medium (CGM) for 3 weeks. Proteoglycan-rich matrix stained
purple (metachromasia) with toluidine blue. C, Higher-magnification views of proteoglycan-rich matrix
produced by adult human DFs treated with LacZ or the SOX fric and cultured in spheroids with
serum-free DMEM or chondrogenic medium for 3 weeks, Spheroid sections were stained with toluidine
blue. Bar = 20 pm. D, Expression of type 11 collagen protein by adult human DFs treated with LacZ or
the SOX trio and cultured in spheroids with serum-free DMEM or chondrogenic medium for 3 weeks.
Type II collagen protein was detected with immunohistochemistry (brown staining), Bar = 100 gm.

human DFs showed low basal expression of the cartilage
marker genes, and treatment with SOX9 alone resulted
in very weak or no induction. We compared mRNA
expression levels of the cartilage marker genes by adult
human DFs and human MSCs that were treated with the
SOX trio and cultured in spheroids with seram-free
DMEM up to 3 weeks, and found them to be compara-
ble (data not shown).

When cultured in spheroids with serum-free
DMEM for 3 weeks, adult human DFs treated with the
SOX trio exhibited an accumulation of proteoglycan-
rich matrix, whereas those treated with LacZ or with
each SOX alone did not (Figure 4B). When cultured
with the chondrogenic medium for 3 weeks, adult human

DFs treated with the SOX trio further increased the
production of proteoglycan-rich matrix. At higher mag-
nification, cells in the spheroid were found to be sur-
rounded by proteoglycan-rich rmatrix, resembling the
lacunar structure of cartilage (Figure 4C). Adult human
DFs treated with SOX9 alone showed weak, focal pro-
duction of proteoglycan-rich matrix in the presence of
the chondrogenic medium, whereas those treated with
LacZ, SOX5, or SOX6 did not (Figure 4B). Production
of type II collagen protein by adult human DFs treated
with the SOX trio and cultured with serum-free DMEM
or the chondrogenic medium was confirmed by immu-
nohistochemistry, whereas those treated with LacZ and
cultured with serum-free DMEM or the chondrogenic
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medium did pot exhibit any immunoreactivity (Figure
4D). As with the human MSCs, the presence of the
chondrogenic medium did not cause an increase in
mRNA levels of the cartilage marker genes (data not
shown).

Influence of different culture systems on the
induction of chondrocytic phenotypes by the SOX trio.
We next examined the effect of different culture systems
on chondrocyte differentiation induced by the SOX trio.
Three-dimensional cell-cell interactions and the extra-
cellular matrix are known to influence the differentia-
tion potentials of many cell types. Monolayer culture has
been reported to be disadvantageous to chondrocyte
differentiation, and therefore, spheroid culture and 3-D
culture are preferable (38). If the SOX trio provides
signals sufficient for chondrogenesis, it may obviate the
need for these specific culture formats. To test this
possibility, we compared the expression levels of the
cartilage marker genes COL241, AGGRECAN, and
CHONDROMODULIN 1 by human MSCs cultured with
serum-free DMEM in monolayer, in spheroids, and in
3-D collagen. Even in monolayer culture, treatment with
the SOX trio induced high levels of the cartilage marker
genes within 1-2 weeks, and their expression levels
increased for up to 3 weeks (data not shown). Peak
expression levels of the cartilage marker genes in mono-
layer culture were comparable to those in spheroid
culture. Similar results were obtained with adult human
DFs (data not shown).

Levels of expression of the cartilage marker
genes by human MSCs and adult human DFs treated
with the SOX trio and cultured with serum-free DMEM
in 3-D collagen cultures were much higher than those
cultured in spheroid or monolayer cultures (data not
shown), and there was substantial accumulation of
proteoglycan-rich matrix secreted into the collagen gel
{data not shown).

Induction of the expression of SOX5 and SOX6 in
vitro by SOX9. Conditional ablation of Sox? was shown
to cause a marked down-regulation of Sox5 and Sox6
mRNA expression (19), strongly suggesting that Sox9 is
necessary for the expression of Sox5 and Sox6. In our
experiments, ES cells, human MSCs, and adult human
DFs treated with SOX9 alone started to express low
levels of some cartilage marker genes after 2 weeks of
culture, suggesting the formation of the SOX trio at a
later period (Figures 2 and 4). Taken together, it is likely
that SOX9 may induce the expression of SOX5 and
SOX6, but the hypothesis has never been directly
proven. In our experiment, human MSCs treated with
SOX9 alone and cultured with serum-free DMEM in

3-D collagen for 1 week began to express SOX5 and
SOX6 mRNA, whereas those treated with LacZ and
cultured with serum-free DMEM in 3-D collagen did not
(Figure 5A). This is the first direct proof that SOX9
induces SOX5 and SOX6. We also demonstrated that
SOX5 and SOX6 did not induce each other, Similar
results were obtained with ES cells and adult human
DFs (data not shown). This induction was also seen in
monolayer or spheroid culture, but the degree of up-
regulation was smaller and took 2-3 weeks (data not
shown).

Suppression of hypertrophic and osteogenic
markers by the SOX trio. In human MSCs, mRNA for
the gene encoding the type X collagen al chain
(COL10AI), a marker for hypertrophic chondrocytes,
was up-regulated when it were cultured in the chondro-
genic medium in spheroids (39). Levels of mRNA
expression of hypertrophic and osteogenic marker
genes, such as COLI0AI, RUNX2, OPN, and COL1A1,
were markedly increased in 3-D collagen culture with
serum-free DMEM (Figure 5B). Treatment with SOX9
alone failed to suppress these genes except for COLIAI,
whereas treatment with the SOX trio suppressed all of
these genes (Figure 5B). In adult human DFs cultured in
3-D collagen with serum-free DMEM, there was no
induction of hypertrophic or osteogenic marker genes,
regardless of treatment with the SOX trio (data not
shown).

In vive induction of cartilage-like tissue by the
SOX trio. To test whether the SOX trio could influence
cartilage formation in vivo, we directly introduced the
SOX trio genes in the subcutaneous tissue. Adenovi-
ruses expressing the SOX trio were injected into the
subcutaneous tissue lying above the tibia, and 1 week
after treatment, the mice were killed, and the tissues
were harvested and analyzed histologically and immuno-
histochemically. The viruses transduced subcutaneous
cells efficiently, as shown by the positive staining for
LacZ immunoreactivity (Figure 5C). In all 5 mice
treated with the SOX trio, chondrocyte-like cells ap-
peared in the area adjacent to the bone. These cells
stained positive for Safranin O and type II collagen
immunoreactivity (Figure 5D). In contrast, no such cells
were seen in the 5 mice that were treated with LacZ.

DISCUSSION

In our screening combinations of factors that are
known to be necessary for chondrogenesis, we found
that the SOX trio induced chondrocytic phenotypes in
totipotent ES cells within 3 days. Previous studies of
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Figure 5. Induction of Sox5 and Sox6 expression by SOX9, suppression of hypertrophic and osteogenic differentiation by the SOX trio, and in vivo
induction of cartilaginous tissue by the SOX trio. A, Levels of mRNA expression of SOX3 and SOX6 in human MSCs treated with LacZ, SOXS,
SOX6, or SOX? and cultured in 3-dimensional (3-D) collagen with serum-free Dulbecco’s modified Eagle’s medium (DMEM) for 1, 2, or 3 weeks,
and mRNA expression levels were analyzed by real-time polymerase chain reaction (PCR). B, Levels of mRNA expression of the hypertrophic and
ostecgenic markers COLI0AI, RUNX2, OSTEOPONTIN, and COLIAI by human MSCs treated with LacZ, $OX9, or the SOX trio and cultured
in 3-D collagen with serum-free DMEM for 1, 2, or 3 weeks. Levels of mRNA expression were analyzed by real-time PCR. €, Adenoviruses
expressing LacZ or the SOX trio were directly injected into the subcutaneous tissue lying above the anteromedial diaphysis of the tibia (T} and the
transduction efficiency of adenoviruses was detected by immunohistochemistry for LacZ. Sections were treated with preimmune serum (PIS} ot
anti-LacZ antibody (a-LacZ). LacZ protein stained brown, Bar = 100 pm. D, Production of proteoglycan-rich matrix and induction of type II
collagen protein by the SOX trio. Sections were stained with Safranin O and fast green; cartilage (arvows) stained orange. Type II collagen protein
(arrows) was detected by immurohistochemistry (brown staining) with anti-type IT collagen antibody (a-Col2). Bar = 100 um.
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human MSCs showed that treatment with the chondro-
genic supplements TGFB, BMP-2, or both for 2-3 weeks
could induce chondrocytic phenotypes (39,40). In the
present study, the SOX trio successfully induced chon-
drocytic phenotypes in human MSCs cultured in serum-
free DMEM containing no supplements. Moreover,
human MSCs treated with the SOX trio expressed the
cartilage marker genes more rapidly and more potently
than did those treated with the conventional chondro-
genic method, and their levels of mRNA expression
induced by the SOX trio were independent of the
presence of TGFB and BMP-2. These findings raised the
possibility that the SOX trio may provide signals suffi-
cient for the induction of chondrogenesis.

We found that the SOX trio induced cartilage-
specific genes that did not belong to collagens or pro-
teoglycans: MATRILIN 3 and CHONDROMODULIN 1.
Expression of MATRILIN 3 is highly specific for carti-
lage (33). Mutations in MATRILIN 3 cause a type of
human chondrodysplasia known as multiple epiphyseal
dysplasia, which is characterized by early-onset heritable
osteoarthritis (33). Expression of CHONDROMODU-
LIN 1 is also specific for cartilage. CHONDROMODU-
LIN 1 stimulates chondrocyte proteoglycan synthesis
and inhibits capillary network formation (34,41). The
induction of these genes as well as cartilaginous collag-
ens and proteoglycans by the SOX trio further supports
the notion that the SOX trio may provide sufficient
signals for the induction of chondrogenesis.

A recent study revealed that in vitro chondrogen-
esis of murine bone marrow~derived MSCs was en-
hanced by the overexpression of SOX9 (42). Our data
with human MSCs partially support this, in that the
cartilage marker genes (COL241, COL11A42, and AG-
GRECAN) were induced in human MSCs treated with
SOX9 alone. However, the levels of COL24I and
COL11A42 expression were much lower than those in-
duced in human MSCs treated with the SOX trio. In
addition, COL941, MATRILIN 3, and CHONDRO-
MODULIN 1 were only slightly induced by treatment
with SOX9 alone. These findings suggest that SOX9
alone is not sufficient for the induction of chondrogen-
esis and further emphasizes the importance of the SOX
trio,

Although treatment with the SOX trio success-
fully induced mRNA expression of the cartilage marker
genes t0 a level comparable to that in normal cartilage
and induced the production of proteoglycan-rich matrix,
the addition of the chondrogenic medium containing
TGF B and BMP-2 further increased the accumulation of

proteoglycan-rich matrix without increasing the mRNA,
expression of the cartilage marker genes in both human
MSCs and adult human DFs, Thus, TGF3 and BMP-2
may induce other genes that are important for matrix
accumulation, or they may be working at the posttran-
scriptional level. It is noteworthy that in adult human
DFs, the chondrogenic medium had no effect on the
production of proteoglycan-rich matrix in the absence of
treatment with the SOX trio, whereas in human MSCs,
the chondrogenic medium had some positive effect in
the absence of treatment with the SOX trio. This
difference seems to be due to some basal expression of
the SOX genes in human MSCs and underscores the
important role of the SOX trio in chondrogenesis, The
exact mechanism(s) by which TGFS and BMP-2 in-
crease the accumulation of proteoglycan-rich matrix
needs to be further investigated and 2 gene array
analysis performed.

Since human MSCs consist of early mesenchymal
progenitors that are already committed to some extent,
there is a possibility that the SOX trio may merely be
expanding the existing chondroprogenitors by increasing
their proliferation or suppressing their cell death, rather
than directly inducing chondrocytic phenotypes of non-
comiiitted cells. To rule out this possibility, the SOX
trio was introduced into cell types other than human
MSCs. The SOX trio was able to induce chondrocytic
phenotypes in ES cells, which are uncommitted and
undifferentiated, as well as in cells belonging to other
lineages, such as immortalized cell lines derived from
the kidney, liver, and cervix. The SOX trio also success-
fully induced chondrocytic phenotypes in adult human
DFs cultured with serum-free DMEM. Expression levels
of the cartilage marker genes induced by the SOX trio in
adult human DFs were comparable to those in human
MSCs induced by the SOX trio and were also indepen-
dent of treatment with the chondrogenic medium. These
findings strongly suggest that expression of the SOX trio
is indeed sufficient for the induction of chondrogenesis.

The SOX trio induced chondrocytic phenotypes
in cells cultured in monolayer as effectively as in cells in
spheroid culture. Since the monolayer culture is usually
disadvantageous for in vitro chondrogenesis and since
primary chondrocytes cultured in monolayer quickly
lese chondrocytic phenotypes through a process known
as dedifferentiation, the conventional in vitro chondro-
genic methods invariably use spheroid culture or 3-D
culture. It is likely that spheroid culture and 3-D culture
may provide some unknown signals that are necessary
for chondrogenesis but are not present in monolayer
culture. The fact that the SOX trio obviated the use of
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spheroid culture further supports the importance of the
SOX trio in chondrogenesis. At the same time, it shows
the limitation of the SOX trio, since the results did not
fully match those obtained with the 3-D culture.

We found that the SOX trio helped to maintain
the phenotype of permanent cartilage by suppressing the
expression of the marker genes for hypertrophic and
osteogenic differentiation, which were induced with the
conventional chondrogenic method. This finding may
reflect in vivo reciprocal expression patterns of the SOX
trio and hypertrophic/osteogenic marker genes (21) and
enlargement of the hypertrophic zone in the epiphyseal
growth plate of S0x9** mice (43). Although the mech-
anism of the down-regulation is not yet clear, the SOX
trio may directly inhibit hypertrophic and osteogenic
markers. Alternatively, proteins such as chondromodu-
lin 1 induced by the SOX trio may down-regulate these
markers. In either case, inhibition of hypertrophic and
osteogenic markers by the SOX trio is compatible with
the notion that the SOX trio directly induces chondro-
cyte differentiation, and this finding is advantageous for
tissue engineering of articular, facial, and tracheal car-
tilage, which needs to remain nonhypertrophic and
nonosteocgenic.

This is the first study to show that SOX9 induces
SOX5 and SOX6. When treated with SOX9, both human
MSCs and adult human DFs began to express SOX5 and
SOX6 at 1 week after transduction. This finding fits the
in vivo sequential expression patterns of SOX3, SOX6,
and SOX9 and is compatible with the previously re-
ported data (19) that Sox9%°¥1™X Prx1.Cre, and Col2al-
Cre mice lost the expression of Sox5 and Sox6 in cells
that Tacked SOX9. This finding is also compatible with
our observation that overexpression of SOX9 alone
up-regulated cartilage marker genes to some extent in
HuH-7 cells expressing moderate levels of endogenous
$SOX5 and SOX6, but not in HeLa cells expressing no
endogenous SOX3 or SOX6. These observations further
stress the importance of the SOX trio over individual
SOXs in the induction of chondrocytic phenotypes. The
mechanism of SOX5 and SOX6 induction by SOX9
should be further investigated by analyzing human
MSCs and adult human DFs treated with SOX9 alone,

When the SOX trio was adenovirally expressed in
the subcutaneous tissue, new cartilage formation was
induced. Although the adenoviruses infected most of the
cells in the injected area, the strongest induction was
observed in the area adjacent to the bone, including the
periosteum. This finding suggests that despite the strong
chondrogenic actions of the SOX trio, there are cells in
the periosteal region that are more susceptible to the
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signal. These cells may represent an enrichment of
MSCs in the perichondrium,

In conclusion, the findings of the current study
strongly suggest that the SOX trio provides signals that
are sufficient for the induction of permanent cartilage in
vitro. The potent in vitro chondrogenic system of the
SOX trio provides a new in vitro model of chondrogen-
esis, which may help us to better understand the mech-
anism of chondrogenesis and to advance cartilage regen-
erative medicine. .
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Knee joint loads during various activities of daily living
in the patients with knee osteoarthritis
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Yuji KUROYANAGI, Shinichiro IWATA, Yoshiaki TOYAMA
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Knee loads were evaluated in 7 patients with knee osteoarthritis (OA) during walking, stairs
and deep flexion activities. A motion analysis system was used to obtain knee kinematics and
kinetics. Eleven healthy volunteers were also analyzed to compare the knee mechanics during
the activities. The patients showed reduced the knee flexion moment during stair descending
and rising from maximum flexion, while the knee adduction moments were greater than the
normal knees in all activities. The different knee joint loads with OA patients should result

from several clinical aspects of the patients, such as reduced function of the quadriceps muscle,

pain, and the static alignment of the knee.
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Changes in varus angle during gait in patients

with knee osteoarthritis
—Evaluation of dynamic femoro-tibial angle —
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Clinical evaluation of knee osteoarthritis (OA) is usually on X-ray, while the patients
experience pain during the motions. And the varus deformity of the knee is also diagnosed by
femoro-tibial angle (FTA) under weight bearing. This study was designed to measure the
dynamic changes in varus angle of the knee during walking with knee OA patients, using skin
marker besed 3D motion analysis system.

Thirty seven medial OA knees in 25 patients and 24 knees in 12 volunteers were tested at the
gait laboratory. The varus angles of the knee defined by skin markers at heel strike were 180.0
+24, 185.2£3.5, 188.8+4.0 degrees for normal group, moderate OA group, severe OA group,
respectively. The angles increased by 0.4=+1.1, 1.9+1.6, 3.1%1.6 degrees in stance phase,
respectively (p<0.05),

This study showed that the varus angle and the changes of the varus angle increased as the
grade of the knee OA advanced. An analysis of knee kinematics using skin markers was
thought to be a useful tool to evaluate dynamic deformity on coronal plane in OA knees.

f& 29:123~126, 2004
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