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Abstract

Background: Bone morphogenetic protein-2 (BMP-2)
stimulates osteoblast differentiation, but inhibits
myogenic differentiation in C2C12 myoblasts. BMP-
2 induces transcription of Idf, an inhibitor for
myogenesis, within 1 h in the cells. To examine the
molecular mechanism of the action of BMP-2, we
analysed a BMP-2-responsive element (BRE} in the
5’ flanking region of the human Id7 gene.

Results: A GC-rich region between —985 bp and
—957 bp of the human Idf gene was identified as a
BRE. The BRE containing promoter activity was
stimulated by BMP-2 or by constitutively active
BMP receptors (BMPR-IA and BMPR-IB). The
stimulation was blocked by co-transfecting with

Introduction

Bone morphogenetic proteins (BMPs), members of
the transforming growth factor-B (TGF-§) superfamily,
control the proliferation, differentiation and apoptosis
of various types of cells (for reviews, see Kingsley 1994;
Hogan 1996; Wozney & Rosen 1998; Reddi 2001).
BMPs were originally identified as an activity that
induces ectopic bone formation when it is implanted
into muscular tissue (Urist 1965). BMPs are the active pro-
teins responsible for ectopic bone formation (Wozney
et al. 1988; Luyten et al. 1989; Celeste et al. 1990,
Sampath et al. 1990). Skeletal abnormalities are found
in animals and patients with mutations in BMP genes,
confirming the physiological importance of BMPs in
skeletal development in vertebrates (Kingsley et al.
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dominant negative BMPR-IA or Smad7. A unique
DNA-protein complex was induced in response
to BMP-2 on the BRE. The complex induced by
BMP-2 contained Smadl and Smadd, possibly as a
complex of both Sntads. BMP-2 failed to stimulate
the expression of Id1 mRNA in Smad4-deficient
cells. Over-expression of Smad4, but not Smadt,
stimulated the Id1 reporter activity and the expres-
sion of endogenous Idf mRNA in Smad4-deficient
cells.

Conclusion: Signalling of BMP-2 to stimulate the
expression of Id1 would be transduced by BMPR-IA
and mediated by Smad1 and Smad4, both of which
form a complex on the 29 bp GC-rich element.

1992; Storm etal. 1994; Thomas et al. 1996, 1997).
Decapentaplegic (Dpp), a BMP homologue in Dro-
sophila, also functions as a key morphogen in fly devel-
opment (for review, see Raftery & Sutherland 1999).
Several recombinant BMP proteins have been shown
to induce not only ectopic bone formation in vivo but
also osteoblast differentiation of mesenchymal cells in
vitro (Wozney et al. 1988; Katagiri et al. 1990; Sampath
et al. 1990; Yamaguchi et al. 1991; Sampath et al. 1992;
Asahina et al. 1993; Katagiri et al. 1994).

Signalling by TGF-J} superfamily members including
BMPs is initiated following their binding to their respect-
ive membrane receptors. Two types of serine/threonine
kinase receptors, types I and II, are required for the signal
transduction (for reviews, see Sakou 1998; Kawabata
et al. 1998; Miyazono 1999; Massague 2000; Massague &
Chen 2000; Wrana 2000). Among them, BMPR-IA,
BMPR-IB and ALK?2 are classified as the type I recep-
tors, and BMPR-I[, ActR-1I and ActR-1IB are the type II
receptors. The kinase activity of the ligand-bound type II
receptor phosphorylates the type [ receptor to activate its

Genes to Cells (2002 7, 949-960
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kinase activity (Wrana et al. 1994). Over-expression of
the kinase domain-truncated BMP type I receptors
blocks the signal transduction induced by BMPs (Maeno
et al. 1994; Suzuki ef al. 1994; Namiki et al. 1997). Ini con-
trast, substitution mutations of the BMP type I receptors
at the conserved residue in the GS domain activate the
downstream signal transduction without ligand-binding
or phosphorylation by the type II receptors (Wieser
et al. 1995; Akiyama et al. 1997; Fujii et al. 1999). The
activated type I receptors phosphorylate Smad proteins
as substrates in the cytoplasm. The type I receptors also
activate a signalling pathway through mitogen activated
protein (MAP) kinases { Yamaguchi et al. 1995).

In the intracellular signalling activated by the type I
receptors of BMPs, Smad proteins have been found to
play critical roles in osteoblast differentiation induced
by BMPs (Yamameoto et af. 1997; Nishimura et al. 1998;
Fujii et al. 1999). Eight Smad proteins have been identi-
fied in mammals. These Smads are classified into three
subgroups: R-Smads, Co-Smads and I-Smads, accord-
ing to their structure and function (for reviews, see
Kawabata ef al. 1998; Sakou 1998; Miyazono 1999;
Massague 2000; Massague & Chen 2000; Wrana 2000;
Shi 2001). The R-Smads consist of Smad1, $mad2, $mad3,
Smad5 and Smad8. They are directly phosphorylated
at the carboxy terminal by the type I receptors. BMP
receptors phosphorylate Smadl, Smad5 and Smads8,
while the TGF-B and activin receptors phosphorylate
Smad2 and Smad3. Thus, the differences in biological
activities between BMPs and TGF-B/activin appear to

Genes to Cells (2002} 7, 949-960
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be due to the different usage of the specific R~Smads by
the type I receptors.The phosphorylated R-Smads form
complexes with Co-Smad, Smad4, then move into the
nucleus, bind to the regulatory regions of the target genes,
and control their expression. In contrast, [-Smads such
as Smad6 and Smad7 inhibit signal transduction of the
TGF-P superfamily members by stably interacting with
the type I receptors to block phosphorylation of R-Smads
(Hayashi et al. 1997, Imamura et al. 1997; Nakao et al. 1997).

To examine the molecular mechanism of ectopic
bone formation induced by BMPs, we established an
in vitro model system using C2C12 myoblasts (Katagiri
et al. 1994). BMPs inhibit the myogenic differentiation
of C2C12 cells, and convert their differentiation path-
way into that of osteoblast lineage cells (Katagiri et al.
1994). TGF-B1 also inhibits myogenic differentiation,
but fails to induce the osteoblast differentiation of
C2C12 cells (Katagiri et al. 1994). C2C12 cells express
BMPR.-IA, but no detectable BMPR-IB (Akiyama et al.
1997; Namiki et al. 1997). Over-expression of the
constitutively active (ca)BMPR-IA or caBMPR-IB in
C2C12 cells mimicked the effects of the treatment
with BMPs (Akiyama et al. 1997; Fujii ef al. 1999). In con-
trast, over-expression of the kinase domain-truncated
BMPR.-TA, but not BMPR-IB, blocked the BMP-2
response in a dominant negative fashion in C2C12 cells
(Namiki et al. 1997). Other studies also reported that the
intracellular signalling of BMPs is mainly mediated by
the BMP-specific R-Smads such as Smad1 and Smad5,
since the over-expression of Smad1 or Smad5 in C2C12
cells induced osteoblast differentiation and inhibited myo-
genic differentiation (Yamamoto et al. 1997; Nishimura
et al. 1998; Fujii et al. 1999). However, the direct target
genes of Smad proteins, which are involved in the con-
version of the differentiation pathway of C2C12 cells by
BMPs, are still not known.

Myogenic differentiation is controlled by the MyoD
family transcription factors that have a conserved basic
helix-loop-helix (bPHLH) structure (for reviews, see
Tapscott & Weintraub 1990; Ludolph & Xonieczny
1995; Molkentin & Olson 1996; Arnold & Winter 1998;
Perry & Rudnicki 2000; Buckingham 2001). The Id
family proteins are capable of forming heterodimers
with other bHLH proteins, such as MyoD family proteins,
through their HLH domains {Benezra ef al. 1990), How-
ever, the Id proteins lack the DNA-binding activity,
because they do not have the basic region, an essential
domain for the DNA binding (Benezra et al. 1990). Thus
it is reasonable that the HLH heterodimers formed with
the Id proteins inhibited the transcriptional activity in a
dominant-negative mode. Indeed, myogenic differenti-
ation was suppressed when 1d1 was over-expressed in

© Blackwel] Science Limited



C2C12 cells {Benezra etal. 1990). We previously
reported that the expression of Id1 was stimulated in
C2C12 cells within 1 h after treatment with BMP-2
(Katagiri et al. 1994). Recently, Id1 was identified as a
typical early responsive gene for BMP treatment in
various types of cells in mice and humans (Hollnagel ef al.
1999; Clement ef al. 2000). These findings suggest that
I41 could be a direct target gene in the intracellular
signalling pathway of BMPs.

In the present study we characterized and identified
a 29 bp GC-rich element as a BMP responsive element
(BRE) in the 5 region of the human I41 gene. Electro-
phoresis mobility shift assay (EMSA) showed that this
clement was recognized by Smadl and Smad4 in
response to BMP-2. BMP-2 failed to stimulate Id7
expression in Smad4-deficient cells, but the transient
over-expression of Smad4 rescued the BMP-2 response

BMP-responsive element in the Id7 gene

in these cells. These results suggest that BMP-2 induced
Id1 expression is mediated by the binding of Smad1 and
Smad4 to the BRE in the 141 gene.

Results

Identification of a 29 bp region in the Id1 gene as a
BMP-responsive element

To identify a BMP-responsive element (BRE) in the
human Id1 gene, we constructed a series of luc reporter
plasmids from 1d2.1-luc, which carries a 2.1 kb frag-
ment of the 5" flanking region of the human Id-1 gene
(Fig. 1A). Although 1d2.1-luc, 1d1.3-luc, 1d1.2-luc and
1d1.0-luc responded similarly to BMP-2 in C2C12 cells,
1d0.8-Iuc completely lost the ability to respond to BMP-
2 (Fig. 1A). The region between =1.0kb to —0.8 kb
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Figure 1 Identification of a BRE in the human 71 gene. (A) Deletion analysis of the 5" region of the human Id7 gene in luciferase
reporter constructs. Deletion constructs were generated from 1d2.1-luc. C2C12 cells were transfected with one of the reporter constructs
and treated overnight with or without BMP-2. (B) Identification of BRE between —985 bp and —957 bp of the human I41 gene. Constructs
generated by PCR. using 1d2.1-Juc as a template were transfected in C2C12 cells, and their response to BMP-2 was then examined. Consensus
elements for Egr-1 (Egr-1), CREB (CRE} and Smads (CAGA) are indicated. {C) Comparison of the human sequence around the BRE,
with the corresponding region of the mouse gene. The BRE identified in the human Jd1 gene is underlined. Identical nucleotides
between the human 2nd mouse I4{ genes are indicated by asterisks. Positions of substitutional mutations used in this study are shown as
MutA and MutB. The consensus sequence of Egr-1 is boxed. (D} MutB sufficiently blocked the response to BMP-2 in 1d985-luc reporter.
Mutations mutA and muiB were introduced in 1d985-luc to generate 1d985mutA-luc and 1d985mutB-luc, respectively. The luciferase
activities were determined in C2C12 cells in the presence and absence of BMP-2. (E) Characterization of the GC-rich 29 bp between
—985 bp and =957 bp of the human I41 gene as a BMP-responsive enhancer. Reporter constructs carrying four copies of the 29 bp
element with wild-type or mutB sequence in forward (IdWT4F-luc and IdmutB4F-luc) or reverse orientation (IdWT4R-luc) were
transfected in C2C12 cells, and luciferase activity was determined in the presence or absence of BMP-2. Data are means & s.d. (n = 3).
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contained several potential regulatory elements which may
be recognized by transcription factors such as Egr-1,
CREB and Smads (Fig. 1B). We further generated an
additional series of deletion plasmids and exarnined their
responsiveness to BMP-2. Although 1d985-Iuc responded
to BMP-2 similarly to Id1.0-luc, neither 1d956-luc, Id916-
luc, nor 1d889-luc responded to BMP-2 (Fig. 1B). The
29 bp region between ~985 and —957 of the human
Id1 gene showed 100% homology with the corresponding
region of the mouse I41 gene (Fig. 1C). This region
contains a consensus sequence of Egr-1 which has been
identified as a responsive element for the expression of
1d1 in response to serum (Tournay & Benezra 1996).To
clarify whether Egr-1 is involved in the Id1 expression
induced by BMP-2 as an enhancer, we constructed
[d985mutA-luc and Id985mutB-luc, in which substitu-
tional mutations had been introduced at the inside and
the outside of the Egr-1 consensus, respectively (Fig. 1C,D).
[d985mutA-luc partially responded to BMP-2, but

A B

1d985mutB-luc almost completely lost the ability to
respond to BMP-2 (Fig. 1D). To further characterize the
ability of the 29 bp region to respond to BMP-2, we put
four copies of the 29 bp fragment with the wild-type or
mutB sequence in tandem in the forward (IdWT4F-luc
and IdmutB4F-luc) or reverse orientation (IdWT4R-
luc) in front of the SV40 promoter (Fig. 1E). Both
IdWT4F-luc and IdWT4R-luc were activated in response
to BMP-2, but IdmutB4F-luc was not (Fig. 1E).

BMPR-IA transduces intracellular signals to activate
Id1 gene expression in C2C12 cells

Using 1d1.0-luc, we examined signalling pathways to
activate Id1 expression in response to BMP-2 in C2C12
cells. In agreement with our previous findings (Katagiri
et al. 1994}, TGF-P1 slightly suppressed the Id1.0-luc
in C2C12 cells, whereas BMP-2 greatly stimulated it
in them (Fig.2A). Similar results were obtained in
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Figure 2 Characterization of signalling pathways to activate 1d1 transeription. (A) BMP-2 specifically activates 1d1.0-luc, C2C12 cells
were transfected with Id1.0-luc, and then treated with BMP-2 or TGF-B1. Luciferase activity was determined after overnight incubation.
Data are means * s.d. ( = 3). (B) BMPR-IA mediates BMP-2 signals in C2C12 cells. C2C12 cells were co-transfected with 1d1.0-luc
and one of the constitutive active {c) or the kinase domain-truncated (dn) BMPR-IA ([A) or BMPR.-IB (IB), and then incubated with
or without BMP-2. After an overnight incubation, luciferase activity was determined. Data are means + s.d. (n = 3). (C} Smad7 blocks
the BMP-2-induced response of Id1.0-luc. C2C12 cells were co-transfected with Id1.0-Iuc and 2 Smad? expression construct. After
overnight treatment with BMP-2, the luciferase activity was determined. Data are means £ s.d. (n = 3). (D} Id985-EGFPd2 is activated
by BMP-2 in C2C12 cells but not in C2C12 cells stably expressing a kinase domain-truncated BMPR-IA (C2C12AIA12). 1d985-
EGFPd2 was transfected in C2C12 and C2C12A1A12 cells, and then the cells were incubated for 4 h with and without BMP-2. Cells
were monitored using a fluorescence microscope.
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Figure 3 Characterization of transcription factors
bound to the GC-rich 29 bp BRE of the 1d1
gene in EMSA, (A) BMP-2 specifically induces
Complex A. Nuclear extracts were prepared from
C2C12 cells treated with and without BMP-2 or
PMA, EMSA was performed using the BRE a5 a
probe. (B) Competition analysis of Complex A
induced by BMP-2.Various cold oligo nucleotides
were added together with the BRE probe to the mix-
tures. (C} Complex C but not Complex A contains
Egr-1. Antibodies against Egr-1, Egr-2, Egr-3 and
Id1 (unrelated control) were added to the nuclear
extracts prepared from C2C12 cells treated with
BMP-2. (D) Complex A contains both Smadl and
Smad4. Antibodies against Smadl, Smad3, Smad4
or Smad6/7 were added to the nuclear extracts
prepared from C2C12 cells treated with BMP-2.
Smad1+4; Antibodies for Smadl and Smad4 were
added simultanecusly to the mixture.

C3H10T1/2 cells (data not shown). When 1d1.0-luc was
co-transfected with the constitutively active BMP type I
receptors, caBMPR-IA or caBMPR-IB, both receptors
significantly stimulated 1d1.0-luc, even in the absence of
BMP-2 in C2C12 cells (Fig. 2B). The stimulatory activ-
ity of caBMPR-IB appeared slightly higher than that
of caBMPR-IA. In contrast, the activation of Id1.0-luc
by BMP-2 was blocked by co-transfecting with the
dominant negative BMP receptor, dnBMPR-IA, but
not with dnBMPR-IB (Fig. 2B). Co-transfection with
Smad7?, which blocks Smad-dependent signalling
pathways, also blocked the activation of 1d1.0-luc by
BMP-2 (Fig. 2C}. To visualize the induction of Id1 in
living cells, we constructed 1d985-EGFPd2 by replacing
the coding sequence of luciferase in Id985-luc with an
EGFPd2 cDNA.We have reported that the responsive-
ness to BMP-2 in C2C12 cells was blocked by over-
expressing dnBMPR -IA, but not deBMPR-IB (Namiki
et al. 1997). The subclonal cell line C2C12AIA12, was
established from the C2C12 cultures stably transfected
with the dnBMPR-IA (Namiki etal. 1997). When
C2C12 and C2C12A1A12 cells were transfected with
1d985-EGFPA2 and treated with BMP-2, an increased
number of EGFP-positive cells appeared in the C2C12
cell cultures within 4 h, but not in the C2C12AIA12 cell
cultures (Fig. 2D). BMP-2 failed to increase the number

© Blackwell Science Limited

BMP-responsive element in the IdT gene

Extract: BMP-2
BRE
itor: Egr-t Sp1
Compelitor: WT MUtA MutB ar 4
«dm * xbb D0 X0 YN0 XN 00 XN 06 330 eSO

R

Complox A, =g
Complex B r~ A

Freg e—ae

of the EGFP-positive cells in C2C12 cultures transfected
with 1d985mutB-EGFPd2 (data not shown).

Smadl and Smad4 bind to the 29 bp BRE
of the Id1 gene

Next, we characterized transcription factors bound to
the 29 bp BRE of the Idf gene in EMSA. BMP-2
induced DNA-binding protein(s) in nuclear extracts
of C2C12 cells within 1 h, which formed Complex A
with the 29 bp BRE probe (Fig. 3A). In contrast, PMA,
a potent stimulator of Egr-1, induced Complex C, a
slower migrating DNA-protein, but not Complex A
(Fig. 3A). In competition experiments, a 20-fold excess
amount of cold oligo DNA with the wild-type sequence
partially competed with Complex A induced by BMP-
2, and a 200-fold excess almost completely competed
with it (Fig. 3B). MutA oligo also partially competed
with Complex A at a 200-fold excess, but neither mutB,
Egr-1, nor Spl consensus oligo DNA competed with
Complex A (Fig. 3B). Complex B was a sequence with
nonspecific binding, since it was competed by all of the
cold oligo DINAs examined. The addition of anti-Egr-1
antibody to the reaction mixtures specifically abolished
Complex C induced by PMA, but not Complex A
induced by BMP-2 (Fig. 3C). In contrast, antibodies
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Figure 4 Smad4 is required for the expression of Id7 in response to BMP-2 in MDA-MB468 cells. {A) Transient transfection with
Smad4, but not Smad1 or Smad3, stimulates the expression of 141 in response to BMP-2 in MDA-MB468 cells. Co-transfection with
Smad] and Smad4 stimulates the expression of Id1, even in the absence of BMP-2 in MDA-MB468 cells. Cells were transfected with a
fixed amount of DNA with and without Srmadl, Smad3 or Smad4, and then incubated in the presence or absence of BMP-2, Their
luciferase activities were determined after overnight incubation. Data are means + s.d. {n = 3). (B) Transient over-expression of Smad4
in MDA-MB468 cells induces the expression of endogenous /d1 mRNA in response to BMP-2. Cells were transfected with Smad4 and
then treated with BMP-2 for 1 h. Expression of Id7 and GAPDH mRINA was determined by Northern blotting. Expression levels of

Id1 were normalized to the levels of CAPDH.

against Egr-2, Egr-3, Sp1 or p300 affected neither the
amounts nor mobility of Complexes A and C in EMSA
{(Fig. 3C and data not shown). In contrast, addition of
anti-Smadl or ant-Smad4 antibody to the BMP-2-
treated nuclear extracts reduced the amount of Complex
A and induced supershifted bands (Fig. 3D). Moreover,
when both the anti-Smad1 and anti-Smad4 antibodies
were added together, a slower migrating double super-
shifted band appeared (Fig. 3D). In this condition, no
other supershifted bands appeared. The addition of
anti-Smadé6/ 7 or anti-Smad3 antibodies did not induce
a supershift of Complex A (Fig. 3D).

A Smad4-dependent signalling controls the
expression of Id1 induced by BMP-2

We further examined the role of Smads in the expression
of Id1 induced by BMP-2 using human MDA-MB468
breast cancer cells, in which the Smad4 locus has been
deleted (Schutte ef al. 1996). BMP-2 failed to activate
IdWT4F-luc even in MDA-MB468 cells after co-
transfecting with Smadl or Smad3 (Fig. 4A). However,
co-transfection with Smad4 stimulated both basal
and BMP-2-induced luc activides in these cells (Fig. 4A).
Moreover, simultaneous co-transfecion with Smadl and
Smad4 markedly enhanced the luc activity of I{WT4F-
luc, even in the absence of BMP-2 in MDA-MB468 cells
(Fig. 4A). Similar results were obtained when Id1.0-luc
was used in place of IdWT4F-luc (data not shown).
Furthermore, we examined the expression of the endog-
enous Id1 mRINA induced by BMP-2 in MDA-MB468
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cells. BMP-2 failed to induce the expression of Id1
mRNA in MDA-MB468 cells (Fig. 4B). However, tran-
sient over-expressiont of Smad4 in these cells induced the
expression of endogenous Id1 mRNA in response to

BMP-2 (Fig. 4B).

Effects of specific inhibitors for MAPK, PI3K
and de nove protein synthesis on the Id1 expression
induced by BMP-2

Recently, it was reported that BMP-2 activated not
only Smad proteins but also mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
in some types of cells (Iwasaki ef al. 1999; Vinals et al.
2002). The contribution of these signalling pathways to
the Id1 expression induced by BMP-2 was examined
using specific inhibitors for the kinases; SB203580 for
p38 MAPK, PD98059 for MEK, and wortmannin and
LY294002 for PI3K. These inhibitors affected neither
the both basal nor the BMP-2-induced levels of the Id1
mRINA in Northern blot analysis (Fig. 5A). In contrast,
when C2C12 cells were pre-treated with cycloheximide
to block the de novo protein synthesis, the basal level of
Id1 mRINA was increased to a similar level induced by
BMP-2, but no further simulation of Id1 mRNA was
observed, even in the presence of BMP-2 (Fig. 5B).

Discussion
In the present study, a responsive element for BMP-2

was identified in the human 41 gene. We previously

© Blackwell Science Limited
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Figure 5 Effects of specific inhibitors for MAPK, PI3K and de novo protein synthesis on the levels of Id1 mRINA induced by BMP-2.
C2C12 cells were pre-treated for 1 h with and without 10 pm $B203580, 50 jim PDD98059, 0.1 UM wortmannin, or 20 Pim LY294002
tA), and 10 pg/mL of cycloheximide (CHX) (B). The cells were then cultured for an additional 1 h with fresh media containing each
inhibitor in the presence or absence of 300 ng/mL of BMP-2. Expression of Id1 and GAPDH mRNAs was determined by Northern

blotting using 20 g of total RINA.

reported that BMP-2 induced the expression of Id1
mRNA within 1 h after BMP-2 treatment in C2C12
cells (Katagiri ef al. 1994). Other studies also identified
Id1 as an early responsive gene induced by BMP-2 in
various types of mouse and human cells (Hollnagel ez al.
1999; Clement et al. 2000). To elucidate the molecular
mechanisms underying BMP-2-induced Id1 expres-
sion, we cloned and analysed the 5’ region of the human
Id1 gene. We found that a GC-rich region between
—985 bp and —957 bp of the human Id1 gene was the
responsive element to BMP-2, This 29 bp element
showed 100% homology between human and mouse
Id1 genes, suggesting that this element has a critical role
in the expression of Id1 in mammals. We previously
reported that the over-expression of either BMPR.-IA
or BMPR-IB with the constitutively active mutation
induced the osteoblast differentiation in C2C12 cells
(Akivama et al. 1997). In contrast, the only BMPR-IA
lacking a kinase domain inhibited the responsiveness
to BMP-2 in C2C12 cells (Namiki et al. 1997).In agree-
ment with our previous findings, the stimulation of
the Id1 reporter activity by BMP-2 was blocked by
dnBMPR-IA, but not by dnBMPR-IB. These results
suggest that BMPR-IA has a much higher affinity for
BMP-2 than BMPR-IB when these receptors are
expressed on the surface of C2C12 cells. This possibility
is supported by the findings of Ebisawa et al. (1999), who
demonstrated, using affinity cross-linking followed by
the immunoprecipitation, that BMP-2 only binds to
BMPR-IA on the surface of C2C12 cells.

In EMSA, using the 29 bp region in the I41 gene as
the BRE probe, we identified both Smad1 and Smad4
in 2 DNA-protein complex induced by BMP-2. Interest-
ingly, when antibodies against Smadl and Smad4 were
added simultaneously to the complex, a double super-
shifted band was observed. In this condition, however,

© Blackwell Science Limited

we could not see any other supershifted bands corre-
sponding to that observed by adding each individual
antibody against Smadl or Smad4. These results suggest
that Smadl and Smad4 bind to the element together,
possibly as a complex, rather than individually. Transient
over-expression of Smad4 in Smad4-deficient MDA-
MB468 cells recovered the expression of not only the
reporter gene but also endogenous I#1 mRNA in the
presence of BMP-2.Taken together, these results suggest
that a complex of Smad1 and Smad4 mediates the tran-
scription of I41 in response to BMP-2 by binding to
the GC-rich 29 bp element. The Id1 protein induced by
Smadl/Smad4 would be involved, at least in part, in
the BMP-2-dependent conversion of the differentiation
pathway of C2C12 myoblasts into that of osteoblast
lineage cells. This possibility is under investigation in our
laboratories.

It has been reported that BMP-2 activates not only
Srnad proteins but also MAPK and PI3K to induce the
respective intracellular signals (Iwasaki et al. 1999; Vinals
et al. 2002), However, none of the specific inhibitors for
MAPK or PI3K used in this study showed significant
effects on the Id1 mRINA expression in C2C12 cells in
the presence or absence of BMP-2. In addition, these
inhibitors showed only small effects on the differenta-
ton of C2C12 cells into mature muscle cells and
osteoblasts in the absence and presence of BMP-2,
respectively (data not shown). Although we cannot rule
out the possibility that MAPK and/or PI3K are involved
in the effects of BMP-2, the contribution of these sig-
nalling pathways would be minor at least in the expres-
sion of Id1 in C2C12 cells.

Smad proteins are capable of binding to several differ-
ent DNA sequences in vitro. It has been reported that
Mad, a Drosophila homologue of mamtnalian Smadl,
binds to a GC-rich sequence of the target genes in
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Drosophila (Kim et al. 1997; Xu et al. 1998). Recently, a
similar GC-rich sequence was identified in a regulatory
region of the mouse Smad6 gene, and this element could
be recognized by the BMP-specific Smads such as Smadl
and Smad5 (Ishida ef al. 2000). It was reported that the
MHI1 domains of Smads also bind to the CAGA
sequence (Dennler ef al. 1998; Jonk et al. 1998; Shi et al.
1998). However, this sequence appears to have a lower
Ligand specificity, since it was recognized by both
BMP- and TGF-B/activin-specific Smads, together with
Smad4. Indeed, there were three copies of the CAGA
sequence within the BMP-responsive region between
—1.0 kb and —0.8 kb of the human Id1 gene, but these
sequences were not necessary for the BMP-2-induced
Id1 expression. Moreover, the treatment of C2C12 cells
with TGF-B1 or the transient over-expression of Smad3
did not activate expression of Id1. In contrast, the GC-
rich element between —985 bp and -957 bp of the
human Id1 gene was critical and sufficient for the
response to BMP-2, This element was recognized by
Smadl and Smad4, but not Smad3. Taken together, it
can be concluded that this GC-rich element, rather
than the CAGA sequence, behaves as the BRE in the
Id1 gene. Further studies are necessary to determine the
exact binding sequence of Smadl and Smad4 to form a
DNA-protein complex.

It was reported that the Id1 expression induced by
serum is mediated by the binding of Egr-1 to a consensus
sequence within the GC-rich region of the 29 bp BRE
(Tournay & Benezra 1996). In contrast to serum, BMP-
2 induced Complex A rather than Complex C in the
EMSA containing Smad1/8mad4 and Egr-1, respect-
ively. Mutational analysis also showed that a 3’ portion of
the Egr-1 consensus sequence in the 29 bp element is
more critical than the consensus itself in the expression
of Id1 induced by BMP-2. Moreover, both competition
and supershifting experiments in EMSA showed that the
DNA-protein complex induced by BMP-2 contained
no detectable Egr-1 protein. In our preliminary experi-
ments, PMA, a potent inducer of Egr-1 in various types
of cells, induced Egr-1, but failed to stimulate the Id1
mRNA expression in C2C12 cells. These results suggest
that Egr-1 is not involved in the expression of Id1 in
response to BMP-2.

Pre-treatment of C2C12 cells with cycloheximide
increased the basal levels of Id1 mRINA, but no further
stimulation was observed, even in the presence of BMP-
2. In addition, DNA-protein complexes were not
detected in EMSA, when bacterially expressed full
length Smad1 and Smad4 were incubated with the 29 bp
BRE as a probe (data not shown). These results suggest
that, although a Smad protein itself binds to a specific
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DNA sequence with a low affinity, it forms a transerip-
tional complex with other DNA-binding protein(s) to
enhance the ability to regulate the target gene expression,
The DNA-binding proteins may have a short half life
and be continuously degraded through the de novo pro-
tein synthesis pathway as a rate-limiting transcriptional
factor in the expression of Idl mRNA. It has also been
suggested that the role of Smad proteins in Id1 expres-
sion is to form a complex with such an unstable tran-
scriptional factor to stabilize them on the promoter.
A number of transcription factors have been identified as
partners for Smads. However, transcription factors,
which are associated with Smad1 and Smad4 to enhance
the expression of Id1 in response to BMP-2, are not
known at present. Although P300/CBP was reported to
stimulate the transcriptional activity of Smads (Feng ef al.
1998; Janknecht ef al. 1998; Nishihara et al. 1998:;
Pouponnot et al. 1998; Topper et al. 1998), we failed to
detect them in a supershift experiment in EMSA. OAZ,
a zinc finger protein, was reported as a DNA-binding
factor that is associated with Smadl and Smad4 in
response to BMP-2 (Hata et al. 2000). The transient
over-expression of QAZ stimulated the Xvent-2 reporter
expression in mammalian cells including C2C12 and
C3H10T1/2 cell lines (Hata et al. 2000). However, OAZ
does not appear to be involved in the expression of Id1
in response to BMP-2, since OAZ is undetectable in
C2C12 cells in their basal condition (Hata et al. 2000).
Further studies are necessary to characterize the tran-
scription factors in the DINA-protein complex induced
by BMP-2.

While we were preparing this manuscript, Lopez-
Rovira et al. (2002) and Korchynski & ten Dijke (2002)
independently reported a BMP-2 responsive element
and a BMP-6 responsive element, respectively, in the Id1
gene. In agreement with our findings, they showed the
importance of the GC-rich element overlapping with
the BRE—which was identified in the present study—
for the BMP-dependent stimulation of the Id1 gene
through Smad1/Smad5 and Smad4. Although the CAGA
sequences were not essential for the BMP response in
our study; they reported that these elements were also
required for the BMP response (Korchynski & ten Dijke
2002; Lopez-Rovira et al. 2002), This discrepancy has
to be clarified by future experiments. Competitive
displacement experiments in EMSA also suggested
that Smadl and Smad4 bind to the GC-rich region
(Korchynski & ten Dijke 2002; Lopez-Rovira et al.
2002). We were able to localize the binding region of
the Smadl and Smad4 complex into a 29-bp GC-rich
region in EMSA. Furthermore, the present report shows
for the first time that the transient over-expression of
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Smad4 can rescue endogenous Id1 expression in response
to BMP-2 in Smad4-deficient cells.

In conclusion, we have identified a 29-bp BRE from
the human Id1 gene This GC-rich element was recognized
by Smad1 and Smad4, and it was sufficient for the res-
ponse to BMP-2.We also successfully generated an EGFP
reporter construct driven under the control of the BRE
to visualize the BMP-dependent signalling in living
cells. The BRE sequence, as well as the reporter con-
structs characterized in this study, would be useful for
an understanding of the molecular mechanism of BMP-
dependent gene expression.

Experimental procedures
Construction of reporter plasmids

To comstruct a Iuciferase reporter plasmid, a 2.1-kb fragment of
the 5" region of the human I41 gene was cloned by a standard
PCR. methed using Platinum Pfx DNA polymerase (Invitogen,
Groningen, the Netherlands) with human genomic DNA as a
template. It was then subcloned between the Xhol and Hindll}
(Tzkara Shuzo Co., Shiga, Japan) recognition sites of pGL3-Basic
(Promega, Madison, W1, USA). The primer sequences were as
follows; 5'-ttctegag TGAAAAAGATACAGAAGTTGA-3 (hldl—
5Xho} and 5-ttaagcttTCTTGGCGACTGGCTGAAACA-3
(hId1-3Hd) (ower cases indicate flanking sequences). Id1.3-luc,
1d1.2-luc, Id1.0-luc and Id0.8-luc were made by digesting [d2.1-
luc at the EcoRJ, Stul, Psil and Puull sites, respectively. 1d985-luc,
1d956-luc, Id916-luc, 1d889-luc, [d985mutA-luc and Id985mutB-
luc were generated by PCR. using each specific upper primer
and the hid1-3Hd primer with Id2.1-luc as a template. The primer
sequences were as follows; 5'-ttctegagCATGGCGACCGCCC-
GCGCGG-3 (1d985), 5-ttctegagGACAGTCCGTCCGGGT-
TTTA-3 (14956}, 5"-ttctegagCCTGGCGTCTAACGGTCTGA-Y
{1d916), 5-ttctegagGTTCAGACGCTGACACAGAC-Y (14389),
5’_trctegagCATGGCGACCGTTTGCGCGG-3 (1d985mutA),
and  5'-ttctcgagCATGGCGACCGCCCGCGCTITIGCCA-3
{Id985mutB) (lower case and underline indicate flanking
sequences and mutations, respectively). To generate IdWT4F-luc,
IdWT4R-luc and [dmutB4F-luc, the specific oligo DNAs of the
29 bp BRE with the wild-type or the mutB sequence flanked
by six nucleotides were annealed, digested with Xhol and Sall,
purified from agarose gels, and subcloned into pGL3-Promoter
{Promega). The sequences of the oligo DNAs were as follows;
5"-tcgagCATGGCGACCGCCCGCGCGGCGCCAGCCTg-
3 (IdWT-S), 5-tcgacAGGCTGGCGCCGCGCGGGCGGTC-
GCCATGe-3 (IdWT-AS), 5-tcgagCATGGCGACCGCCC-
GCGCTTTGCCAGCCTg-3 (IdmutB-S) and 5'-tegacAGGC-
TGGCAAAGCGCGGGCGGTCGCCATGe-Y  (IdmutB-AS)
{lower cases and underlines indicate flanking seguences and
mutations, respectively). PCR. products were confirmed by DNA
sequencing using a GeneRapid DNA sequencer (Amersham
Pharmacia Biotech, Buckinghamshire, UK). Id985-EGFPd2 and
1d985mutB-EGFPd2 were generated by replacing the coding
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regions of luciferase with a destabilized EGEP ¢DNA of
pd2EGFP-C1 (Clontech Laboratories, Palo Alto, CA, USA) in
[1d985-luc and 1d985mutB-luc, respectively.

Construction of Smad expression vectors

Complementary DNAs for the mouse Smadl, Smad3, Smad4
and Smad7 coding regions, except for the first Met residues,
were obtained by an RT-PCR. technique using Platdnum Pfx
DNA polymerase (Invitrogen) as previously described (Yanai ef al.
2001). Total RNAs prepared from C2C12 myoblasts or mouse
calvaria of the ddY strain were used for the RT-PCR.The primer
sequences were as follows; 5™-ttaagcttAATGTGACCAGCTT-
GTTTTC-3 (m$1-5Hd), 5'-tttctagaGACGGAAGCCACAG-
GTCTTT-3 (mS1-3Xb), 5'-ttaaget TCGTCCATCCTGCCC-
TTCAC-3’ (mS3-SHd) and 5'-tttetagaCCCGCTCCCTT-
TACTCCTA-3 (mS33Xb), 5'-222agecttGACAATATGTC-
TATAACAAA-Y (mS4-5Hd), 5-aatctagaAATGGTTAGGG-
CGTCCGTGG-3 (mS4-3Xb), 5'-ttaagett TTCAGGACCAA-
ACGATCT-3 (mS7-5Hd) and 5'-tttctaga TGTCCTCTTCTC-
CCCACC-3" (mS7-3XDb) (lower cases indicate flanking sequences).
PCR products were digested with HindIIl and Xbal (Takara
Shuzo Co), pwified from agarose gels, and subcloned into
pFLAG-CMV-2 (Sigma-Aldrich, St Louis, MO, USA}. Each
¢DINA was confirmed by DNA sequencing.

Cell culture, transfection and luciferase assay

Mouse C2C12 myoblasts and human MDA-MB468 breast cancer
cells were obtained from the American Type Culture Collection,
and mouse C3H10T1/2 (10T1/2) fibroblasts from the RIKEN
Cell Bank (Tsukuba Science City, lbaraki, Japan). C2C12 cells
and its subclonal cell line, C2C12AIA12 cells, which are stably
expressing a kinase domain-truncated BMPR-IA (Namiki
et al. 1997), and 10T1/2 cells were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM) containing 15% foetal
bovine serum (FBS) (Sigma Chemical Co.). MDA-MB468 cells
were maintained in Leibovitzs L-15 medium containing 10%
EBS. Cells were inoculated at 1.5 % 10* cells/well in 96-well
plates with growth media 1 day before transfection by Lipo-
fectamine or Lipofectamine 2000 {Invitrogen). For normalization,
pRL-SV40 plasmid (Promega) was co-transfected with luc
reporter plasmids. The amount of each plasmid used for the trans-
fection was fixed at 200 ng/well by appropriate empty plasmids.
Afier an overnight incubation, the culture media were replaced
with fresh media containing 2.5% FBS in the presence or
absence of 300 ng/mL of BMP-2 (provided by Yamanouchi
Pharmaceuticals, Tokyo, Japan), and then cultured for an
additional 24 h. Luciferase activitics in the cell extracts were deter-
mined using a dual luciferase assay kit (Toyo Ink, Tokyo, Japan)
using a luminometer,

Both 1d985-EGFPd2 and 1d985mutB-EGFPd2 were trans-
fected in C2C12 and C2C12AIA12 cells as described above, in
place of the luciferase reporter plasmids. One day after trans-
fection, the cells were incubated with fresh media containing
2.5% FBS in the presence or absence of 300 ng/mL of BMP-2.
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Expression levels of EGFP in the cultures were monitered under
a fluorescence microscope {Olympus, Tokyo, Japan).

Electrophoresis mobility shift assay

EMSA was performed essentially as previously described (Katagini
et al. 1997). C2C12 cells were incubated for 1 h, with or without
300 ng/mL of BMP-2 or 1 uM PMA, and then nuclear extracts
were prepared from the cells by the method of Schreiber et al.
1989) with a protease inhibitor cocktail (Roche Diagnostics,
Mannheim, Germany). The double strand BRE probe was
labelled with T4 polynucleotide kinase and [Y”P]ATP (New
England Nuclear, Boston, MA) using a labelling kit (Takara Shuzo
Co.}. For the competition experiments, the cold double strand
oligos were 2dded to the mixtures with the labelled probe.
The sequences of oligo DINAs we used were as follows; 5'-
CATGGCGACCGCCCGCGCGGCGCCAGCCTY (wild-type
BRE), 5'-CATGGCGACCGTITIGCGCGGCGCCAGCCT-3
(BRE mutA), 5-CATGGCGACCGCCCGCGCITTGCCA-
GCCT-3’ (BRE mutB}, 5-GGATCCAGGGGGGGCGAGCG-
GGGGCGA-3 (Egr-1; Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and 5-ATTCGATCGGGGCGGGGGCAGC-¥
(Sp1; Santa Cruz Biotechnology). Six micrograms of the nuclear
extracts were incubated with a labelled BRE probe with the wild-
type sequence. For the supershift experiments, antbodies were
added prior to the addition of the probe, and incubated for 15 min
at room temperature. Antibodies against Smad1 (T-20), Smad3
(I-20), Smad4 (B-8), Smad6/Smad? (N-19), Id1 (C-20}, Egr-1 {C-
19), Egr-2 (C-14), Egr-3 (C-24) and p300 (N-15) were obtained
from Santa Cruz Biotechnology. The reaction mixture was loaded
on to 5% polyacrylamide gelin 0.5 X TBE (44.5 mm Tris base, 44.5 mm
boric acid and 1 mm EDTA) and resolved by electrophoresis.

Northern blot analysis

Northern blot analysis was performed as previously described
(Katagiri ef al. 1994). In brief, 20 pg of total RINA prepared with
Trizol (Invitrogen) was resolved by electrophoresis in a 1.2%
agarose-formaldehyde gel, and mransferred on to a Hybond-N mem-
brane {Amersham International, Amersham, UK). The membrane
was sequentially hybridized with [0*°P]-labelled c<DNA probes
for mouse Id1 and GAPDH. All of the inhibitors for MAPK
(SB303580 and PD98059%) and PI3K (wortmannin and LY294002)
were purchased from Calbiochem, Darmstadt, Germany.
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Sjogren’s Syndrome
Yes Autoreactive Lymphocytes, Why? Virus or Gene"
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Sjogren’s syndrome (SjS) (1) consists of dry mouth (xeros-
tomia) and dry eyes (xerophthalmia, keratoconjunctivitis sicca).
These clinical features of the eyes and mouth are called the
sicca syndrome. The lack of secretions also involve the respi-
ratory tract, vagina and skin. The syndrome occurs most com-
monly in middle-age women. Patients with only eye and oral
involvemnent are classified as primary SjS and those with an
associated rheumnatic disorder as secondary SjS with rheumatic
arthritis (RA) and systemic Jupus erythematosus (SLE), poly-
myositis, scleroderma and periarteritis nodosa. The syndrome
also occurs in some patients with chronic active hepatitis, pri-
mary biliary cirrhosis. Patients with )3 develop hematopoitic
disorders such as pseudolymphoma, lymphosarcoma, giant
follicular sarcoma and Waldenstrom’s macroglobulinemia (2).
Other clinicat features of §jS include Raynaud’s phenomencn,
vasculitis, hypergammaglobulinemic purpura, hyperviscosity
syndrome and peripheral neuropathy. Most of the peripheral
neuropathy of SjS patients are sensory or autonomic dominant,
however a few report of motor dominant neuropathy has been
reported (3). Lymphocytic infiltrates involving the renal tubules
cause renal tubular acidosis and interstitial pneumonia.

See also p 142.

SjS is characterized by the infiltration of the exocrine glands
and other organs with lymphocytes, including CD4 positive
afiT cells, and leading to destruction and glandular insuffi-
ciency (4). Furthermore §;jS is an autoimmune disease charac-
terized by autoantibodies. Rheumatoid factors are found in
approximately half of primary Sj$ patients. It is well known
that two antinuclear antibodies, anti $5-A, anti $S-B antibody
are associated with Sj5 (5). Anti SS-A antibody is detected in
about 70% of the patients with primary §j$, in about 30% with
secondary SjS. Anti 35-B antibody is detected in half with pri-
mary SjS and rarely in those with secondary SjS. A 120-kDa
organ-specific autoantigen was identified from the salivary
gland tissue of an animal model for primary SjS in NFS/sld
mutant mice; and it was found to be identical to that of the
human cytoskelltal protein a-fodrin (6). As 120-kDa o-fodrin
reacts with sera from patients with SjS, anti a-fodrin antibody

Internal Medicine Vol. 41, No. 2 (February 2002)

is a strong candidate as a specific autoantibody for the diagno-
sis of SjS since it is not detected in serum of patients with other
rheumatic diseases. Recent studies of clonality analyses on the
TCR repertoire of T cells in several inflamed lesions of SjS
patients indicated that these cells are induced by antigen-driven
stimulation and sequence analysis of the CDR3 region indi-
cated some conserved amino acid motifs, suggesting that infil-
trating T cells recognize relatively limited epitopes on autoanti-
gen (7). These findings support that this disease may be due to
autoantigen and autoantibody. However, the etiopathogenesis
for autoimumune diseases has not progressed for 30 years. In-
deed, the roles of autoreactive T ctlls to self antigens which
may cause an autoimmune disease remain obscure. The reason
for the existence of autoreactive lymphocytes and autoantigens
should be clarified. Evidence has accumulated on the associa-
tions of the etiology and several viruses such ag HIV retrovirus,
HTLV-1, hepatitis virus and Epstein-Barr virus (EBV).
Among these viruses, EBV is a strong candidate for the cause
of this disease since the EBV is an ubiquity in humans and the
EBV DNA is detected in substantial proportion of epithelial
cells and lymphoid cells in salivary glands from patients with
SjS (8). The EBV- mediated ot-fodrin cleavage may involve
the autoantigen 5jS (9). We reported the detection of EBV in
synovial cells and an abnormal SAP transeript function in RA
patients (10, 11). The SAP gene links strongly to EBV specific
cytotoxic T cells. The detection of EBV in salivary epithelial
cells and the existence of autoantigen may be due to abnormal
function or mutation of this gene in patients with SjS. The gene
factor as mentioned previously is also important in the initia-
tion of the disease. The particular alleles closely linked to the
MHC class 11 locus increase the risk of developing 5jS (12).
Recently we examined the gene expressions in the salivary
glands of an animal model for $jS (MRL/Ipr mice) using a
cDNA microarray to identify a set of genes involved in the
pathogenesis of organ located dysfunction of the exocrine
glands (13). The microarray and RT-PCR analyses of the sali-
vary glands showed that 9 genes (Caspase 3, Cathepsin B, Gnat,
Laptm3, Ly-6¢, Mel-14, Mptl, UCP2, Vimentin) were highly
associated with the pathogenesis of §jS in humans and mice
with §jS. Furthermore, we found that the lysosomal-associ-
ated multispanning membrane protein 5 gene (Laptm35) was
up-regulated in the salivary glands of an animal model for §j5
(NFS/sld mutant mice), These genes identified in our studies
using animal models for $jS provide potentially valuable in-
formation for elucidation the etiopathogenesis of the disorder.

5

—265—



I
2)

3

4

5)

6)

76

Shigemasa Sawapa, MD*** and Masami Taxer, MD**
*The Department of Medicine, Nihon University Nerima Hikarigaoka
Hospital, Tokye 179-0072 and **the Department of Medicine 1,
Nihon University School of Medicine, Tokyo 173-8610

References

Talal N. Sjogren’s syndrome. Curr Opin Immunol 2: 622624, 1989,
Sugai §, Shimizu S, Lpmda 8, et al. Lymphoproliferative disorders in
Japanese patients with SjSgren’s syndrome. Sjogren’s syndrome: Clini-
cal and Immurelogical Aspects. Talal N, Moutsopoulos HM, Kassan S5,
Eds. Springer-Verlag, Berlin, 1987: 144~161.

Mochizuki H, Kamakura K, Masaki T, Hirata A, Nakamura R, Motoyoshi
K. Motor dominant neuropathy in Sjogren's syndrome: report of two cases.
Intern Med 41: 142-146, 2002.

Tannenbaum H, Pinkus GS, Anderson LG, Schur PH, Immunclogic char-
acterization of the mononuclear cell infiltrates in rheumatoid synovia, in
rheumatoid nodules, and in lip biopsies from patients with Sjigren’s syn-
drome. Arthritis Rheum 18; 305-314, 1975.

Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune dis-
ease and probes for cell biology. Adv Immuncl 44: 93-151, 1989.
Haneji N, Nakamura T, Takio K, et al. Identification of o-fodrin as a
candidate autoantigen in primary Sjbgren’s syndrome. Science 276: 604—
607, 1997.

n

8

9

10)

11

12)

13)

Sumida T, Yonaha F, Maeda T, et at. T cell receptor repertoire of infilirat-
ing T cells in lips of Sjégren’s syndrome patients. J Clin Invest 89: 681
685, 1992.

Mariette X, Gozian D, Clerc M, Bisson M, Morinet F, Detection of Epstein-
Barr virus DNA by in situ hybridization and polymerase chain reaction in
salivary gland biopsy specimens from patients with Sjdgren’s syndrome.
Am J Med 90: 286-294, 1991.

Inoue H, Tsubota K, Ono M, et al. Possible involvement of EBV-medi-
ated a-fodrin cleavage for organ-specific autoantigen in Sjdgren’s syn-
drome. J Immunol 166: 58015809, 2001,

Takei M, Mitamura K, Fujiwara §, et al. Detection of Epstein-Barr virus-
encoded small RNAT and latent membrane proteinl in synovial lining
cells from rheumatoid arthntis patents. Int Immunoel 9: 739-743, 1997.
Takei M, Ishiwata T, Mitamura K, et al, Decreased expression of signal-
ing lymphocytic-activation molecule-associated protein (SAP) transcripts
in T cells from patients with rheumatoid arthritis. Int Immunol 13: 559—
565, 2001.

Moutsopoulos HM, Mann DL, Johnson AH, Chused TM. Genetic differ-
ences between primary and secondary sicca syndrome, N Engl J Med
301: 761763, 1579.

Shiraiwa H, Takei M, Yoshikawa T, ¢t al. Gene expression analysis in the
exocrine glands of NFS/sld and MRL/pr mice, animal models for pri-
mary and secondary Sjogren’s syndrome, using a cDNA microarray. Ar-
thritis and Rheum 44 (9), supplement p 251, 2001,

Internal Medicine Vol. 41, No. 2 (February 2002)

—266—



<
i nunology
etters

www.elsevier.com/flocatef

Immunology Letters 81 (2002) 171-176

Identification of candidate genes for Sjogren’s syndrome using MRL/
Ipr mouse model of Sjogren’s syndrome and cDNA microarray
| analysis

Takanori Azuma®!, Masami Takei ®2, Tsutomu Yoshjka\;:a % Yumi Nagasugi?,
Masaki Katoag Motoyuki Otsuka “,bHidetaka Shiraiwa °, Sumino Sugano®,
Ko Mitamura°, Shigemasa Sawada ®, Yasuhiko Masuho **, Naohiko Seki?

_ " Biological Technology Laboratory, Helix Research Institute, 1532-3 }’am‘zl, Kisaradu-shi, Chiba 25;2-0812. Japan

® First Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Itabashi-ku, Tokyo 173-0032, Japan
¢ Departimnent of Virelogy, The Institute of Medical Sciences, University of Tokyo, Shirogane-dai, Minata-ku, Tokyo 108-8639, Japan

Received 26 Jﬁly 2001; accepted 10 Decermber 2001

Abstract

Sjtgren’s syndrome is a chronic autoimmune disease characterized by focal lymphocytic infiltration of lacrimal and salivary
glands, but the precise mechanism of this'syndrome is poorly understood. To clarify the mechanism of onset and progression of
Sjdgren’s syndrome, it is necessary to identily Sjdgren’s syndrome-related genes. For this purpose, we used MLR/MpJ-lpr/lpr
(MRL/pr) mouse as a mode] of human secondary Sjégren’s syndrome and analyzed specific mRNA expression patiern in MRL/lpr
mouse salivary glands by in-house cDNA microarray. Among arrayed 2304 genes, 13 genes were isolated as highly expressed genes
in MRL/Ipr mouse salivary gland in comparison with MRL/MpJ- +/4 (MRL/+) mouse tissue. Subsequently, we performed RT-
PCR analysis and confirmed the high expression level of nine genes; caspase3, Ly-6C.2, vimentin, Mel-14 antigen, cathepsin B,
mpti, Laptim5, Gnai2 and UCP2. Five of the nine genes have already been identified in paticnts with Sjégren’s syndrome or mice
models of the syndrome, but the remaining four genes; mptl, Laptn$, Gnai2, and UCP2 have not been reported previously as
Sjogren’s syndrome-related genes. Although, further experiments are necessary Lo examine (he relationship between these four genes
and Sjogren’s syndrome, our systemn of mouse model of Sjdgren’s syndrome combined with in-house cDNA microarray is suilable
for the isolation of Sjégren’s syndrome-related genes. @ 2002 Elsevier Science B.V. All rights reserved,

Keywords: Sjsgren’s syndrome; MRL mice; Sialoadenitis; cDNA microarray; Gene expression profile

1. Introduction

Sjégren’s syndrome is a chronic autoimmune disease
characterized by focal lymphocytic infiltration of Jacri-
mal and salivary glands leading to dry eyes and dry
mouth [1]. The infiltrating lymphocytes are mainly
CD4™* memory T cells, and most cases show hyperreac-
tivity of autoreactive B lymphocytes and the production
of autoantibodies [2,3). The prevalence of Sjégren’s

* Corresponding author, Telffax; + 81-438-52-3951,
E-mail acdress: masuhot@uicojp (Y. Masuho).

! This author equally contributes 1o this study.

2 This author equally contributes to this study.

syndrome may approach that of rheumatoid arthritis,
which affects between 1 and 3% of the general popula-
tion, In addition to the primary Sjsgren’s syndrome,
secondary Sjdgren’s syndrome also occurs in association
with other autoimmune diseases, such as rheumatoid
arthritis and systemic lupus erythematosus, Although
these clinical entities are well recognized, the exact
mechanisms of onset and progression of Sjogren’s
syndrome are poorly understood at present, In fact,
there is even no agreement on the diagnostic criteria of
this condition [4-6).

To study the pathogenesis of Sjégren’s syndrome,
several mouse models were generated and extensively
studied. Among these models, the MRL/pr mouse

0165-2478/U2/% « see front matler @ 2002 Elsevier Science BV, AlE riglts reserved.
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bearing the Ipr gene with a deletion of Fas antigen,
spontaneously develops systemic vasculitis, glomerulo-
nephritis, arthritis and sialoadenitis. High levels of
autoantibodies, immune complexes and rheumatoid
factor are also observed in this mouse [7,8]. Inflamma-
tion of salivary glands in MRL/lpr mouse is widely
accepted as a pathogenic model for human secondary
Sjdgren’s syndrome [9]. Although the fundamental
molecular abnormality in MRL/lpr mouse directly
depends on the lpr gene, the extent of phenotype and
timing of onset are strongly influenced by background
genes {10-12].

Gene expression analysis provides an important
perspective on unknown biological phenomena. The
following methods are established and applied for basic

and clinical studies; differential display [13], suppression

subtractive hybridization [14], cDNA microarray hybri-
dization [15], and serial analysis of gene expression
(SAGE) [16]. A microarray system is a powerful tool for
analyzing the expression profile of thousands of genes in
a wide range of biological systems. Recently microarray
analysis has been applied for the research of various
clinical disorders such as lymphoma, Huntington's
disease and myocardial infarction, and disease-related
genes were isolated in some of these disorders [17-21}.

In the present study, we isolated the genes that
contribute to the progression of Sjdgren’s syndrome
using tmRNAs from MRL/Ipr mouse salivary gland and
in-house cDNA microarray, and identified nine upre-
gulated genes.

2. Material and methods

2.1. Mice and mRNA preparation

Fifteen 15-week-old female MRL/MpJ-lpr/lpr (MRL/
Ipr) and MRL/Mpl-+/+ (MRL/+) mice were obtained
from Japan SLC, Inc. (Hamamatu, Japan), and kept
under standard conditions for 1 week. After sacrifice by
cervical dislocation, salivary glands were quickly re-
moved, frozen in liguid nitrogen and then stored at —
80 °C until nse. Total RNA was prepared from salivary
glands of 16-week-old MRL{lpr and MRL/+ mice
using TRIZOL reagent (Life technologies, Rockville,
MD)} and subsequent cleanup was carried out by
RNeasy Maxi kit (Qiagen, Germany) according to the
instructions provided by the manufacturer. Poly(A)+
RNA was isolated using Oligotex-dT30 mRNA purifi-
cation kit (TaKaRa Shuzo Co., Kyoto, Japan). The
experimental protocol was approved by the ethics review
committees for animal experimentation of the partici-
pating institutions.

2.2. Preparation of cDNA microarray

A c¢DNA microarray consisting of 2304 cDNA
derived from mouse fetus, brain and kidney was
prepared as described previously [15-18]. Briefly, 2
mg/ml of PCR products were mixed at 1:1 with 4 mg/
ml nitrocellulose in dimethylsulfoxide (DMSQ) just
before spotting, and then spotted onto carbogiimide-
coated glass slides (Nisshinbo, Chiba, Japan) using a
robotics (SPBIO-2000, Hitachi Software Engineering
Co., Yokohama, Japan). Murine P-actin was also
spotted on the same array to serve as an internal control
and luciferase genes from Photinus pyralis was used as
an external control,

2.3. Microarray procedures

cDNA microarray analyses were performed as de-
scribed previously {18]. Briefly, Cy3 or CyS5-labeled
cDNA probe was prepared from 2 pg of mRNA isolated
from MRL/lpr or MRY + mouse salivary gland. Differ-
ent fluorescence-labeled cDNA probes were mixed and
applied onto a microarray, subsequently incubated at
65 °C overnight under a humidified condition. The
fluorescent images of hybridized microarrays were
scanned with a fluorescence laser confocal slide scanner
(Scan Array 4000, GSI lumonics, Ottawa, Canada).
Background subtraction and normalization using entire
arrayed genes were carried out for each spot with
appropriate software (QuantArray, GSI Lomonics,
Ottawa, Canada) according to the protocol provided
by the manufacturer. Data of the microarray fluores-
cence intensity were also obtained using QuantArray.
Genes that showed a high fluorescence intensity over 1.5
fold in MRL/lpr were considered as differentially
expressed genes. Among these genes we selected the
candidate penes that appeared niore than five times in
eight microarray hybridization analyses.

2.4. Semi-quantitative RT-PCR analysis

The ¢cDNA templates for reverse transcriptase-poly-
merase chain reaction (RT-PCR) analysis were synthe-
sized from 1 pg of poly(A)+RNA purified from MRL/
Ipr or MRL/+ mouse salivary gland, using 200 U of
Superscript IT reverse transcriptase (Life Technologies)
and oligo(dT) primer. PCR amplification was per-
formed as described previously [18] with hot start. The
primer pairs and the predicted sizes of the amplified
PCR products are shown in Table 1. Temperatures and
time schedules were: 2 min at 96 °C for initial dena-
turation, five cycles of 96 °C for 205, 72 °C for 2 min,
followed by 20 or 25 {for GAPDH 15 or 20) cycles of
96 °Cfor20s, 60 °C for 30 s and 72 °C for 30 5. PCR
products were separated on 1.5% Nusieve 3:1 agarose
gel (Cambrex, Rockland, ME).
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Table { )
Primer pairs used in RT—PCR
Gene Sense primer Antisense primer Product size (bp)
Caspase 3 5“GGA GCT GGA CTG TGG CAT TGA.-Y 5-CAG TTC TTT CGT GAG CAT GGA-¥ 322
Ly-6C.2 5"-GCT ACG AGT GCT ATG GAG TGC-3 5-GGA AGG ACC ATC AGA GCA AGG-¥ 321
Vimentin 5-CTG TGT CCT CGT CCT CCT ACC-3" 5-GCA GTT CTA CCT TCT CGT TGG-¥ 309
MEL-14 antigen  §-GGA AAC TAT CAA CAA TCA CAC G-¥ 5-TGC CAG CCA AAT GAG AAA TGC-¥ 550
Cathepsin B 5-AGA CCT GCT TAC TTG CTG TGG-3' 5-ACT CCA TTC TCT ACT CCC CAG-3¥ - 465
mptl $-GTG TTG TCT CCT TCT GTG ATG-¥ " 5“CTC ACT CTT CAC TGT CCA ACT-¥ 474
LaptmS5 §.TCC TGC TCA TTG GCG TGC TC-¥ 5-GAG ACA AGG CTT CCT CGT AG-Y 531
Gnai2. - ¥-GTG CTG GCT GAG GAT GAG GAG-3 5-TGA TGA TGA CGT CAG TGA CGG-¥ kxy)
UCF? $-GACCTC CCT TGC CACTTC AC-¥. o 5-GCA TGG AGA GGC TCA GAA AG-¥Y 305
Saposin 5-AGG AGG TGG TGG GAA CAT TTG-¥ 5*TTC TCG GTT CCC AGC AGC AG-¥ 501
Trt - 5-GGG CAA GAT GGT CAG TAG AACY " §.GGT AGT CCA GGA GAG CAA CC-3 359
Lamrl © §-CAC CTG GGA CCT TCA CTA ACC-¥ “GGA TGG GCA CAG AGG GAA CC-3 468
HSP 70 cognate - 5-AAG AGC ACA GGA AAG GAG AAC-Y _ 5-GAA GCC ACC AGG CAT CCCTCY ;- 423
GAPDH  §-ACC'ACA GTC CAT GCC ATC AC-¥’ . 5TCC ACC ACC CTG TIG CTG TA-3 - 452
3 Results expressed geues m the sahvary gland of MRL/lpr mouse

3.1 ¢DNA rmcr oanay anal_; su

To investigate thc gene expressxon proﬂ]e of S}ogren s

syndrome, we exammed mRNAs of the MRL/lpr mouse -
salivary gland using cDNA microarrays. We arrayed a.
set of 2304 cDNA clones derived from oligo-capped-

mouse brain (MNCb), fetus and k1dney ¢DNA Iibrary
on our ¢cDNA microarray. P-Actin (accession no,
X03672) was used for internal contrel and luciferase
gene from P. pyralis was used as an external control.
Human Cot I DNA was used as a negative control.
cDNAs on the microarrays were hybridized with a
mixture of Cy5 and Cy3 labeled cDNA probes. Probes
were prepared from poly(A)4+RNA of MRL/lpr and
MRIL/+ mouse salivary glands. Fas gene is preserved in
MRL/+ mouse and the severity of inflammation in this
mouse is much less than that in MRL/Ipr mouse. As the
most aggressive inflammation in the salivary gland of
MRL/pr mouse occurs at the age of 12-16 weeks
[10,22], we compared mRNAs of MRL/Ipr and MRL/+
mouse salivary glands at the age of 16 wecks. Repre-
sentative hybridization signals are shown in Fig. 1, i

which the cDNA probe derived from MRL/4+ mouse
salivary gland is Jabeled with Cy-3 (red) and the cDNA
probe from MRL/Ipr mouse salivary gland is labeled
with Cy-5 (green). Red and Green c¢olors indicate
relative abundance of expression in MRL/4+ and
MRL/pr salivary glands, respectively. The yellow color
indicates that both of the mRNAs derived from MRL/
Ipr and MRL/+ mouse salivary glands are cqually
expressed. Eight individual experiments were performed
in total, and in half of the experiments fluorcscent dyes
for the probes were exchanged. We identificd 13 highly

.2)

. by ¢cDNA microarray analysis, which were selected as

candxdates of Sjégrens syndrome re]ated genes (Table

3 2. Conﬁ:marzon of micr oanay ﬁndmgs by RT-PCR
analysis

To conﬁrm the high expression of the above 13 genes
in Sjégren’s syndrome model mouse, we performed RT-
PCR analysis using Poly(A)+ RNAs from independent
salivary glands of MRL/lpr and MRL/+ mice as
templates. The primer pairs are listed in Table 1. RT-
PCR analysis reproduced the results of cDNA micro-
array analysis in nine out of 13 genes; high expression of
caspase3, Ly-6C.2, vimentin, Mel-14 antigen, cathepsin
B, mpt!, Laptm5, Gnai2 and UCP2 was noted but not
the remaining four genes; saposin, Trt, laminin receptor
1 and HSP 70 cognate (Fig. 2). Additional PCR
amplifications at 22, 27, and 32 cycles reproduced the
same results.

4. Discussion

Several mouse strains, NOD, NZB/NZWFI, MRL/
lpr are commercially available and used as a model of
human Sjégren’s syndrome [9,23,24]. MRL/Ipr mice
spontancously develop inflammation of the salivary
and lacrimal glands, SLE like nephritis, arthritis and
vasculitis. Previous immunohistochemical studies have
shown that inflammation of the salivary glands in MRL/
Ipr mouse is quile similar to that seen in human
Sjdgren’s syndrome [25]. Based on these early reports,
we sclected in the present study the salivary glands of
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