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BUTYRATE SUPPRESSES HYPOXIA-INDUCIBLE FACTOR-1 ACTIVITY IN
INTESTINAL EPITHELIAL CELLS UNDER HYPOXIC CONDITIONS
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ABSTRACT—Interaction between the products of intestinal bacteria and the intestinal epithelial cells is & key event in
understanding the biclogical, physiological, and pathological functions of the intestinal epithelium. Here, we examined the
effect of butyrate, one of the major intestinal bacterial products, on hypoxia-inducible factor-1 (HIF-1) activity under
hypoxic conditions in intestinal epithelial cells. HIF-1 activity was assessed by luciferase assay using cytoplasmic extracts
of intestinal epithelial cells, Caco-2, and IEC-6 cells. Thesa cells were transiently transfected with hypoxia response
element (HRE)-uciferase reporter plasmids and cultured under hypoxic conditions in the presence or absence of sodium
butyrate (NaB). The effect of NaB on HRE DNA binding activity in Caco-2 cells under hypaoxic conditions was assessed
by electrophoretic mobility shift assay. Expression of a hypoxia-responsive gene encoding intestinal trefoil factor {{TF) in
Caco-2 cells after NaB treatment was assessed using reverse-transcription PCR. The barrier function of Caco-2 cells
under hypoxic conditions was also evaluated by transepithelial electrical resistance measurement. NaB suppressed
up-regulation of HIF-1 transcriptional activity under hypoxic conditions in Caco-2 and IEC-6 cells. In parallel, NaB reduced
HRE DNA binding activity under the same conditions. Furthermore, NaB down-regulated enhanced transcription of /TF
gena. Addition of NaB under hypoxic conditions delayed recovery of transepithelial electrical resistance of the monolayers
after hypoxia-reoxygenation treatment. These findings indicate that NaB suppresses HIF-1 transcriptional activity on
hypoxia-responsive genes by reducing the HRE DNA binding activity under hypoxic conditions in intestinal epithelial cells.

KEYWORDS—Caco-2, hypoxia, intestinal trefoil factor, short-chain fatty acid

INTRODUCTION

Interaction between intestinal bacteria or their products and
intestinal epithelial cells is an important event in understanding
the biological, physiological and pathological functions of the
intestinal epithelium. One of the short-chain fatty acids, buty-
rate is a bacterial product caused by fermentation of hydrocar-
bons and exists in the lumen of human intestine at a concen-
tration of 2 to 24 mmol/kg (1). Butyrate has been reported to
have a variety of effects on intestinal epithelial cells. It has
been reported to alleviate damage to the intestinal mucosa
caused by thermal and detergent injury (2) or inflammatory
bowel disease (3, 4). In addition, several reports have demon-
strated that butyrate suppresses tumorigenicity of tumor cells
through its apoptosis-inducing function (5, 6).

Butyrate has been shown to modulate histone conformation
by inhibition of histone deacetylases (HDAC) (7). Recently, a
specific HDAC inhibitor, trichostatin A, was reported to
prevent hypoxia-inducible factor-1 (HIF-1) activity under
hypoxic conditions (8). HIF-1 is a heterodimeric basic helix-
loop-helix transcription factor consisting of HIF-la and
HIF-1p subunits (reviewed in 9). HIF-1a is induced by hypox-
ia, whereas HIF-18 is constitutively expressed. It is one of the
pivotal transeriptional factors by which cells in diverse phyla
adapt to hypoxic conditions. HIF-1 transregulates transeription
of a panel of genes containing genes encoding growth factors
such as vascular endothelial growth factor (VEGF) (10}, cyto-
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kines such as erythropoietin (11), and glycolytic enzymes such
as aldolase A, phosphoglycerate kinase-1 (PGK-1), B-enolase,
pyruvate kinase M, and glyceraldehyde-3-phosphate dehydro-
genase (12-15). Transcription of intestinal trefoil factor (ITF),
which plays critical role in the mucosal barrier function, has
been also proved to be regulated by HIF-1 (16). Induction of
ITF was reported to partially protect endothelial cells from
hypoxia-elicited barrier disruption (16). Short-chain fatty acids
including butyrate have been reported to inhibit ITF gene
expression in colon cancer cells (17).

These accumulating findings prompted us to investigate
whether butyrate suppresses HIF-1 activity in human intestinal
epithelial cells when it is exposed to hypoxic environments. In
this study, we used a human intestinal epithelium-like cell line,
Caco-2 cells, and a rat small intestinal epithelial cell line,
IEC-6 cells. We also examined whether butyrate affects the
barrier function under hypoxic conditions by measuring the
transepithelial electrical resistance (TEER) of Caco-2 cells.

MATERIALS AND METHODS

Construction of hypoxia response element
reporter plasmids

pHREpgkLuc and pHREpaiL.uc, reporter plasmids for hypoxia response element
(HRE), were constructed as follows, Three copies of a double-stranded oligonucleo-
tide that contains HRE of the 5'-flanking region of human PGK-1 (13), 5'-TC-
GAGACGTGCGGGACGTGCGC-3', or HRE of the 5'-flanking region of rat plas-
minogen activator inhibitor-1 (PAI-1; 18), 5'-TCGACACGTACACACG-
TGTCGCGC-3', (the underlined portions indicate HRE) were inserted just
upstream of minimum SV40 promoter of pGL3-Promoter (Promega, Madisor, WI),
resulting in pHREpgkLuc and pHREpaiLuc, respectively. The nucleotide sequences
of the resultant plasmids were confirmed by dideoxy sequencing with ABI PRISM
310 Genetic Analyzer (Applied Biosystems; Foster City, CA). Large-scale purnifi-
cation of plasmids was conducted with Qiagen plasmid mega kit system (Qiagen,
Chatsworth, CA).
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Cell culture

A human colonic epithelial cell line, Caco-2 cells, and a rat small intestinal
epithelial cell line, IEC-6 cells, were obtained from American Type Culture Collec-
tion (Manassas, VA). Cells were maintained a1 37°C in a huridified atmosphere of
5% CQ,. Dulbecco modified Eagle medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (DMEM/LCOFBS) was used in
all experiments. For experiments, 1 x 10° cells were seeded onto the polycarbonate
Transwell filters {(diameter 12.0 mm) with a pore size of 0.4 pm (Costar, Coming,
NY). Forty-eight hours after seeding, the medium was changed to DMEM without
FBS in the upper chamber and with 10% FBS in the lower chamber to mimic the
physiologic condition in vive,

Transient transfection and luciferase assay

For reporter assays, transient transfection was performed using the high-
efficiency calcium-phosphate methods previously deseribed (19). Briefly, 1 pg of
the reporter plasmid, pHREpgkLuc or pHREpaiL.uc, and 1 jg of pRL-TK (a contrcl
for transfection efficiency) were suspended in 50 pL of 0.25 M CaCl,. After
vigorous shaking for 15 5, 50 pL of 2x BES [N,N-bis (2-hydroxyethyl)-2-
aminoethanesuifonic acid]-buffered saline (BBS) was added to the solution and
incubated for 15 min at room temperature. The mixed solution was then added
dropwise 1o confluent cells. The cells were incubated for 12 h in 3% CO, atmo-
sphere at 37°C and then washed twice with PBS. Twenty-four hours after transfec-
tion, cells were washed with PBS, and the medium was replaced with DMEM/
10FBS contairing NaB (Wako Chemical, Tokyo, Japan) or sodium propionate
(NaPr) (Wako Chemical} at the indicated concentration, or with DMEM/10FBS
alone. Then, the cells were subjected to hypoxic conditions or remained in normexic
conditions and incubated for the indicated time. Preparation of cell extracts and
luciferase assay were performed using aliquots of cell extracts with the PicaGene
luciferase assay system (Toyo Ink, Tokyo, Japan) following the manufacturer's
procedure. Luciferase activity was measured with an OPTOCOMP 11 luminometer
(MGM Instruments, Inc., Hamden, CT). The relative luciferase activities were
normalized with the activities of Renilla reniformis luciferase by cotransfected
pRL-TK (Promega).

Hypoxic conditions

For experiments in hypoxia, the culture plates were placed into a modular incu-
bator chamber (Billups-Rothenberg, Del Mar, CA), The chamber was packed with
gas consisting of 5% CO,, 1% O, and 94% N,. The valves were then closed, and
the chamber was placed in a conventional CO, incubator maintained at 37°C as
described previously (20).

Semiguantitative reverse-transcription PCR

Caco-2 cells were harvested, and total RNA was prepared from the cells by
Isogen RNA extraction solution (Nippon Gene, Tokyo, Japan). Single-stranded
cDNA was synthesized with Molony murine leukemia virus reverse transcriptase
(Life Technologies, Gaithersburg, MD) and then used for PCR analysis. Primers
used for human ITF and B-actin cDNA detection were as follows. For the /TF gene
(21), 5'-CCAGGCACTGTTCATCTCAG-3' and 5'-GGAGCATGGGACCTT-
TATTC-3"; for B -actin gene, 5'-GGCGGCAACACCATGTACCCT-3' and
5'-AGGGGCCGGACTCGTCATACT-3'.

PCR conditions are 23 cycles of 92°C for 1 min; 60°C, for 30 s; 72°C for 30 s.
The strength of primer-specific bands was quantified with AE-6900M densitograph
(ATTO, Tokyo, Japan). The density of ITF-specific bands was normalized by divid-
ing by that of B-actin-specific bands. Results were expressed as relative band
densities as compared with the density of [TF-specific band at normoxia without
NaPr or NaB treatment (= 100).

Electrophoretic mobility shift assay

Nuclear extracts of Caco-2 cells were prepared according to the method of
Dignam et al. (22). Briefly, Caco-2 cells were washed twice in cold PBS and then
allowed to swell in buffer A (10 mM HEPES, pH 7.9, 10 mM KCl, 1.5 mM MgCl,.
and 0.5 mM dithiothreitol) for 10 min on ice and pelleted at 1500 rpm for 10 min.
Cells were suspended in two pellet volumes of buffer and then lysed by 20 strokes
of a type B pestle. The homogenates were centrifuged at 2000 rpm for 10 min. The
petlets (crude nuclei) were resuspended in 200 pL of buffer C (20 mM HEPES, pH
7.9,0.42 M NaCl, 1.5 mM MgCl,, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.5 mM
phenylmethylsulfony! fluoride (PMSF), 25% glycerol, 10 pg/mL leupeptin, 10
uefml pepstatin} by homogenation with 20 strokes of a type B pestle. The suspen-
sions were gently rocked for 30 min and then centrifuged for 45 min at 15,000 rpm.
The resulting supernatants were dialyzed against 50 volumes of buffer D (20 mM
HEPES, pH 7.9, 0.1 M KC1, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.5 mM PMSF,
10 pg/ml leupeptin, 10 ug/ml. pepstatin} for 2 h, Protein concentrations were
measured by BioRad protein assay kit (Bio-Rad Laboratories, Herculus, CA). For
EMSA, nuclear extracts (3 ug) were preincubated with 2 pg of poly(dh-(dC)
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(Pharmacia Fine Chemicals, Fiscataway, NI) in 20 uL. of M buffer (10% glycerol,
2% polyvinyl alcchol, 20 mM HEPES, pH 7.9, 40 mM KCI, 7 mM MgCl,, 1 mM
dithiothreitol) for 10 min at roem temperature. As a control, a 50-fold molar excess
of cold HRE competitor oligonucleotide or TPA (12-O-tetradecanoylphorbol-13-
acetale) response element (TRE) oligonucleotide was added during preincubation.
After preincubaticn, 0.5 ng of **P-end-labeled HRE oligonucleotide probe was
added to the reaction mixture and incubated for an additional 30 min. The reaction
mixture was loaded onto a 4% polyacrylamide gel containing 0.25-fold TBE. Elec-
trophoreses were carried out at 120 V for 3 h. Gels were dried, exposed to a Fuji
imaging board, and analyzed using the BAS1000 system (Fuji Photo Film, Tokyo,
Japan).

Transepithelial electrical resistance measurement

Measurement of transepithelial electrical resistance (TEER) was performed in
culture medium by using a monolayer of cells grown in 12-mm inserts with a
surface area of 1.0 em® as described previously (20). We usually cultured Caco-2
cells for 3 to 4 days before they reached confluence. To measure TEER, 100-pA
current pulses (1 s} were passed via Ag-AgCl electrodes. The resultant voltage
deflections were detected using a separate pair of Ag-AgCl electrodes and a resis-
tance meter (model EVOM, World Precision Instruments, New Haven, CT). Fluid
resistance was subtracted, and net resistance was expressed as ohm-square centi-
meter ((lem®). Average values from trplicate measurement were shown for each
time point.

Statistical analysis

Data from multiple experiments were expressed as the mean + SE. Statistical
aralyses were performed by using the StatView-J 4.02 statistics program (Abacus
Concepts, Berkeley, CA). Data were analyzed by the Student’s two-tailed ¢ test for
two groups, or by one-factor analysis of variance (ANOVA) followed by Fisher's
Protected Least Significant Difference (PLSD} test for three or more groups.

RESULTS

HIF-1 activity is augmented under hypoxic conditions in
Caco-2 and IEC-6 cells

First, we examined whether HIF-1 activity in Caco-2 and
IEC-6 cells is induced under hypoxic conditions by using
pHREpgklLuc and pHREpaiLuc reporter plasmids, respec-
tively. The cells were transiently transfected with the teporter
plasmids and were subjected to hypoxic conditions for 36 h.
Cell lysates were then prepared, and the luciferase activities
were analyzed. As . shown in Figure 1, HIF-1 activity was

Caco-2 {[EC-6
{x10%) (x103)
25 8
— * T * T
g 20 57
_— 4_
S 15
3 3
2
& 21
[+}} 4
x ° 1 !
0 - 0

Norm Hyp Norm Hyp Norm Hyp Norm Hyp

Control pHREpgkLuc Control pHREpail.uc

Fia. 1. HRE activity under hypoxic conditions in Caco-2 and IEC-6
celis, Left panel, Caco-2 cells were transiontly transfected with pHREpgkLuc
or pGL3-Promoter (control) plasmid. The cells were then subjected to
normoxic {Norm}) or hypoxic (Hyp) conditions for 36 h. The relative luciferase
activities were measured by using the cell lysates. Right panel, IEC-6 cells
were fransisnily transfected with pHREpailuc or pGL3-Promoter plasmid.
The same experiments as in left panel were performed. The means + SE of
triplicate determinations are shown. Asterisks indicale statistical significance
(P = 0.001) compared with the groups transfected with pGL3-Promoter plas-
mid (controf).
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clearly observed when the cells were cultured under Liypoxic
conditions but not under normoxic conditions. When a control
plasmid that does not contain HRE, pGL3-Promoter, was trans-
fected, no detectable level of luciferase activity was observed
even under the hypoxic conditions. When the cells were
cultured for more than 10 days and became confluent, HIF-1
activity was always observed even under the normoxic condi-
tions. This tendency increased as the culture periods length-
ened {data not shown).

Caco-2 cells have been reported to have characteristics of
normal intestinal epithelial cells, but the cells are derived from
human colon adenocarcinoma cells. The tumorigenicity of the
cells may have some relevance to the observed HIF-1 activity.
Therefore, we also examined another cell line, IEC-6, which is
derived from rat small intestinal epithelial cells and is consid-
ered to reflect the characteristics of normal intestinal epithelial
cells without tumorigenicity (23). Increased HIF-1 activity was
observed in IEC-6 cells when the cells were subjected to
hypoxic conditions, suggesting that HIF-1 activity in Caco-2
cells is not caused by the tumorigenic character of the cells but
reflects the character of normal intestinal epithelial cells.

MIKI ET AL,

Butyrate, but not propionate, down-regulates HIF-1
aclivity under hypoxic conditions in Caco-2 and
IEC-6 cells

Next, we investigated the influence of the short-chain fatty
acids butyrate and propionate on HIF-1 activity in Caco-2 and
IEC-6 cells under hypoxic conditions. As shown in Figure 2,
NaB suppressed induction of HIF-1 activity under hypoxic
conditions. NaB also suppressed HIF-1 activity under
normoxic conditions, although HIF-1 reporter activity is
much lower in normoxic conditions. NaPr did not show any
effects under the experimental conditions examined. In
contrast, NaPr had a tendency to augment HIF-1 activity, espe-
cially in IEC-6 cells. The HIF-1 activity observed in IEC-6
cells was significantly smaller than that in Caco-2 cells.

Butyrate down-regulates HIF-1 activity specifically
under hypoxic conditions in concentration-, and
time-dependent manners

Subsequently, we examined the effects of timing and doses
of administration of NaB. Treatment of the cells with 2 mM of
NaB for 36 h significantly down-regulated induction of HIF-1
activity under hypoxic conditions in the cells (Fig. 3A). Treat-

Caco-2
Control — Control
NaB
NaPr n NaPr Fic. 2. Butyrate, but not propionate,
suppresses HIF-1 activity under hypoxic
| ' v r . } . . . . conditions In Caco-2 and IEC-6 celis.
Caco-2 or IEC-6 cells were transiently trans-
0 1 2 3 4 ()5(105) 0 25 5 75 10 125 4 fected with pHREpgkluc or pHREpail.uc
Relative Light Unit . . , (X10%)  plasmid, respectively. The cells were
9 Relative Light Unit subjected to hypoxic (A) or normoxic condi-
tions (B} for 36 h in the presence of 5 mM of
'EC-G NaB or NaPr, The relative luciferase activities
A B were measured by using the cell lysates. The
means + SE of triplicate determinations are
shown, Asterisks indicate stalistical signifi-
cance (P = 0.001) compared with the
Control Control — untreated groups (controf).
NaB NaB *
NaPr 1 NaPr —
t T T v o - o o
° § & § 8 § & &
o~ w M~ ?_

Relative Light Unit

Relative Light Unit

— 661 —



SHOCK Movemeer 2004

A

X104 x10%
8 5

I

<

Relative Light Unlt
N E

4

Relative Light Unit

] 2 S 15 . a 12 36 72

Fic. 3. Butyrate down-regulates HIF-1 activity under hypoxic condi-
tions in dose-, and time-dependent manners in Caco-2 cells. Caco-2
calls were transiently transfected with pHREpgkLuc plasmid. (A} The cells
were exposed to 0, 2, 5, or 15 mM NaB8 under hypoxic conditions for 36 h.
The relative luciferase activities were measured by using the cell lysates.
Asterisks indicate siatistical significance (P = 0.001) compared with cells
without NaB (0 mM control). (B) The cells were added with 5 mM of NaB and
incubated for 0, 12, 36, or 72 h. Then, they were subjected to hypoxic condi-
tions. The relative luciferase activities were measured by using the cell
lysates. Aslerisks indicate statistical significance (P = 0.001) compared with
cells incubated without NaB (0 h control).

ment of the cells with 5 mM NaB for 12 h significantly reduced
the luciferase activities by HRE reporter transfection. The
reduction was more remarkable when the treatment was
prolonged (36 and 72 h) (Fig. 3B).

Bulyrate inhibits HRE DNA binding activity under hypoxic
conditions in Caco-2 cells

To examine whether butyrate treatment indeed inhibits
protein binding to HRE DNA in Caco-2 cells under hypoxic
culture conditions, we performed EMSA using nuclear extracts
of the cells. As shown in Figure 4, we detected faint HRE
DNA-—protein complex under normoxic conditions. Addition of
NaB under normoxic conditions lost the band. Under hypoxic
conditions, we could detect a strong band of HRE DNA-pro-
tein complex. Excess unlabeled HRE, but not TRE oligo-
nucleotide, inhibited the HRE mobility shift, indicating that the
DNA-protein complex is specific. Addition of NaB weakened
the band, indicating that butyrate suppresses HRE DNA~pro-
tein complex formation.

Butyrate down-regulates expression of ITF gene

ITF plays a critical role in the mucosal barrier function and
was reported to be regulated by HIF-1 (16). We therefore
examined whether butyrate treatment affects the expression of
ITF mRNA in Caco-2 cells. As shown in Figure 5, NaB
decreased ITF gene expression under normoxic and hypoxic
conditions. The degree of down-regulation was more obvious
in hypoxia than in normoxia. Addition of NaPr also affected
the expression of ITF mRNA under normoxic and hypoxic
conditions, although the effect was much weaker than that of
addition of NaB.

Butyrate impaired recovery of the intestinal barrier
function after hypoxia

Recently, HIF-1 was reported to protect the barrier function
through induction of ITF (16). We therefore examined the
effect of butyrate on intestinal permeability, i.e., the barrier
function, of Caco-2 cells. We measured TEER of Caco-2 cells

Buryrate ArrecTs HIF-1 Actvity v Hyroxia 449

Hypoxia

Normoxia
NaB () NaB {-)
HRE TRE
() 100 50 10 100{ng)

Fig. 4. Butyrate suppresses HRE DNA-protein complex formation
under hypoxic conditions in Caco-2 cells. Nuclear extracts of Caco-2 cells
cultured for 24 h under normoxic conditions (normoxia) with (NaB} or without
{-) NaB freatment, and nuclear extracts of Caco-2 cells cultured for 24 h
under hypoxic conditions (hypoxia) with (NaB} or without (-) NaB treatment,
were analyzed. Different amounts of unlabeled HRE [HRE 100, 50, 10 (ng)]
or TRE {TRE 100 (ng)] probes were also added to nuclear extracts of Caco-2
cells cultured under hypoxic conditions without NaB freatment. An arrow
indicates HRE DNA-protain complex-specific bands.

after the cells formed a confluent monolayer under normoxic
and hypoxic conditions in the presence or absence of NaB for
36 h. Then, the cells were reoxygenated. TEER of the cells that
were exposed to hypoxic conditions without NaB treatment
recovered to normal levels immediately (within 15 min). On
the other hand, addition of NaB decreased TEER recovery in a
dose-dependent manner (Fig. 6). Two millimolar NaB signifi-
cantly reduced recovery of the barrier function after reoxygen-
ation. Addition of 15 mM NaB completely suppressed the
Tecovery.

DISCUSSION

The present study showed that butyrate has suppressive
effects on the up-regulation of HIF-1 transcriptional activity,
HRE-DNA binding activity, and transcription of ITF gene
under hypoxic conditions in intestinal epithelial cells and also
that butyrate modulates the barrier function of the cells.

In this study, we mainly used Caco-2 cells as a model of
intestinal epithelial cells because these cells develop the
morphologic characteristics of normal enterocytes and have
been widely studied as an excellent model of intestinal epithe-
lial cells {24). The cells were reported to be subjected to differ-
entiation after seeding and to mimic the differentiation of
enterocytes in vivo (24). Intestinal epithelial cells differentiate
during the process of elevating from the crypt fossa toward the
apex of villi in approximately 4 days. The cells are exposed to
the contents of the intestinal lumen, mainly bacteria and bacte-
rial products, during the differentiation process. Taking this
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Fia. 5. Butyrate affects expression of ITF gene, Thirty-six hours after
Caco-2 cells were incubated under normoxic or hypoxic conditions in the
presence or absence of 5 mM of NaPr or NaB, total RNA was prepared, and
semiquantitative RT-PCR was performed with priners specific for ITF gene.
Five millimolar NaB or NaPr was used. As a control, the same RT-PCR was
performed with primers for B-actin gene. The means + SE of triplicate deter-
minations of relative band densities are shown (the strength of ITF-specific
band in normoxia without NaB or NaPr treatment is 100). Asterisks indicate
statistical significance (P = 0.001) compared with the untreated group (-).

into consideration, we set up a model to study the effects of
butyrate under hypoxic conditions on HIF-1 activity, arranging
timing and doses of butyrate administration so as to mimic the
physiological conditions of enterocytes. Caco-2 cells have
been also shown to be suitable as a model system to study the
barrier function by measuring the TEER values after the cells
form cobblestone-like monolayers on Transwell polycarbonate
membranes (25). We measured TEER as an indicator for intes-
tinal barrier functions in this study.

We examined the effects of 2 to 15 mM of butyrate, which
concentrations are higher than those used in previous studies
(26, 27) but are equal to actual values in the human intestinal
lumen (1). Mucinous secretory substances have been suggested
to prevent butyrate in the lumen from direct contact with
enterocytes in vivo (26). That may be the case under normoxic
conditions. However, goblet cells, the main source of mucus
secretion, do not restitute under the ischemic state or after
ischemia-reperfusion injury (28). In addition, hypoxia may
increase the number of butyrate-producing anaerobic bacteria
such as Corynebacteria and Fusobacteria in the intestinal tract,
Therefore, enterocytes might be exposed to butyrate at higher
concentrations than that speculated in a previous work (26).

Butyrate has been reported to favor the barrier function of
intestinal epithelial cells under normoxic conditions (26, 27,

MiK) ET AL,
0 {Qicm?)
2 400
% —®— 0mM
]
£ 350- = 2mM
'.'3 . —&— 5mM
7] —_—y
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£ 2504
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BL 0 3 7 10 15 (min)
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Fia. 6. Butyrate suppresses recovery of TEER after reoxygenation
treatment of Caco-2 cells. Caco-2 cells were untreated (0 mM) or treated
with different concentration of NaB (2, 5, or 15 mM). Immedtately, the cells
were subjected to hypoxic conditions and cultured for 36 h, Then, the cells
were reoxygenated for 0 to 15 min. During reoxygenation, TEER was
meagured. Average valua from triplicate measurement was shown for each
point. BL denotes the baseling, the TEER level of Caco-2 cells without NaB
treatment in normoxia,

29). Supporting that, Verkartraman et al. (2) reported that buty-
rate hastens restoration of the barrier function after thermal and
detergent injury to the rat distal colon in vitro. We also found
that butyrate reduced paracellular permeability when butyrate
(up to 15 mM) was added to Caco-2 cells under normoxic
conditions (data not shown). However, we showed in this study
that butyrate disturbs the recovery of the barrier function after
exposure to hypoxia. Under normoxic conditions, butyrate has
been reported to induce differentiation of Caco-2 cells, and the
differentiated state of the cells is important for enhancement of
the barrier function (24). On the other hand, butyrate may act
under hypoxic conditions in a different manner from under
normoxic conditions. In this study, we found that butyrate
remarkably down-regulated HIF-1 activity and decreased ITF
gene expression in hypoxia. Because ITF plays a pivotal role in
epithelial integrity, we reasoned that this might be the main
reason for butyrate to modulate the barrier function in hypoxia.

The expression [evel of ITF may be one of the critical factors
influencing the barrier function of intestinal epithelial cells.
Tran et al. (17) showed that butyrate inhibits ITF gene expres-
sion in colon cancer cells under both normexic and hypexic
conditions. We confirmed their findings in this study (Fig. 4).
They identified the butyrate response element (BRE) in the
promoter region of the human ITF gene and showed that the
BRE is essential for butyrate to influence ITF gene expression.

. On the other hand, Furuta et al. (16) claimed to identify a

previously unappreciated HIF-1 binding site (HRE) in the
promoter of human fTF gene, although we could not identify
the site at the promoter region that Seib et al. (21) reported.
Here, we showed that butyrate decreases the HIF-! activity of
intestinal epithelial celis in hypoxia. Taken together, either the
pathway through BRE or HRE, or both pathways, may be
responsible for the effect of butyrate on ITF gene expression.

Butyrate has been considered to regulate an array of genes.
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This effect has been mainly attributed to the inhibition of
histone deacetylases. Recently, Kim et al. (8) reported that a
specific HDAC inhibitor, trichostatin A, down-regulates
HIF-1e activity and VEGF gene expression. Therefore, we
reasoned that the suppressive effects of butyrate on HIF-1
activity in intestinal epithelium cells in hypoxia might be
attributable to its ability to inhibit HDAC in these cells.
However, Andoh et al. (30) reported that the effect of butyrate
on several intestinal epithelial cell lines is different from that of
trichostatin A. Further study is needed to clarify the effects of
butyrate on HDAC under hypoxic conditions. Alternatively,
the suppressive effects of butyrate on HIF-1 activity might be
mediated by nitric oxide. We observed that butyrate induces
expression of the gene for inducible nitric oxide synthase
{iINOS) in Caco-2 cells (data not shown). It has been reported
that administration of nitric oxide donors or introduction of
INOS gene inhibits HIF-I activity in several cell lines (31-33).
So, butyrate may induce production of nitric oxide and conse-
quently inhibit HIF-1 activity in intestinal epithelium cells.

Ding et al. (34) cocultured ileal mucosal membranous tissue
and Escherichia coli with an Ussing chamber system and
showed by measuring the membranous electrical resistance
that the combination of hypoxia-reoxygenation plus E. coli
bacterial challenge caused irreversible mucosal damage. In
their work, the cytokines produced by intestinal epitheliat
lymphocytes, bacteria, and/or bacterial products might have
accounted for the barrier failure. Here, we focused on studying
the pivotal transcriptional factor HIF-1 in intestinal epithelial
cells. We showed that butyrate inhibits HIF-1 activity and
modulates the barrier function in the cells. Supporting our
results, Zgouras et al. (35) recently reported that butyrate
decreases HIF-1a DNA-binding activity by inhibiting HIF-1a
nuclear translocation in Caco-2 cells, which subsequently
reduce VEGF secretion levels. Mariadason et al. (36) reported
that butyrate disrupts the intestinal barrier function under some
conditions. It seems that butyrate possesses either beneficial or
deleterious effects on the barrier function of intestinal mucosa
depending on the situation. We studied here the effect of buty-
rate on TEER of Caco-2 cell line under hypoxic conditions.
Treatment with butyrate delayed recovery of TEER after
hypoxic conditions. This effect may be caused by apoptatic
changes of Caco-2 cells from butyrate treatment. The TEER
values observed here were higher than those observed by some
other investigators (24-27). The reason for this discrepancy is
not clear, but it is possible that the number of Caco-2 cells used
in this study was more than the rumber that is necessary to
form a monolayer culture in the plates. Changes in TEER
observed in this study in vitro have to be evaluated carefully
because the study shown here has some limitations in terms of
the clinical implications. The limitations include a 36-h period
of hypoxia (clinical hypoxic insults are much shorter), the
limited degree of changes in TEER, and the short period of
time it was measured {i.e., 15 min after a 36-h insult).

A clinical study (37) reported that luminal irrigation of the
whole intestine and flushing of intestinal contents were asso-
ciated with improved survival of critically ill patients in inten-
sive care units. Irrigation of the lumen of the intestine may
remove intestinal bacteria and bacterial products, beneficially

Butveate Arrects HIF-1 Activity v Hyroxia 451

affecting the physical conditions of patients, even though the
study shown here has limitations on the clinical implications as
mentioned before. Further study in vivo is absolutely required
for clarifying the effects of butyrate in vivo.
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1 BEEBLUM bovis BCGEREAGAE (XS5 L k)

-7 e CIE*iiE flhe & ¥R LI® N7 3 /BT
(kDa} No.
RBREB
41 MPT32 90 DPEPA
315 MPT45 Ag85C 20 FSRPG
31 MPT44 Ag8hA P32 150 FSRPG
30 MPT59 Aga5B agb, a-ag 70 FSRPG
27 MPT51 25 APYEN
26 MPT64 40 APKTY
23 MPB70 70 1,000 GDLVG
18 MPTe3 AYPIT
15 MPT53 DEXLQ
B3y EA (Hsp)
71 DnaK 63 <0.03 ARAVG
65 GroEL 82 0.0004 KTIAY
12 GroES BCG-a, MPT57 <004 AKVNI
JHER
38 PhoS 78 5 CGSKP
19 CSSNK
233
40 ECl4. 11 MRVGI
23 SODe 62 AEYTL

a CIE: crossed immunoelectrophoresis
b LT localization index
¢ SOD: superoxide dismutase

WRBAT DL, HROZELME, AgSh T
GEOEDLFEIIEL 2D, Wiker 59 35
FeRI LI{wWEHE% (M tuberculosis
H37Rv) Tix, LDt 512 Ag855 T H G EN
ETWEATOG0%E i, Ag8SB DA
Ag8SA L D LETFEZ VI L RiHL T3,
AR T FRIGHIEE b7 4 70X F /IS
REERT. $/4, ThiZa—F772 % 04K
IZH-3 % mycoly! transferase BEEiEtE £ 33310,
HAIZ, Ag85A13P32L, AglsBit o ML &
—DGFFTHH (F#1),

Ohara 6 X Ag85A G F% 32— F+ 5 0{ZF
03Tt 179bp {2 MPT51 (MPBS1) 4F% 22— F
TAOREFHFFETLILZHEL TV,
MPBS1 53 Ag85 - FHEEH L 37~ 43% 0 H]

FiE%RT7:8, Ag85 77 IV —54TFIZRT A
EFAREZTYS (H]).

B. Ag854FDNAT 7 F >

Ag8SA T BRI BEL-EE A0y v
SNEIREFEL, BWHBEERES L CIFN.y E
EXFEHTLY, LT, FHaLED,
Ag8S T E R LRI TS 5 T ikttat
vy, KBS, T ALZ Ag8SA £ 701X Ag8SB AT
FRBETHDNAT 7 F U 2 iEBHET 5 &, 4%
REEYERE, Mtk aE (T RAMYMEE,
Thl1ARREIG, MEAGEEE TR (CTL)) 2455
RENLDHRZGT, HEHEOBRRIRRR IR
PAEIREA IR S5 B, LA LAdts, AgdsC
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1 10 Lt2n 30, a0 sa 60 70 g0
BCG RY8SA MGy DE YR A TOMARA LY GAY I EALVS S LY AN GO TATRZRF SPEGLEVEYLQVESPEMERDIEV AT QS 3GANS B-ALY
M.T.AYESAE MLy DRYRGRY TEMIERLVVAY G RALVE S LV SRV G TRTAGAF SEEGLEVE YLGVESESMIPDIEVOF S GEANSE-ALY
506 RJ85B SR TRAMG GTRIE GLY GLAGGARTRGE -~ ~F SREGLPVEYLQVPSPSMGRTIKY QF Q8 GGNNS B-B VY
M.t.Bg8SB MILVSRKIPEHGRR MIGTARAVY [ 2G TG ATIANTICA - - -F SREGLEVEYLQVPSESMGRDI KV QSGENNS B-RYY
ECG MBBS1 MESRSALIRA LT R SPOLAGYAY ARRPTARR-~—====—==—= ==~ APTENLMVPSESMERDI FVAF LAGG—— ~ PHAY Y
M.t.METS1 MEGRSALIPE NIRRT SFGLGRYEYARRETAL - ———————-==-=—= AFYENLMVESESMGPDI PVAF LAGG—— - PHAY Y
: a0 100 110 120 120 140 150 160
ECG BgASA LLDGLRAQDDF SGHDINTRAF ENYDRSGLS VP VGGQS SF Y SLIWYQPACGKRAGCHTYVWETFLTSELE GWLOANRH VKD
M.t.Ag95A LLDGLRAQDDE $GWDINTRAF EWYDQSGLS VVMP VGGQS SF ¥ SDWYQ PACGKAGCOTYKWETFLTSELP GWLOANRHVKD
BECG AJAaSE LLLGLRAGDDYNGWDINTEAFEWY YGSGLS IVMPY GGS SEY SEWY 5 PACGEAGCQTYRHE TLLTSELEGWLSANRAVKE
M.t.ByBSE LLDGLPAGDDYNGWD INTEAF EWY YQSGLS IVMPVGG(SSE Y SDWY S PACGKAGCQTYKWE TFL TSELEQWLSANEAYI D
ECG MPB51 LLOUAFNRGEDYV SNWVTAGNAMNTLAGKGT SVVAPRGGRY SMY TNHEQD-———-—— G5KQWDTELSAELPDWLAENEELAE
M.t .MPT51 LLBAFNAGEDV SNWV TAGNAMNTLAGKGI SVVAPRGGRY SMY TNWEQD-—————— G5 KQWDTFLSAELPDWLARNPELEE
170 180 190 200 210 220 230 240
ECG AgESA TGSAVVGLSMARSSALTLAT Y HEQOF VYAGAMSGL LD P QAMGR TLI GLAMG DAGG Y KA SDMNG PKEDEAWQENLD EL LIV
M.T.BgRS5A TG SAVVGLSMARSSALTLAT YHPQOF VYAG AMSGL LD PSQAMGP TLIGLAMG DAGG YKAS DMWE PKE DPAWGRND PLLNY
BCG AgBSE TGSARIGLSMAGSSAMILARYHEQOF I YAGSL SALLDPSQGMGE SLIGLAMGDAGS Y KARDMWG P 5 SDPAWE ANDETQO T
M.T.AgR5E TGSARIGLSMAGS SAMILARYHEQOE I YAGS LSALLDESQGMGP SLIGLAMGDRGG YKARDMAG PS5 DPAWE RNDPTO) T
BCG MPBS1 GGHARVGLAOSGSE YGAMALEAF HEDRF GFAGSMSGE LY PSNTTTNGA LARGMQQF GGV ITNGMAGA POLG RNKWHDEWYHA
M.t .MPT51 GGHAAVGARDGE YGAMALIAF HPDREGFAGSMSGE LY PSNTTTNGAI AAGMQQF GG VDTNGMAGA PQLG AWKWHD BT vHE,
250 260 270 280 290 300 310 320
BCG Ag8SA GKLIANNTRVWYYCGNGKPSDLGGNNLPAKE LEGEVRTSNIKE QDAY NAGGGHNGYF DF PDSGTHSHE YWGAQLNAMKED
M.t.Ag85A GEKLIANNTRVWVYCGNGKPSDLGGNNLPAKF LEGEVRTSNIKEQDAY NAGGGHNGYF DF PDSGTHSWEYWSAQLNAMKED
ECG Ag85B PKLVANNTRLWY YCGNG TENELGGAN I PAEF LENFVRSSNLKFQDAYKE AGGHNAVENE P PNGTESWE YWGAQLNAMKGD
M.t.Ag8SB PELVENNTRLWVYCGNGTPNELGGAN I PAEF LENFVR SSNLKFQDAYNAAGCHNAVFNE 2 PNGTHSWE YWGAQLNAMKGD
BCG MPBS1 SLLAQNNTRVWVWS PTNEPGASDEARMI -3QRAEAMGNS- ~ RMEYNQYRSVGGHNGHE DE PRSGDNGWGSWAPQLGAMSGD
M.t.MPTS1 SLLAONNTRVWVIS PTNPGAS DPARMI -SQRAERMGN 5- - RMEYNQYRSVGGHENGHE DE PASGDNGWGSWAPQLGAMSGD
330 238
BCG Ag85A LORRLGATPNTGPAPQGA
M.t .AgAS5A LORELGATENTGEAPQGA
BCG Ag85B LOSSLGSG
M.t.Ag85B LGSSLGSG
BCS MPES] IVGRIR
M.t .MPT51 IVGRIR
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FREFRIIELSRE. MICBWTi, By
ZVWIOHsp DELERIZVELELILR S,
T LELERRONRELD XS5 88T
Hsp65idt b DEN &L 40~50%D 7 3 / BeEm
DHREMERTOT, ChETrFricBua e
HEREEEZEET A MENLEETE 20,

C. Ag85 77 I U—HFNDTHBIE b
—

Ag8S7 7 IV —HTFOTHBIY b —7%4
HIlix, DR AgSSHFTI2F o CHESRL
MitEREDHE (Th1 A, CTL), @7 5~
—HREEC LD Ag8S 5 TIFREY T MM D IRHT,
QLY M =TT 7+ ORRE LI HATH S,
Ag85A, Ag85B, Ag85CIIMVMRIfEETRL,
AgB5A 1X Ag8SB L 77%, Ag85C & 38 TI%D
HMEEERT. #oT, ChoSTEIzRERED
THIRIY 72 ET LI BEShE,
%PE, Ag85A & Ag85BD 161~ 1607 3 /B
E (BITRYZFVEF437I 2 8ErE LD
T204~212) 123#E LT, BALB/: (H-24) &
CDB*THIRZIE M7 ThAZ LFHESRT
VW52, F7:, BALB/cT 7 A TI2 ApS5A (aa
61~80; 1 TIX104~123) 1243 L IFAgS5A
(aa 145~ 153) 12 H-240 %420 CD3 * T i@y
REDIV P —73 525, 03, AgssA
(aa 60 ~68) X KIHIE), Ag85A (aa 70~
78) X LAMBE DT RIS T 2 25,
S 61T, Ag85A (aa 101~120) IZitH2E4HT
HACDY4 THRD Y b —7Afitd 2 2728,
CS7BL/6 (H-2%) = ZI245vTid Ag85A (aa
261 ~280) IZCDA* THIMLZE b —7Atite+
S, F/:, Ag85B (aa 240~ 254: 11 T 1 283
~297) IXLAMMHRMCDA* THRLIY b — 7T
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.2 AgBSAFOL FTHMIE h—F

_TFF HLA it FistE T #ka
AgSSB RTFF (2a 10~27) HLA-DR3, DR52, DR53 CD4
Ag85B~7F V¥ (aa 51~70) HLA-DR3 CDh4
Ag8SB~7+ I (aa 15~ 36) HLA FEHFE D4
Ag85B 7+ F (aa 91 ~108) HLA FEitE CD4
AgBSC T+ F (aa 204~ 212} HLA-B35 CD3
AgdSB~TF F (aa 195~ 207) HLA-A* 0201 CD3

HY, TOTHBEIZVAINIZRHELTWVHI,
INHTHRBTY F—FOREE, v7 2%
DNA W 75 » CHBAET 2 /7%, #&##, BCGT
BiETH X0 b, HBELERMMOhL I END
hoTw32, PEXY, C57BL/6< Y ATk
Ag8SA ST T4 RHTHCD8* TR =7
HhrwnI kdbhb, £, H2NTOs (7
OCD4* THRKO < ATid Ag85A DNA T 7
FUPEREREICEXTH LA, CDB* THEMR
KOXRTATREDTHZ LOWMEINHZ W, —
7%, BALB/c= % A Tik Ag85A DNATZ ¥ »
THENICERMCTLSEE SRS 18,

BLED & 52, Ag85A B L UFAg8SBHFOT
Miar ¥ r—7R L {MEshTwb. HLF
T L9, MPBS14Fit Agds - FHEGHEE 37
~3%DOHFEEERT 20, HLlTAg857 73
J—55FIitBRTHLEELTWD, £2C, R
MPB51 3 FD THIRAZE b — 7 DOREEETT> T
Wwa, C57BL/6< AT FI+ >, 71
37V 0200 CDA TREIY b—72RAE
L7, ¥72, BALB/c =7 ATIZ12NCDE* T
MY b—-7ERELTWS, 3562, HLA-
A*001 bV AV 2=y s (Tg) /H27 5 A1
KOvY A¥HAwab I kizky, MPBSIZF@
HLA-A * 0201 9tk € b —7E2FEL T 5.
HLA-A*0201 M TR ¥ F—72BLT

iZ, Ag85B (aa 199~207) HMREIEEHTWVE,

Ag85BB L UFAg8C O F THilaLY b —7%
FE2icT ol BRD B LICHLANER

{promiscuous} ZE b —7HRD TS 3,
ZhORFTE =7 s F B I UEROBENC
HRThALEZONS,

D. DNA7 7 F > O#E%

1. MBRAFLEESIRE Xy U Y —-L L L
DNAT 7 F -

DNA 72 F v Oilis LTk, LRL:M
B L URIETFHIES—BNTHS. —F, DNA
TrFrRBFELL, BEARA~NEATLIZD,
MHMNFEEOBERES v YT —LLTHYS
HENRA LR TS, Shigella flexneri® b X
UF Salmonella typhimurium3® OEFEFEERIKIC
BHHEAROERAR ¥ —%FoDNAT 5 >~
AHAL, BWIHET200THD (H2).

K2 HEASEEESFvVY—EULEDNAT O F
CrHis3 & h )

JaidH A ERST, 3b, VATV, RAFICE

5 DNA 7 75 OBGEBRERT.
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FNERTEF ) V=T LIBEE, EEMN
OEBICEDATHh, F0#, FHOAH=XA
(B% 6 {itcrosspriming oMb 2 8H) AL
T, MBE, BERIEBITL, DNAUZF (7

23 F) OREFREASTOhLEZEZLNS.

—%, U A7 Y Titlisteriolysin O (LLO) #% 3
L, ElroflilcEicB8T T840, £2T
DNADZF Vv ERETREEZONS., FHE
LAHCHBECBTTAEHTZ b T 5.
Mollenkopf & 3% 1% S. typhimurium §53%: 5% ¥ v
)& —& LT, ESAT-6 % BAERENY ¥ —(2
AGAADNAT 2 F- e AIRELE. £
OER, BHEICHT2EREpERTERTELL
HMELTWA., 4128 typhimurium % F x 1)
X— L L7DNAY 7 F ¥ & ERL=, HifE
hWoERIZEBEONE o S typhimurium i
rELALS LB EoRFEFRAER (APC)
WmhaAThiig, GTRETHER DNATZF
PR T A0, B, BRICEEEZ 376
bbb, T FIABREEASF UYL L
THWAELPSHTIFAI FHho0BFEAGHE
[AE3T 2 Wi H 5. :

T, K477 ABHERAFEETHS
VATUT7OFHERTF Y Y—L LT, DNA
Ty F IR (APC) ARREAT S L
EEEILA. VAT 7ikEl»oMRBERA~B
F¥ a8, UAFYTHELET S listeriolysin O
(LLO) MEETHIREEZ Thi~v 7 bEE5 40
COLEET S F rOERIICHE- TS, BEHY R
FUTHELTIRLYFF—¥4RT > (mpl,
actA, picB} ®RELEBRIVIAFITHZH
W SRIZYRT Y TEENARS ¥ (YRF
VTEHT R T r— VDY ¥ #RETF (PLYLIS)
DEFZactA 70 E—F % BELITIAIF)
EHEEHOEELBHRFT TH S Agl5A,
Ag85B, MPTS1 % a2— F¥ AREZFEBDED
AL, Ly POHRL—S 3 X TYRFYTIZ

BALY, COHRZVATITREFIROLE
fazr 6 LLOW X D MR EIZHIT LA T,
actA 7UE— ¥ —HERLLTE-DBAEL,
DNA7 75 2 MREICHET 3 L7441
YLTHhd (@2 3d). TOHBIVAFITH
% Co7BL/6 = AITHEREG L 25, #E
HIFRO ThI MR OFEICRm L. T/, &1
HOZHREREIOST LT[ ELE. 20
TrF ARG ET, SEEOBREMHEIC
HELEZ 65 BALT (bronchus-associated
lymphoid tissue) — 3 ¥ TR (cap1 4
»7 ) v VLAARE) OFBICEDTH L
BEME D B B 30,

2, AL PO AMARKLMR (DC)
ToF

DCilF+A—7/THREEZEDIRET L 707
Iy YaFNVAPCTH L. DCIZRTF VN
WA LTRETZRMIBEREOSTHFTEAL
ThhTwa3, o LT, BCG % K
SE/DCTRETEZAAR, Ag’SANCDS
BIUCDA*THRIY F—7 (RTFF) ¢
VALZDC T A2RETLIHAANTORT
B, HHEELEHERROBEII—ENHRL
HFTVBE, FARDCI 7 F 286128
T 50, IEREFEL FOYANVATDCIC
WAL, HELIRRRETH DCOfER L
FEL L7, 7523 FpMX E/8y & — ViR
¥ Phoenix E VW TYAF Y 7HCTLLE b—
7LLO91-99 #FHT B L a4 LA EENL
7z, ThEBALB/cY 7 ADEREIFEDCIZRY
X, TURALRBRMIRE L. R4 DFHiE
CEBL PO AL ADDC~OMAIIEIR
8% Tho7:. ORBEETHFLENIFRY
IFN-y B4R, CTLIEES L URER#EER
DNATZF LB 0X0%ATH-7 (B
3). B, Ag8SAB LU ARSSBOMMmA L PO
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TANARY F—2{FRL, ThEBRPSLEL.

DCE7AREL, BREHHELZRL Y
5.

3. BfE-7—Z b prime-boost \F O%E

DNA 7 27+ ¥ CELRS & v b 2L AE-
T—A b  ATUREETHDL, ThidBEEL 7
—A MR ULHEEECRERHBRZ T 75~
TIHFETH S, Zhickh, ALy F
YURBME-T-A P EIToREECHL, #50~
100D CTLIERXBHTCE L. ColEdE
ICHIVR, =359 7 REW REISHTE7 7 F
YIRETEEENTE D, BEDNATZFT
RAEL7-8, M2 D727 02 (MVA:
modified vaccinia Ankara, Ankaraffid &R
BEILL-7 2y =7) TY—XM4MThhb,
7—A MIHIB A fowlpox (BHE) 74 M AHME
bhaFE&bH540, LdLids, JoiH,
THROLBEETMB|AT 7 =7 TiTw, 7—2A
F&DNAW 2 F ¥ TIiro 728 IR
iz,

BT 297 F o THRBORRMITHI
TVvr%. McShane 54 [ ESAT-6 & MPT63
DNA7 7+ Y TRIEL, MVAT7 =% —%
frvy, BCGERFOBHEBEBHLHE TS,
—7F, Skinner 549 I ESAT-6 & Ag85A @
DNA W ZF »TREMEL, BCGH Wagb20 (¥#l
FRigEHR) CTT/—Ry—LAE A, FFRMIFN-
y BHEZDNAT 2 F ¥ 3BHEKRT 7 F V4
HEhHEEELA. LaL, #BEEozTOV L
I X4 BB AR X BCG % 7243 Wagd20 Bif
GIETHERBEND LD EEN D72 Tanghe
549 [t AgRSA D DNA 7 7 F »CCE7TBL/ERY
ARRIEL, FO®RICCOBATT—RA5—T53
TET, DNAZZF U HME ) L3y Thl #f
ERBHEORBRERIETABEEZRTY
2. Ag85A DNA 7 & F »iZ & 2 ERHBhARE

25000

20000

15000

T

10000

IFN-y (pg/mi)

5000

]

DNA DC/91

—e— DC/91 peptide {4)
80 —e— DNA/91 peptide {+)
700 —o— DC/91 peptide (—)

—O— DNA/ peptide {—)
60

501
40K
30F
20
10F

specific lysis (%)

1001 33:1 1101
E/T ratio
10°-

107

108+

CFU/spleen

10°

10%F

10° e
naive DNA/S1 DC/91
E3 DNADIF L EBALFOV1ILABAH

R (DC) 77 F it LD FRNEEO LT
BALB/c =7 RAICV AT U TOLLON-9 % HEHT 5
DNA7 25~ (DNA) /L bOSANARS ¥
—CLLO9L-99BET*HALADCTREL:
(DC/91). HR¥EESBEICHMMABEEIL, LLOSIHY
ARTF FCHB L IFN-y EEA 8 (A) B LU 774408
7 LLO91-90~7F FTANR (+) Fiaddeinz
(=) Li-bozfFEsadile LT, CTLEEEZHEL
72(B). REBLUHERE (naivel 7 AI23 x 104
CFUDYY A7) 7B, 7T2REEOMEFO
HEERMEL2(C). *p<00l (naive & DHE),
**p <001 (DNA/SL L DYE)
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HEERRIAMICHL, FoEMEBTIIER
5, COBE-7—AMEZEFOIE AL,
L#A*L, Tanghe 6 DHETHE SN REEE
EIIBCGTHROLNLLDLFARETH o 1.

E. DNA7 7 F > OFhEHER

CNFTCHRRTCELDNAT I F AL -TH
BahbRERNEIBEDEZZHN, BCG
WKLo THEShIMEELTRADL LiXi L,
DHOHMEZRL TR, 22T, HeiR
ANRfTbhTwa, bz, OMEEARE
DNAWSF ¥, @F oy o, @44
AL YORBEREZENBEIRTHE,
Minion &40 (I EHHOITELBEAETH 2
ESAT-6 L BEHOREMNETHIPTIOREER
HESAT6: PT1 ##HTADNAY 7 F 2 {FH
L7s, Thiz=wo A28 Th1 SIS % 55K
THIEERELTWS, Olsen 54" (ZESAT-6
L AgBSBOBARHRT7 Va8 P EEBIIE
WYaCkichh, BORRPIMETARTES
SEERFEHLTWE, ST 7FrONEIZIEN
THRTERTELECDY, EHERNEI0
HETHFCHCBTAEMEHIIBCGREY
PAOERIZEL, FEEZALW, THIZDNA
Fo2FULIEHTE LS, 7Y ELT
7523 F&B4+ 2BH (VC1052: DPYPE)
(Vaxfection) F Aix#EfEH (GAP-DLRIE:
DOPE) TRELZ: Lo b T s, 447,
CNRGIEDNA T 7 F Vi X BIREA I 58§
2%, ARRtEREIIEL2wE ST L
PLEHE, D'Souza 54 i Ags85A @ DNA 7
7 F i Vaxfectin # W T~ 7 AIHiET 2
&, MEEEDLRL OF Thl DGR ® %
RBOTWA, £, EEHDILIZ, TofhiEe
Ag85A/GAP-DLRIE: DOPE % 5875 &, IoEX
DHE LY, WTOMSRM Thl MRETOm%

PEDHLNTWS,

A bAA4CELTRIL-IZ22-F+ 3
DNA 7 7 F % Ag85B % 72t MPT64 DNA 77
7F EFBHIRET S &, ) voSIRBIAEY
Rin & IFN-y EEEOFEIFZDO LN TV 549,
LA L, BREEHROBMELYMMIBD o,
%72, Kamath &5 {3 GM-CSFA%Ag85A  7+1d
MPT64DDNAZ 7 F YT X DEFEHIh 288
HRErH2ENET PR EEIHALL
WIEFRELTWS, IL:18 4 IL-12 & M
ThIMRAFERTI LML TS, Lirl,
Triccas 55V {2 X RIFIL-1811 Ag85B-DNA 7
FUR ko THER SRR T 2t
ML v, £OM, EIECDS * THMOMERIC
RELREERTILISRILTRAE L b 5T
BEITADEFREZHMIEE Tedhs,
ChotA A4 VEORBERSIIDNA T 7 F
YORREEHBIEL ML ANG -,

CTU

Ag85HF L EOEBEOFTEHRAREHw
722DNAT 7 F7id, BBOBREHEICLEL
Th1#fE L FCTL 23D HEEF 2 2 E b5,
KEZBFELRODTVAE, L2L, =9 2FHAn
RHRTIRE(DBE, BCGItXoTHHE SR
LENBIHEAREIAI LI TELY, DNAY
PFELTHWATIAI FOMHE, BMEEY
BB DNA Y 7+ Of%E, &Y HMZRET—
Atoratra-roRBEREMNRBLRLS.

%, DNAT 7+ v iz= RATHRENTH B

L EROLEREATRENTCHL LML S
L. CHURTIRATTVany b BEE2ET
CoGEF—T7LE P THEMECDGEF— 7 DR
FINRLEBIEIZEBhbENiv. $#iE, b
FDERERFIC AR I AL R LER
BCOWEIRD b5,
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