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pathways confer host defense against pathogen invasion. The Toll pathway regulates
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SA isessential for activation of the Toll pathway in response to Gram-negative bacteria.
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recognizes the invasion of Gram-negative bacteria and is required for activation of the
IMD pathway, which is essential for anti-Gram negative bacterial responses.

— 450 —



‘Surreudis pAILIPAW-FA 1L, Bl PaAJoAUL A[[eay1dads susuodwios € se paynuapt sem [ dvLL Aemyied juspuadsput-gg iy
a1 jo souasaxd sy Sunesipur ‘psuodar uaaq sey gy-JN pue ‘aseun] JVIN "N ‘€1 5B yans sa[nosjowr JureudIs Jo UONRANSE paInpul
-(S4T) epueysoesLjododyy ‘Kemiped pajerpaw-py-LL 9 JO 9sed 9 uJ ‘esuodsar KIOTEWWRYUI 3Y) 01 [ESRLD ST pue sYTL [[¢ 10§ 101depe
[enuasss ue s1 gg QAN "Siusuoduios [e1qoIsnn Jo swrayed syads szuSosar sy Aemyred Fuieudis (YLD 10dassr axy-[loL ¢ aandiy

‘Em_ — W8
/ f

_——

SHIL
CH1L Jo

IH3L
|- R F ] 6HIL ‘ZHIL ‘sHL

— 451 -



Research Signpost
37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

RESEARCH

SIGNPOST

Recent Res. Devel. Biophys. Biochem., 3{2003): 89-106 ISBN: 81-271-0014-5

ke S i BT

Induction of antigen-spéciﬁc T-cell
subsets by DNA vaccination

Toshi Nagata, Taiki Aoshi, Mina Suzukd, Masato Uchijima and Yukio Koide
Department of Microbiology and Immunology, Hamamatsu University School of Medicine

Japan

Abstract

DNA vaccines have advantages over other types of
vaccines that the vaccines can induce strong cellular
immune responses, namely cytotoxic T lymphocytes
(CTL) and helper T lymphocytes (Th). Therefore, DNA
vaccines are considered to be promising vaccines as an
alternative to attenuated live vaccines. So far, various
DNA vaccines have been generated and tried to induce
a particular cellular immune responses by virtue of
recombinant DNA technology. Following factors
should be taken into consideration in designing DNA
vaccine plasmids for efficient transcription and
translation of target genes; (1) choice of the strong
eukaryotic promoter; (2) inclusion of the Kozak
consensus translational initiation sequence; (3) codon
optimization of target genes to mammalian genes.
Various DNA vaccine strategies for induction of
specific CIL have been reported and shown their
efficacy. These DNA vaccines were designed to have
Jollowing features; (I) CTL epitope minigene, (2)
protein targeting to the endoplasmic reticulum by the
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eukaryotic signal sequence, (3) fusion with b2-microglobulin, and {4) ubiquitination of
target genes. In addition, multimerized CTL epitope DNA vaccines have been reported.
For induction of specific Th, (1) Th epitope/class II associated invariant chain peptide
(CLIP)-exchanged type DNA vaccine; (2) DNA vaccines possessing endosomal/lysosomal
targeting signals; (3) DNA vaccines for expression of Th epitope inserted in an
immunoglobulin molecule, have been examined and also shown to be effective. In order to
induce strong immune responses by DNA vaccines, the immunization route and the
immunization regimen such as heterologous “prime-boost” regimen also should be
considered.

Introduction

We have been exposed to increasing danger of a variety of infectious diseases. So,
the development of effective vaccination strategies against them is the exigencies of the
times. The type of effective immune response against infectious diseases depends on the
location of pathogens responsible. For example, extracellularly-located pathogens are,
in general, vulnerable to antibody-mediated effector mechanisms. On the other hand,
protection against intracellularly-located pathogens depends on induction of specific
cell-mediated immunity [1-3). Two major arms of cellular immunity can come into play
in the protection. Cytotoxic T lymphocytes (CTL) are a main effector against pathogens
located in the cytoplasm of host cells, such as viruses, Rickettsia spp. or Listeria
monocytogenes, while type 1 helper T cells (Thl) play a pivotal role in the protection
against infections with intracellular pathogens located in vacuolar compartments, such as
Mycobacteria spp. or Salmonella spp. Therefore, effective resistance to infection
depends on the vaccines capable of inducing certain effectors effectively. Among a
variety of vaccination strategies tried so far, DNA vaccines have potential advantages
over other type of vaccines that the vaccines can induce suitable cellular immune
responses with enormous flexibility. A large body of reports has accumulated about
DNA immunization for induction of particular cellular immunity [4-7). Both cellular
immune responses have been shown to be effectively induced with DNA vaccines.
Here, we review the strategies to induce specific T-cell subsets by naked DNA
immunization with an emphasis on vaccines against intraceltular pathogens. _

Murine infection of listeria monocytogenes: A model system

of DNA vaccine study against intracellular pathogens

We have been working on DNA vaccines against Listeria monocytogenes as a model
of intracellular bacteria. L. monocytogenes is a gram-positive facultative intracellular
bacterium. Murine L. monocytogenes infection system has been studied as a good model
system for intracellular bacteria infection {2, 8]. The bacterium has been known to
induce major histocompatibility complex (MHC) class I-restricted CD8' T-cell
responses in addition to MHC class Il-restricted CD4" T-cell responses since the
bacterium is capable of escaping from phagocytic vesicles into the cytoplasm of the host
cells, thereby introducing the bacterial proteins into the MHC class I antigen processing
pathway. Both CD8" CTL and CD4" Thl have been shown to be amplified at listerial
infection and to play a critical role in the protective immunity by experiments of
depletion and adoptive transfer of specific T-cell subsets [9-11] or by analyses of mutant
mice with a genetic defect in B2-microglobulin or H2-AB gene [12, 13].
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So far, several T-cell epitopes (MHC-binding antigenic peptides) in listerial antigens
have been reported (Fig. 1). Pamer and colleagues [14, 15] have reported four different
L. monocytogenes epitopes presented by MHC class I (H2-K®) molecules to CTL; those
are listeriolysin O (LLO) 91-99, p60 (murein hydrolase) 217-225, p60 449-457, and mpl
(metalloprotease) 84-92. Two of these four epitopes, LLO 91-99 and p60 217-225, have
been demonstrated to induce dominant immune responses. First identified MHC class II
binding peptide in L. monocytogenes is LLO 215-226, an H2-E* binding peptide [16,
17]. Then, p60 301-312 was identified as an H2-A® binding peptide [18]. Recently,
Geginat et al. [19] tried to identify CD4" and CD8" T cell epitopes in LLO and p60
molecules based on the screening of peptide spot libraries with splenocytes derived from
L. monocytogenes-infected BALB/c and C57BL/6 mice. They confirmed all known
CD4" and CD8" T cell epitopes in LLO and p60 molecules and additionally identified
six new H2%, and six new H2"restricted T cell epitopes, containing H2-restricted LLO
190-201, LLO 318-329 (CD4" T cell epitopes) and LLO 296-304 (CD8" T cell epitopes).
The adoptive transfer of LLO 91-99-specific CD8" CTL [20] or p60 301-312-specific
CD4" Th [18] conferred protection against L. monocytogenes lethal infection, suggesting
that induction of T cells specific to these T cell epitopes is prerequisite to the protection
against listerial challenge. We have tried construction of DNA vaccines which are able
to induce only a particular T-cell subset against these T-cell epitopes derived from L.
monocyotogenes and examined their efficacy.
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Figure 1. Major protective antigens of Listeria monocytogenes, listeriolysin O (LL.O) and p60.
LLO and p60 molecules of L. monocytogenes have been shown to be major protective antigens,
So far, several CD8" CTL and CD4" Th epitopes in these antigens have been reported.

Antigen recognition by T cells

As mentioned before, T cells which play a pivotal role in adaptive immunity, are
divided into two main categories. These are CTL and Th. Both groups have T-cell
receptor molecules on their surface in common, but CTL and Th in general have CD3
molecules and CD4 molecules on their surface, respectively. CD8" CTL are presented
antigens (antigenic peptides} in association with MHC class I molecules on the surface
of antigen-presenting cells (APC). And CD4" Th are presented them in association with
MHC class II molecules. Therefore, efficient induction of CTL and Th requires efficient
presentation of antigenic molecules through MHC class I and MHC class Il antigen
processing and presentation pathway, respectively.
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Antigen processing and presentation pathway through MHC molecules has been
described in excellent review papers such as [21]. But, let us review it here briefly
because it is important to understand the mechanisms of T-cell subset-oriented DNA
vaccines (Fig. 2). MHC class I molecules have been shown to be expressed in almost all
somatic cells except for neurons and germ cells. In order to prime CTL, antigenic
peptides must be presented on MHC class I molecules on the surface of professional
APC which possess special accessory molecules. In general, proteins located in the
cytoplasm of the APC (endogenous antigens) are processed with the proteasome
complex and selected peptides go into the endoplasmic reticulum (ER) through TAP
(transporters associated with antigen processing) molecules. Then, antigenic peptides

ANTIGEN RECOGNITION BY T CELLS
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Figure 2. Antigen processing and presentation pathways through MHC class I and class II
molecules. Endogenous antigens are thought to be degraded by large, ATP-dependent proteasome
complex. The resulting peptides are then translocated into the lumen of the ER by TAP
transporter. In the ER, antigenic peptides bind to the groove of MHC class I molecules. The
peptide-MHC class I complexes are transported through the Golgi to the cell surface. Exogenous
antigens are phapocytosed by phagocytes such as macrophages. Then, the antigens are degraded
into peptides in endosome/lysosome compartments. MHC class IT molecules associate with Ii
molecules in the ER and the complex moves to endosome/lysosome compartments. Antigenic
peptides bind to MHC class Il molecules in the compartment named MIIC with the help of DM
and DO molecules. The peptide-MHC class I complexes are then displayed on the cell surface.
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are supposed to bind to the groove of MHC class I molecules in the ER. Therefore,
utilization of DNA vaccines expressed only MHC class I binding peptide (CTL epitope)
can bypass this antigen processing steps. On the contrary, MHC class II molecules are
expressed only in professional APC having specific antigen presenting capacity, such as
macrophages, dendritic cells, and B cells. Basically, MHC class Il molecules are able to
present antigenic peptides derived from the outside of the APC (exogenous antigens).
Exogenous proteins are phagocytosed into APC and localized in the vesicles called
phagosomes separated from the cytoplasm by lipid bilayer membranes. Then,
phagosomes fuse with lysosomes, which are also vesicular compartments full of
peptidases. After the fusion, exogenous proteins are degraded into smaller pieces of
peptides. MHC class II molecules associate with invariant chain (Ii) molecules in the
ER and the complex go to the endosomes by virtue of endosomal targeting signals
located in the cytoplasmic regions of Ii molecules and also in MHC class 11 molecules.
In the endosomes, Ii molecules are gradually degraded and only a small portion
designated class II associated I peptides (CLIP), which is located in the groove of MHC
class II molecules, remained. Then, antigenic peptides exchange with CLIP with the
help of MHC class II-like molecules, H2-DM and H2-DO (mice), or HLA-DM and
HLA-DO (humans} under the influence of local acidic pH and finally go into the groove
of MHC class I molecules. Then, they are finally presented to CD4* T cells on the
surface of APC. Therefore, targeting of antigens into endosomal compartments is a key
factor to facilitating induction of antigen-specific CD4™ T cells. Next, we would like to
summarize DNA-mediated immunization briefly and then review the trials of induction
of both T-cell subsets by DNA immunization including our studies,

Outline of DNA-mediated immunization

Wolff et al. [22] first reported that intramuscular injection of plasmid DNA allows
the expression of plasmid-encoded proteins in the tissues in vivo at 1990. Then, Tang et
al. [23] showed that injection of plasmid DNA directly into skin with gene gun
bombardment effectively induces specific antibody production in 1992. Subsequently,
Ulmer et al. [24] showed that intramuscular injection of plasmid DNA encoding
influenza A nucleoprotein (NP) induces the generation of NP-specific CTL and
protection from a challenge with a heterologous strain of influenza A virus. Since these
early important studies, DNA vaccines have been studied intensively [4-7]. DNA
vaccines are considered to be promising vaccines as alternatives to attenuated live
vaccines, as DNA vaccines are capable of eliciting cellular immunity as well as
antibodies.

Fig. 3 indicates a typical plasmid utilized for DNA vaccines. DNA vaccines are
composed of (1) an antigen-encoding gene whose expression is driven by (2) a strong
eukaryotic promoter such as cytomegalovirus immediate-early promoter/enhancer (CMV
LE. enhancet/promoter). And the plasmid possesses (3) a polyadenylation termination
sequences such as the sequence derived from simian virus 40 (SV40) or bovine growth
hormene (BGH) gene and (4) a prokaryotic selective marker such as ampicillin
resistance gene to facilitate selection of Escherichia coli having the plasmid. In
addition, plasmids for DNA vaccines should contain special nucleotide sequences for
enhancing the immunogenicity; an unmethylated cytidine-phosphate-guanosine (CpG)
dinucleotide with appropriate flanking regions. In mice, the optimal flanking region is
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Figure 3. Plasmid for DNA vaccines. The basic mammalian expression plasmids available
commercially can be usable as DNA vaccines. The salient features of these plasmids include; (1)a
prokaryotic origin of replication (ori) and a prokaryotic sclectable marker (e.g., ampicillin
resistance gene) for providing replication and maintenance functions in E. coli; (2) a strong
eukaryotic promoter/enhancer capable of driving transcription; (3) an intron (optional); ) a
polyadenylation signal (e.g., SV40 late poly A); (5) a multicloning site (MCS) for convenient
subcloning of target genes. A typical mammalian expression plasmid, pCI (Promega), which we
utilized as a DNA vaccine backbone plasmid in our studies, is shown here.

composed of two 5’ purines and two 3’ pyrimidines [25]. Ampicillin resistance gene .
contains the CpG, but kanamycin resistance gene does not have it [26]. The CpG motif
stimulates the innate immune system through Toll-like receptor 9 to produce a series of
immunomodulatory cytokines such as interleukin-12 and interferon (IFN)-3 which
promote the development of Th1 cells [27-29].

Major immunization methods for DNA vaccines tried so far are, (1) intramuscular
injection into the hid leg quadriceps or tibialis anterior and (2) gene gun bombardment of
DNA-coated gold particles into the epidermis. In addition, (3) intradermal DNA
immunization [30] and (4) topical application of DNA vaccines [31] have been also
reported to be able to induce immunization effects. Furthermore, several “carrier”-
mediated DNA vaccine administration methods have been reported. They contain, (5)
liposomes, (6) microparticle encapsulation, and (7) attenuated bacteria. These methods
are briefly reviewed in [6].

In the intramuscular immunization, primary cells that plasmid DNA is transferred
into are considered as muscle cells. As the cells are not professional APC, the
mechanisms of DNA vaccines has been controversial. But now, bone marrow-derived
APC has been suggested to be involved in antigen presentation in DNA vaccines [32,
33].

It is of particular interest that gene gun DNA immunization requires 100- to 1,000-
fold less DNA than muscle DNA inoculation to generate equivalent antibody Tesponses
{34, 35]. In addition, gene gun DNA immunization appeared to bring about highly
reproducible and reliable results in antibody production and induction of specific CTL
and IFN-yproduction from immune splenocytes [36].
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It has been suggested that muscle DNA immunization raised predominant Thl
responses, while gene gun DNA immunization produces Th2 responses [37]. These
differences are considered to be mainly due to the differences of plasmid amounts used
for vaccination. The difference of the plasmid amounts affects (1) amounts of antigen
produced from the plasmids, (2) amounts of CpG motifs present in plasmid DNA
vaccines.

Optimization in DNA vaccine design

First, we would like to review the general strategies to optimize DNA vaccination in
following sections (1)-(4). Then, we will focus on the plasmid design for CTL-oriented
and Th-oriented DNA vaccines in section (5).

(1) Choice of eukaryotic promoter

Cheng et al. [38] assessed the activities of five viral and five cellular promoters in
different rat tissues by using gene gun bombardment. Their results demonstrated that
CMV LE. enhancer/promoter activity was consistently the highest in each tissues.
Hence, the promoter has been used intensively for DNA vaccines. For the specific
expression in muscle cells, desmin promoter, which works specifically in muscle cells,
was also used for DNA vaccination with intramuscular injection [39].

(2) Inclusion of the Kozak consensus translational initiation sequence

For the efficient translation of target genes, a Kozak consensus translational
initiation sequence around ATG start codon (CCA/GCCATG) have been shown to be
important [40]. An et al. [41] suggested that minigene DNA vaccines must be designed
with the Kozak consensus sequence. In addition, any “ATG” sequences in the 5’
untranslated region of antigen genes should be removed as the sequence may work as the
translation start codon. Also, the distance between the promoter and the open reading
frame may influence the expression level of antigen genes.

(3) Codon optimization

Interspecies difference of codon usage is one of the major obstacles for effective
induction of specific immune responses against pathogens by DNA vaccination. When
genes derived from pathogens such as bacteria, protozoa, and some viruses, codon usage
is one of problems for the expression in eukaryotic cells. We constructed a plasmid
DNA vaccine harboring wild-type DNA sequence of L. monocytogenes LLO 91-99
(p91wt) and tried immunization of mice with the DNA vaccine by intramuscular
injection. However, we could not induce LLO 91-99-specific CTL in BALB/c mice
[42]. One of the reasons we failed the induction may be difference of the codon usage
between mammalian cells and L. monocytogenes. L. monocytogenes genome is A+T-
rich. In contrast, mammalian genome is G+C-rich. That difference may affect the
efficacy of L. monocytogenes gene expression in mammalian cells. So, we constructed a
DNA vaccine using LLO 91-99 gene, whose codons were optimized to those of the
mammalian cells (p91mam). The DNA vaccine gave an excellent CTL induction in
intramuscular immunization [42]. We further evaluated the “codon optimization effect”
on CTL induction by the DNA vaccine [43]. In that study, we analyzed in mammalian
cultured cells, the translational efficiency of several genes composed of different levels
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