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7. Future prospects

Since the discovery of TLRs in mamimals, rapid progress
has been made on our understanding of the molecular
mechanisms of innate immunity. Individuat TLRs recognize
their specific microbial components and activate signaling
pathways. The TLR signaling pathways also have their own
.cascades for exhibiting their specific responses, which are
characterized by several TIR domain-containing adaptors.
Elucidation of the physiological roles of these adaptors will
provide important clues for understanding how individual
TLRs induce their specific innate immune responses.
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© FOCUS ON TLR SIGNALLING

TOLL-LIKE RECEPTOR SIGNALLING

Shizuo Akira* and Kiyoshi Takeda?

One of the mechanisms by which the innate immune system senses the invasion of
pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific
molecular patterns that are present in microbial components. Stimulation of different TLRs
induces distinct patterns of gene expression, which not only leads to the activation of innate
immunity but also instructs the development of antigen-specific acquired immunity. Here,

we review the rapid progress that has recently improved our understanding of the molecular

mechanisms that mediate TLR signalling.

latmg evidence mdlcates that actlvatlon of the innate
immune; system 15 a prerequisite fo': the induction of
acqulsed immuinity; particularly for the induction of a
T he[per 1 (Tyl)=cell response’ *#This marked shift
in’our. thmkmg has chariged our ideas about the

regmn of (200 a.mmo acnds m thelr cytoplasmm tails,
which s known as the TollIIL-lR (TIR) domain’.
W1th1n the ‘FIR domain; the regions of homology
comiprise three consérved boxes, which are cruaal for
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" SMALL INTERFERING RNAS
{siRNAs). Synthetic double-
stranded RNA molecules of

19235 nueleotides, which are
used to knockdown {stlence the
expression of) a specific gene.
This is known as RNA -
interference (RINAQ) and is
mediated by the sequence-
specific degradation of mRNA.

UBIQUITYLATION

The attachment of the small
pretein ubiquitin to lysine
residues present in other
proteins. This tags these proteins
tor rapid cellular degradation.
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ction mduoes phoséhory-
AKl which then tran.slocate
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Figure 3 | Involvement of TIR-do
The Tolinterteukin-1 (L-1)-recep
differentiation primary-response prol
that activates IRAKS {L-1-receptor
receptor-associated factor 6, and
factor-xB (xB)- kinasa complex),
IKK2 and nudear factor-kB (NF-
used by TLR1, TLR2, TLR4, TLRS
that it transiocates to the nucleus

(TANK)-hinding kinase 1) mediate
containing adagtor, TRAM (TRIF-refated adap
MyDB8-independent/TRIF-depend
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ENDOTOXIC SHOCK

A serious systemnic disorder that
lezds to multiple organ failuze
and death, It is caused by an
excessive release of
lipopolysaccharide (also known
as endotoxin) during Gram-
negative bacterial infection.

TRIF Be uge a.na.[":"es ofTIRAP deﬁc1entm1ce md1~
i mmg molecul_es m'g‘:_ t

: _'jby hé MyD88-
t pathway is requm:d

omam conta.mmg adaptor,
TRAM, was recently identified. throighsequence
homology in database searchies® % fr vitro studies
indicated that TRAM associates with TRIF and TLR4
but not with TLR3-(REFS 61.62), and the inhibition of
TRAM expression by siRNA demanstrated-its impor-
tant role in the TLR4- but not TLR3-mediated induc-
tion of IFN-Band IFN-inducible genies*-%%, Analysis of

shown to mediaté the expressmn of gene that encode
antimicrobial peptndes However, this féspo
pendcnt ofthe C. elegansTLR“ Nonetheless, e|
of the rol¢ of mammalian SARM mighti lmprove our
understa.ndmg of TLR slgna]lmg A
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not sensitive enough to detect IRF3 ph pho
followmg TLR4 acrwatlon i

assoc:ated NF-KB activator (TAN K)- bmdméﬁmase I;
also known as NF-B- -activating kinase; NAX) - have
recenty been gdent._lﬁed as the kinases that phosphorylate

dthe. IFN ,B gene, respectweiy

E ixses at ledst two pathways for
NF KB actwatlon The fisst involves its-Nrtérminal
reglon “and is med.lated by TRAFG and the second
mvoIves its C- tenmnal,rcgmn o
. Arecent study indicites that TRIF-dependent NF KB
activation. is dependent on receptor—mteractmg protein 1
{RIPl), swhich associates with the C-terminus c_>f TRIF™,
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Fqn-T receplor (T IH) N
otein mducmg interfeson (‘FN}-ﬁ)!

phospriorwauoh of FIF3 (IFN-regu!atory factor ), and TRAFG
iRiF‘1 {receptor interaciing protem S

Thts JIegion of: TRIF comams a RIP homotyplc-
interaction miotif, whlch is required for association
with RIP1; A dominant- negative form of RIP inhibits
TRIF- medlated NE-kB activation, and embryonic
ﬁbmblasts fram RIPI-deficient mice showed impaired
TLR3- medlated NE: KB activation. So, RIP1 probably
mediates NF-xB actwat:on through the C- termma.[
reglon of TRIP :

Othe molecules mvolved in 11.I=I sugnallmg

After hgand bmdmg, TLRs activate various intracellulac
sngnalhng miblecules in addition to those discussed earlier.
These include Toll-interacting protein (TOLLIP), the
pellinos; phosphatidylinositol 3-kinase (PI3K), AKT
(also known as protein kinase B, PKB), evolutionarily
conserved signalling intermediate in Toll pathways
(ECSIT), the SRC-féuhi]y tyrosine kinases and
MAPKKKSs. These molecules are potentially involved in
TLR-signalling pathways and are discussed briefly here.

TOLLIP. Originally, TOLLIP was cloned as a protein
that interacts with the IL-1R accessory protein™.
Subsequently, it has been shown to associate directly
with the cytoplasmic TIR domain of iL-tRs, TLR2 and
TLR4, following the stimulation of these receptors, and
to inhibit TLR-mediated cellular responses by suppress-
ing the phosphorylation and kinase activity of IRAKI

ability. t r:lac

domain. pable of enzy'mauc acu\nty it lS hkelyr.hat the
peumos funiétion as scatfolding protems that facnlltate
'osphorylated lRAK ﬁ'om th recepior.

latory subumt with the: receptor‘f’ Th1 mteraétmn
mvolves t.hc S C omologyZ {5H2) domam of the pSS

motlf Tyr—Xaa-Xaa “Met. The subsequent assoa
the pl 10 catalytic subumt of PI3Ks restl€s in con plete
activation, leading to the phosphorylauon and actwauon
of its downistream target; AKT.
Interestmgly, the PI3 K-bmdmg mot:ETyr-Xaa-
Xaa—Me wheré Xaa. dénotes any amine acid; is pre:
sent only in‘a subset ofTLRs TERI; TLRZ and TLR6
but not TLR3; TLR4 or “TLR5 (RF.F 83). However, a puta—
tive PBK bmdmg site (Tyr257-1ys258- Alalig Metlé{))
is present in the C-terminus of MyD88, and LPS
stimulation has beert shown to resultiin the tyTosiné
phosphotylation of MyD388 and the. formation of a
PI3K-MyD88 complex®. MyD88 also interacts directly
with AKT, and a dominant-negative mutant of AKT
“auses a defect in MyDB88-dependent NF-XB transcrip-
tional activity. Fowever, the binding of NF-kB to DNA
is not affected by inhibiting AKT, indicating that AKT
might be involved in the phosphorylation of the p65
transactivation domain, A dominant-negative mutant
of MyD88 was shown to blocl the kinase activity of
AKT generated in response to LPS and 1L-1, and a
dominant-negative mutant of p85 inhibited the NF-kB
activity elicited by LPS and IL-1 but not that elicited by
TNE*. These findings indicate that P[3K is a positive
mediator of the signalling induced by LPS and IL-1 that
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B
GSSOCIBIIOI'\ of IRAK4 withy MyDBB The TIR (ToIVIL-1 R)-domairy-

oontarmng receptors SIGIRR {single: mrmnoglobuhn L1R-
related mo!ecu!e) and ST2 have also been shown 10 negalively
madulate TLR signaling. (xB, inhititor of NF-xB; IKK, kB~
kinase; NF-xB nuclear factof-kB: TIRAP TIR- domam~
containing adaptor protein;: THAFE tumour-necrosis-factor

recep!or assocuated factor 8.

TLR4 medlated s:gnalhng pathway Another member
of the MEKKK. fam:ly, TPLZ has been showi 16 be
mvolved in the TLR4-mediated dctivation of ERK™
In response to TLR4 I1gand TPL2-deficient mice
showed impaired TNF productlon and defective acti-
vation ofERK Taken together, it'is clear that several
MAPKKKs mediate TLR-signalling pathivays.
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LPSTOLERANCE

A transient state of
hyporesponsiveness to
subssquent stimulation with
lipopelysaccharide (LPS), which
is induced by the administration
of Toll-like recepior ligands in
vivpand in vitro.

gnaﬂlﬁ 4 pathways that
We now need to intent

defénce agamst anous ‘infectious microorganisms.
For example, MyDSS “deficient mice have been shown
to be sensitive to Grarit: negan\re bactena.l and Gram-
pos1twe bacterial infections'®, yet they still generate
:mmune responses against mtracellular bagteria

er clucidate the role .
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TOLL-LIXKE RECEPTORS:
LIGANDS AND SIGNALING

Kiyoshi Takeda and Shizuo Akira

13

Innate immunity has recently been revealed to
have a skillful system that detects microbial
invasion by virtue of Toll-like receptors
{TLRs). TLRs comprise a large fammily consist-
ing of at least 10 members. Genetic studies
have established that each TLR recognizes spe-
cific components of pathogens. The signaling
pathway via TLRs originates from the con-
served cytoplasmic Toll/interleukin-1 (IL-1)
receptor (TIR) domain. The TIR domain-
containing adaptor myeloid differentiation
marker 88 (MyD88) is common to TLR-
mediated signaling, which leads to the produc-
tion of inflammatory cytokines. However,
individual TLRs seem to have their own sig-
naling cascades. In this chapter we focus on
recent advances in our understanding of the
function of TLRs, particularly with regard to
their ligands and signaling.

TLRs DETECT MICROBIAL INVASION
Host defense is believed to be triggered by the
detectiont of microbial invasion into the host.
However, the receptors that detect pathogens
remained unclear for a long time. Genetic
studies in Drosophila indicated that Toll was a

Kiyoshi Takeda and Shizuo Akira, Department of Host Defense,
Research Institute for Microbial Diseases, Osaka University,
and SORST of Japan Science and Technology Corporation,
3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

receptor that detected pathogens (Lemaitre et
al., 1996). One year later, a mammalian Toll
receptor (now termed TLR4) was shown to
induce the expression of genes involved in in-
flammatory responses (Medzhitov et al., 1997).
Subsequent studies revealed that there were
several Toll receptors in mammals, and they
were designated TLRs. TLRs bear leucine-
rich repeats (LRRs) in the extracellular por-
tion and the TIR domain in the cytoplasmic
portion. The TIR. domain of TLRs shows high
similarity with the cytoplasmic region of the
IL-1 receptor family and further similarity
with several cytoplasmic adaptors, including
MyD88 and the TIR adaptor protein
(TIRAP). TLRs in mammals have been shown
to recognize microbial components that are
not present in mamrmals but are conserved
between pathogens, and thereby to detect the
invasion of microorganisms such as bacteria,
fungi, protozoa, and viruses. So far, the roles of
eight members of the TLR. family have been
established (Fig. 1).

TLRs in Bacterial Recognition

Lipopolysaccharide (LPS) is a major compo-
nent of the outer membrane of gram-negative
bacteria and a potent activator of innate
immune cells, including macrophages and
dendritic cells (DCs). Therefore, the identifica-
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FIGURE 1 TLRs and their ligands. TLR2 is essential in the recognition of microbial
lipopeptides. TLR.1 and TLR.6 cooperate with TLR2 to discriminate subtle differences between
triacyl and diacyl lipopeptides, respectively. TLR 4 is the receptor for LPS. TLR9 is essential in
CpG DNA recognition, whereas TLR3 is implicated in the recognition of viral dsSRINA. TLRS
recognizes flagellin. Thus, the TLR. family members recognize specific patterns of bacterial

components.

tion of a LPS signaling receptor has long been
anticipated. it is well known that two mouse
strains, C3H/He] and C57BL/10ScCr, are
hyporesponsive to LPS and sensitive to gram-
negative bacterial infection. In 1998, Beutler
and colleagnes identified the gene responsible
for the hyporesponsiveness to LPS and found
mutations in Tir4 in these strains {Poltorak et
al., 1998). Another group also found mutations
in the Tlr4 gene in these strains (Qureshi et al.,
1999).The C3H/HeJ mouse strain has a point
mutation in the cytoplasmic region of the T4
gene that results in an amino acid change from
proline to histidine. This mutation has been
shown to result in defective TLR 4-mediated
signaling and to have a dominant negative
effect on LPS responses (Hoshino et al., 1999).
The other LPS-hyporesponsive strain,
CS57BL/10ScCr, has a null mutation in the
Tir4 gene (Poltorak et al., 1998; Qureshi et al.,
1999). The generation of TLR4 knockout
mice further revealed the essential role of
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TLR4 in LPS recognition (Hoshino et al.,
1999).

TLR2 has been shown to recognize pepti-
doglycan, which is abundantly present in the
cell walls of gram-positive bacteria (Schwand-
1999; Takeuchi et al., 1999;
Yoshimura et al., 1999). In addition, TLR 2 rec-
ognizes lipoteichoic acids from gram-positive
bacteria (Schwandner et al., 1999; Lehner et
al., 2001). Accordingly, TLR 2-deficient mice
are highly sensitive to infection by the gram-
positive bacterium Staphylococcus aurens (Takeuchi
et al.,, 20002). TLR2 is involved in the recog-

‘nition of several additional bacterial compo-

nents, such as lipoproteins and lipopeptides
from a variety of bacteria (Takeuchi et al,
2000b), lipoarabinomannan from myco-
bacteria (Underhill et al., 1999a; Means et al.,
1999a, 1999b), a phenol-soluble modulin from
Staphylococeus epidermidis (Hajjar et al., 2001),
glycolipids from Treponema maltophilum spiro-
chetes (Opitz et al,, 2001), and porins present



in the outer membrane of Neisseria spp.
(Massari et al., 2002). The mechanism by which
TLR2 recognizes 2 variety of bacterial com-
ponents is now partly explained by the fact
that TLR2 associates with other TLRs, partic-
ularly TLR1 and TLR6. TLR 2 ligands, such as
peptidoglycan and secreted modulin from S.
_epidermidis, induced tumor necrosis factor
alpha (TNF-) production in RAW?264,7
cells, which was inhibited by the expression of
the dominant negative form of TLR6 (Hajjar
etal,, 2001; Ozinsky et al., 2000). Macrophages
from TLR2-deficient mice show no inflam-
matory response to all the kinds of lipopro-
teins and lipopeptides analyzed to date.
Macrophages from TLR6-deficient mice did
not show any TINF-o production in response
to diacyl lipopeptides from Mycoplasma spp.,
but showed a normal response to triacyl
lipopeptides (Takeuchi et al., 2001). In con-
trast, TLR 1-deficient mice were impaired in
TNF-a  produaction induced by triacyl
lipopeptides, but not that induced by diacyl
lipopeptides (Takeuchi et al., 2002). Thus,
TLR.1 and TLR6 cooperate functionally with
TLR2 and participate in the discrimination of
subtle structural differences among lipopep-
tides. TLR.1 is also involved in the recognition
of lipoprotein from Mycobacterium spp. and
Borrelia burgdorferi (Takeuchi et al, 2002;
Alexopoulou et al., 2002).

In addition to TLR2 and TLR4, several
TLRs are involved in the recognition of bac-
terial components such as flagellin and CpG
DNA. Flagellin is a protein component of the
flagellum, which extends out from the outer
membrane of gram-negative bacteria. Flagellin
has been shown to activate immune cells via
TLR5 (Hayashi et al., 2001). CpG DNA is
characteristic of the genomic DINA of bacte-
ria, in which unmethylated CpG motifs are
present in the expected frequency. In the
mammalian genome, CpG motifs are sup-
pressed in frequency and are highly methy-
lated, which causes no immunostimulatory
activity. Generation of TLR9-deficient mice
revealed its essential role in the recognition of
CpG DNA (Hemmi et al., 2000).

— 256 —

13. TLRs: LIGANDS AND SIGNALING | 259

TLRs in Fungal and

Protozoan Recognition

TLRs recognize components of not only bac-
teria but also fungi and protozoa. Zymosan is
a2 crude mixture of glucans, mannan, proteins,
chitin, and glycolipids extracted from the cell
walls of fungi, which activates immune cells.
Zymosan has been shown to be recognized by
TLR2 (Underhill et al., 1999b). The immuno-
stimulating activity of zymosan is seemingly
attributed to the presence of B glucan
(Kataoka et 2l., 2002). Infection with the pro-
tozoan parasite Trypanosoma cruzi causes
Chagas’ disease in humans. Glycosylphos-
phatidylinositol {GPI) anchors that are pre-
sent in the membrane of T guzi have been
shown to activate the innate immune cells via
TLR2 (Campos et al, 2001; Ropert et al.,
2002).

TLRs in Viral Recognition

Accumulating evidence indicates that TLRs
are involved in the recognition of viral inva-
sion. TLR4 and CD14 have been shown to
recognize the fusion protein of respiratory
syncytial virus (Kurt-Jones et al., 2000).
TLR4-mutated C3H/He] and C37BL/
10ScCr mice were impaired in the inflamma-
tory response to respiratory syncytial virus
infection and accordingly impaired in wvirus
clearance (Haynes et al., 2001). Mouse mam-
mary tumor virus has been shown to activate
B cells through association of that virus’s enve-
lope glycoprotein and TLR4 (Rassa et al.,
2002).

Double-stranded RNA (dsRNA) is pro-
duced by many viruses during their replicative
cycle and is representative of the viral compo-
nemts that activate immune cells mainly by
inducing type [ interferons (alpha/beta interfer-
ons [IFIN-a/3]) and some of the [FN-inducible
genes. Synthetic dsRINA, such as poly(I:C), has
activity similar to that of dsRINA. TLR3-
deficient mice were impaired in the response to
dsRNA and poly(I:C) (Alexopoulou et al.,
2001). In addition, expression of human TLR3
in the dsRINA-nonresponsive cell line 293
enabled the cells to activate NF-kB and the
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IFN-f promoter in response to dsRINA and
paly(L.C) (Alexopoulou et al, 2001; Mat-
sumoto et al., 2002). These findings indicate that
both TLR3 and TLR4 are involved in viral
recognition.

Synthetic compounds, imidazoquinolines,
‘exhibit potent antiviral and antitumor proper-
ties by inducing inflammatory cytokines, espe~
cially IFN-e. One of the imidazoquinoline
compounds, Imiquimod, has been approved
for the treatment of genital warts caused by
infection with human papillomavirus. TLR7-
deficient mice did not show any response to
the imidazoquinolines (Hemmi et al., 2002).
Therefore, TLR7 may also be involved in viral
recognition. Identification of a natural ligand
for TLR7 will reveal the precise role of TLRs
in viral recognition.

TLRs in the Recognition of
Endogenous Ligands

As described above, TLRs play a critical role in
the detection of microbial invasion by recog-
nizing specific components of pathogens.
However, several reports indicate that some
TLRS, particularly TLR4, are involved in the
recognition of endogenous ligands regardless
of infection. Heat shock proteins (HSPs) are
highty conserved between bacteria and mam-
mals. Several stressful conditions such as heat
shock, radiation, and infection induce the syn-
thesis of HSPs, which act to chaperone nascent
or aberrantly folded proteins. HSPs, especially
HSP60 and HSP70, activate innate immune
cells such as macrophages and DOCs. The
immunostimulatory activity of HSP60 has
been shown to be induced by TLR4 (Ohashi
et al., 2000; Vabulas et al., 2001). TLR4 mutant
mice were impaired in the production of
inflammatory cytokines in response to HSP70
as well as HSP60 (Dybdahl et al., 2002; Vabulas
et al., 2002; Asea et al, 2002). Thus, TLR4
seems to be responsible for the inflammatory
responses elicited by HSPs. In addition to
TLR4, TLR2 has also been shown to be
required for the recognition of HSP70
(Vabulas et al., 2002; Asea et al., 2002).
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Extracellular matrix components, includ-
ing fibronectin, hyaluronic acid, and heparan
sulfate, are produced when tissue is injured
and play important roles in wound healing.
The type IIl repeat extra domain A of
fibronectin has been shown to activate
immune cells through recognition by TLR4
(Okamura et al, 2001). Low-molecular-
weight oligosaccharides of hyaluronic acid
have been shown to be potent activators of
DCs, which are mediated by TLR 4 (Termeer
et al., 2002). Polysaccharide fragments of
heparan sulfate have been reported to induce
the maturation of DCs viaTLR4 (Johnson et
al., 2002). Inflammatory responses to injury,
immune disorders, and infection often
accompany extravascular deposits of fibrin,
which is generated from plasma-derived fib-
rinogen. Fibrinogen has also been shown to
induce the production of chemokines from
macrophages through recognition by TLRA
(Smiley et al., 2001). Thus, TLR4 is presum-
ably involved in several inflammatory
responses by recognizing endogenous ligands
aven in the absence of infection. However, all
of the endogenous TLR4 ligands activate
immune cells only when stimulated at very .
high concentrations. In addition, the ability
of HSP70 to activate macrophages has
recently been shown to be attributable to
contaminating LPS in the HSP70 preparation
(Gao and Tsan, 2003). LPS is the most pow-
erful immunostimulator among microbial
components, and the contamination will
result in TLR4-dependent immune activa-
tion. Therefore, more careful experiments are
required before we can conclude that TLR4
recognizes these endogenous ligands.

Molecules that Cooperate with TLRs
Although TLRs have been established to recog-
nize specific patterns of microbial components,
several additional molecules associate with some
TLRs, particularly TLR4, to detect LPS. These
include the LPS-binding protein (LBP), CD14,
RP105, and MD-1 and -2 (Fig. 2).
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LBP and CD14. LBP which was identi-
fied as a plasma protein that binds to the lipid
A moiety of LPS, is a member of 2 family of
lipid-binding proteins that act as lipid trans-
port proteins in some cases {Tobias et al., 1986;
Schumann et al,, 1990). The generation of
LBP-deficient mice has revealed a nonredun-
dant role for LBP in the response to LPS (Jack
et al., 1997; Wurfel et al., 1997).

 The formation of LPS and LBP complexes
triggers the association of this complex with
another LPS-binding molecule, CDD14. CD14
is a GPI-anchored protein, which is preferen-
tially expressed on the surface of mature
myeloid cells. Soluble forms of CD14 are also
produced through escape from the GPI
anchoring and proteolytic cleavage of the
membrane-bound CD14. The importance of
CD14 in the response to LPS has been
demonstrated in CD14-deficient mice, which
showed a reduced response to LPS (Haziot et
al., 1996; Moore et al., 2000). Thus, LPS first
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FIGURE 2 The LPS receptor
complex. The LPS receptor com-
prises several components. TLR4 is
an essential receptor component for
the signal wansduction via the LPS
receptor complex. MD-2 associates
with the extracellular portion of
TLR4 and is involved in the LPS
recogntition. LBP is a soluble mole-
cule that binds to the lipid A por-
tion of LPS.The LPS-LBP complex
binds to CD14 and then this com-
plex associates with TLR4. In B
cells, additional components, RP105
and MD-1, are involved in the LPS
recognition.

binds LBP, and then this complex is transferred -
to CD14. CD14 has no cytoplasmic region
that would be required for cellular activation.
Therefore, the LPS-LBP-CD14 complex
requires an additional receptor that transduces
the signal from the membrane into the cyto-
plasm, and it is TLR4 that is responsible for
“this signal transduction via the LPS-LBP-
CD14 complex. Indeed, physical association
between CD14 and TLR4 in response to LPS
stimulation has been demonstrated (Jiang et
al., 2000; Da Shilva Correia et al., 2001).

RP105 and MD-1. RP105 bears an -
extracellular LRR. domain that is structurally
similar to those found in TLRs. However,
unlike TLRs, RP105 has only a short cyto-
plasmic tail and is preferentially expressed on B
cells (Miyake et al, 1995). RP105-deficient
mice showed a severely impaired response to
LPS in B cells, indicating that RP105 is an
essential component in the recognition of LPS



