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Fig. 3 Distribution of protein C activity (A) and antithrombin/protein C ratio (B} in genetically proven protein C deficiency and in

genetically proven protein C normal.

Table
general population

Comparison of prevalence of protein C and antithrombin deficiencies between deep vein thrombosis group and

Number of protein C heterozygote

Number of antithrombin heterozygote

General population {n = 4503)
Patients with DVT {(n = 108)

9(0.20 %)
7 (6.5 %)

8(0.18 %)
6 (5.6 %)

Odds ratio (35 % CI)

P value

34.6 (12.64 to 94.82)
< 0.000}

313 (11.27 10 97.06)
<0.0001

CI; confidence interval
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Fig. 4 Distribution of normalized antithrombin/normalized protein S activity (n-AT/n-PS) ratio by sex.

A; Male, B; Female.
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Fig.5 Distribution of normalized APC
resistance.

n-APC-SR: normalized activated protein C
sensitivily ratio, DVT: deep vein thrombosis,
PTE: pulmonary thromboembolism, CI:

Control

n=86, r= - 0.40, p<0.0001

cerebral infarction, CAD: coronary artery
disease.
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Fig. 6 Relationship between APC resistance and activated factor VII (A) or prothrombin fragment 1+2 (B).

APC-SR: activated protein C-sensitivity ratio, FVIIa: activated factor VII, F142: prothrombin fragment +2.
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Relationship between Functional Abnormality of Anticoagulant Factors and Venous

Thrombosis in Japanese
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2 Department of Cardiology, National Cardiovascular Center, Osaka, Japan
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Key words : Protein C deficiency, Antithrombin deficiency, Deep vein thrombosis, Risk factor

Protein C and antithrombin deficiencies are risk factors for venous thrombosis. The prevalence of protein C and
antithrombin deficiencies is about 0.2% in the general population. These studies are mainly conducted in Caucasian
population and not in Mongolian population such as Japanese. We examined the prevalence of these deficiencies in
Japanese and whether or not these deficiencies are risk factors for deep vein thrombosis in Japanese. We measured
the protein C and antithrombin activities in 4,505 individuals in the Japanese genera!l population and in 108 patients
with deep vein thrombosis, identified protein C and antithrombin, and compared their prevalences. The prevalence
of protein C or antithrombin in general population was 0.20% or 0.18%, respectively. We identified 7 patients with
protein C deficiency (6.5%) and 6 patients with antithrombin deficiency (5.6%) in 108 patients with deep vein
thrombosis. These findings indicate that either protein C or antithrombin deficiency constitutes a significant risk

factor for deep vein thrombosis in the Japanese population.
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Dynamic Observation of Oxygenation-Induced Contraction of
and Transient Fiber-Network Formation-Disassembly in Cultured
Human Brain Microvascular Endothelial Cells
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*Masaki Takao, *Hidetaka Takeda, and $Masako Yokoyama
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Summary: Oxygenation-induced contraction of nonconfluent
cultured human brain microvascular endothelial cells (HBECs,
n = 30) was examined by video-enhanced contrast-differential
interferential contrast microscopy. After administering a con-
tinuous gentle blow of pure oxygen gas to the surface of the
medium just above the flattened HBEC, the plasma membrane
exhibited tensioning and wrinkling, resulting in a strong con-
traction of the cell body by 14 + 7% (P < 0.001). When the cell
stopped contracting, transient formation of a fiber network
starting from certain spots (possibly adhesion plaques, though
these were not visible in the majority of cases) and expanding
to the whole cell was observed. The occurrence of fiber net-
work formation was statistically significant (26 of 30 separate

cells, P < 0.05). After cessation of oxygen delivery, the ob-
served network of fibers broke up rapidly (in a period of
3.3 £ 1.2 seconds) into small particles of <0.5 pm in diameter,
which subsequently fused into the cellular structure. The HBEC
completely recovered the control appearance. The sequential
process was completed within 30 seconds and was reproduced
in individual cells each time that oxygen gas was supplied. The
authors conclude that the HBEC strongly contracts in response
to a transient oxygenation.stimulus, followed by rapid
formation/disassembly of a network structure. Key Words:
VEC-DIC microscopy—Human brain microvascular endothe-
lial ¢cell—Cytoskeleton—Cell morphology—Actin filament—
Endothelial cell tone.

The mechanisms underlying hyperoxygenation-
induced changes in tissue blood flow remain poorly un-
derstood despite a long history of investigation (Hudetz,
1997; Kety and Schmidt, 1948; Krogh, 1918; Meyer and
Gotoh, 1961; Opitz and Schneider, 1950). Based on con-
tinuous recerding of respiratory gases in arterial blood
and jugular venous blood, Meyer et al. (1967) found that
pure oxygen gas inhalation produced a marked arterial
Po, rise by 365 mm Hg (from 70.8-435.0 mm Hg,
n = 6), whereas the brain tissue Po, rose by only 9.0

mm Hg (from 25.8-347 mm Hg, n = 4} in men. It

seemed highly likely that oxygen directly constricted pial
arterioles but, strangely, no explicit evidence was forth-
coming (Purves, 1972). This contrasted to the effect of
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hypoxia, which dilated the pial arteries in cats (Craigen
Jennett, 1981). Recently, Sjoberg et al. (1999} reported
that the cerebrocortical capillary blood flow was reduced
by 11% during hyperoxemia, as measured by a hydrogen
clearance method in anesthetized pigs. These data indi-
cate that oxygen causes a selective reduction in blood
flow at specific flow levels.

To examine the response of cultured human brain mi-
crovascular endothelial cells (HBECs) to high oxygen
levels, we used video-enhanced contrast-differential in-
terference contrast (VEC-DIC) microscopy, which en-
abled us to observe cultured cells in a living state at high
magnification (Tomita et al,, 19964). With this tech-
nique, we have already shown that cultured human um-
bilical cord vein endothelial cells (HUVECS) contracted
by approximately 20% on exposure to hyperoxygenated
superfusing fluid (Tomita et al., 1995). In the present
paper, we report the occurrence of a similar contraction
in the HBEC in response to oxygen. However, in the
present study we also observed a peculiar fiber network
formation/disassembly process in the HBEC, in associa-
tion with the contraction. Therefore, we describe for the

DOL: 10.1097/01. WCB.0000063992.19746.CA
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first time dynamic morphologic changes of HBECs that
are apparently of essential importance for the vasoactive
behavior of capillaries, which until now have been con-
sidered to be rather passive and quiescent.

MATERIALS AND METHODS

Human brain microvascular endothelial cells of passage 2
were purchased from Dainippon Pharmaceutical Co., Ltd.
(Osaka, Japan), which had imported cryopreserved cells (#376)
from Cell Systems Corporation {Cambrex Corp., East Ruther-
ford, NJ, U.S.A.). The cells were confirmed to be endothelial
cells on the basis of low-density lipoprotein uptake and positive
von Willebrand factor/factor VIII. Cells were seeded onto poly-
styrene dishes (Coming Petri dishes) containing a 175-pum
thick glass coverslip coated with attachment factor (Cell Sys-
tems Corporation), and incubated in a humidified 5% CO/95%
0, atmosphere at 37°C. The medium (Dulbecco modified
Eagle medium: 45% + F12 45% + fetal bovine serum 10% +
b-FGF 10 ng/mL) without astroglial cell supplement was
changed every day, and observations were made at the fourth
day after seeding. The coverslip with endothelial cells was
attached with glue to a plastic dish, the bottom of which had a
round window, so as to form the floor of a microscopic obser-
vation chamber (containing the cells). The dish was placed in a
temperature-controlled metal housing unit to maintain the cell
temperature at 37°C, and the coverslip was mounted on the
objective lens of an inverted microscope with oil, so that sub-
sequent video pictures would capture the ventral side of the
cell. The cells were superfused continucusly with the culture
medium using a double pump system (infusion and suction
pumps) and were maintained at 37°C in the microscopic ob-
servation chamber with a small heating pad and thermostat.
Video images of the cells were contrast enhanced digitally in
real time using our VEC-DIC microscopy technique at x4000
using a halogen lamp with an ultraviolet-cut filter (Tomita et
al., 1996a). A preparation of HBECs was set in place and a
spread cell was selected for observation of morphologic
changes. The amount of medium submerging the cell was ad-
Justed so that the medium surface was apparently situated close
to the vertex of the cell nucleus. Since the cell body was very
flat (except for the nuclear region), approximately 5 (3-10) pm
at the vertex and tapering to 0.3 pm at the peripheral part
(Inoue et al. 1999), the surface of the medium was approxi-
mately 50 pwm above the floor. After waiting for a certain
period for control observation (20 minutes to 1 h}, pure oxygen
gas was blown gently onto the surface of the medium through
an injection needle (#26), which was directed towards the cell
at an angle of 30 degrees. The speed of gas introduction was a
few miilliliters per minute, which was so slow that ripples on the
surface of the medium were barely visible. The period of oxy-
genation was usually less than 1 minute. This method was
adopted because the previous method of superfusion with an
oxygenated fluid involved a delay in the carrying tube and led
to smearing of oxygen tension changes. Cell morphologic
changes were videotaped, and selected parts of the images were
further fed into a computer via a frame grabber card (Scion
Corporation, Frederick, MD, U.5.A.) at frame rates of 2 to 15
frames/s (2-15 Hz) for analysis of details of the morphologic
changes. The oxygen tension of the medium was monitored
with a platinum electrode (applied potential: =0.5 V) with ref-
erence to an Ag-AgCl electrode. Although the medium was
usually superfused slowly through the observation chamber
with the infusion pump at the inlet and the suction pump at the
outlet, observations were made mostly under static conditions

J Cereb Biood Flow Mewab, Vol, 23, No. 7, 2003

of the fluid with a momentary (=3 minutes) stoppage of the
pumps. As described in Results, we confirmed that no changes
in cell morphology occurred with changes in wall shear rate,
which was altered by adjustment of the pump speed so as to be
from 0 to 200 pm/s (the wall shear rate was calculated from the
fluid thickness and volume flow passing through the chamber,
assuming Newtonian properties of the superfusing fluid). To
exclude other physical factors, the following were tested: fluid
removal by using tissue paper;, changes of temperature from
10°C to 40°C by controlling the thermostat of the circulating
water; and vibration of the fluid by blowing air into the liquid.
Electrical stimulation with a square pulse/triangular pulse (0.5
to 3.0 V DC/AC at frequencies of 1-100 Hz) was provided
through a pair of bipolar electrodes placed in the medium above
the cell.

For analysis of the rapid morphologic changes, subtraction
between two frames was performed in some cases on a Scion
domain by subtraction of the first image of the brain surface
{control video image) from each subsequent experimental im-
age (F-C subtraction), or by frame-by-frame subtraction in a
series of frames (F-F subtraction). The contraction was broadly
estimated from the diameter change of the cell body (%) as
(D,*-D,*/D,?, where D, is the control diameter measured at a
line passing through the center of the cell and D, is that after
the contraction. The magnification was about x3,200 or 50 pm
in the full width of the monitor window, and this was confirmed
from the red blood cell size (7.5 pum). The speed of exten-
sion of network formation was estimated from the frame-by-
frame differential distance (um) divided by the frame interval
(seconds).

RESULTS

The HBECs changed their shape depending on the
phase of their growth. When HBECs at the fourth day
after seeding, as used in the present study, were spread
on a glass coverslip, they exhibited a broadly similar
shape and size to those described previously for
HUVECs (Incue et al., 1999): a round-top nucleus con-
taining one or two nucleoli, and a cell body surrounded
by a thin, widely spread transparent marginal portion
(Fig. 1, top left), forming various flat (lamellar) or pro-
jecting radial and spiky structures (lamellipodia and fi-
lopodia). The outer boundaries of the cell were usually
not discernible with the naked eye but were visible as a
mesh or bundles of fibers when the actin was stained
with rhodamine phalloidin. HBECs were rather opagque
and their intracellular organelles were not clearly visible,
whereas the intracellular organelles of HUVECs could
be observed; tubular structures (presumably mitochon-
dria), vesicles, and large or small granules or particles
that glided or were translocated in a vectorial fashion,
presumably along the microtubules, were noted. How-
ever, we did not observe fiber formation in contracting
HUVECs.

Typical morphologic changes in two independent cells
in response to oxygenation are shown as montage pre-
sentations in Figs. 1 and 2. The numbers at the top left of
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CONTRACTION OF BRAIN MICROVASCULAR ENDOTHELIAL CELLS BY OXYGEN 823
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FIG. 1. Typical processes of contraction, wrinkling, mesh network formation, disassembly, and recovery as displayed in cell 9. The
appearance time of the mesh network was 10 seconds, the duration was 12 seconds, recovery time was 20 seconds (10-second
disassembly time + 10-second disappearance time), fiber thickness was 0.75 pm, spread speed was 10 pm/s, and confraction was 12%
(shortening of the short axis of the cell from 25.0-23.6 pm). The mesh pattern was polygonal. Time (seconds) after oxygen delivery is
indicated at the top-left of each frame. The endothelium exhibits a vaguely outlined nucleus {(which becomes clearly apparent after
contraction) containing a nucleols in the center, a well-demarcated cell body, and the lamella, which occupies the outer skirt portion of

the cell body.

each frame indicate the time in seconds after oxygen
introduction, Within a few seconds after oxygen intro-
duction, when the oxygen tension in the fluid reached a
maximum (680 mm Hg), the cell began to contract. The
surface tension of the plasma membrane appeared to in-
crease, causing waves or wrinkles, especially in the cir-
cumferential area of the cell body. The peripheral lamella
was dragged centrally towards the nucleus and the
nuclear envelope became clearly demarcated and en-
hanced. The lamella becarne tightly wrapped around the
edge of the cell body (frame 10 of Fig. [ and frame 8 of
Fig. 2). The cell body then began to contract and the
maximum contraction was estimated from the reduction
of the cell area as 14+ 7% (meanxSD, P < 0.001),
nuclear size also decreased. When the contraction slowed

down and stopped, a starlike mark suddenly appeared in
nine cases as shown in Fig. 3. It started either at granules
{top row of Fig. 3: presumably adhesion plaque) or at
random spots without visible granules (middle and bot-
tom rows of Fig. 3) and grew rapidly, like a spiderweb
network. Figure 3 illustrates such expanding network
structures as images obtained by F-F subtraction (middle
row) and F-C subtraction (bottom row).

The fiber network started from spots that were pre-
sumably invisible adhesion plagues in the lamella bind-
ing to the coated glass surface. Figure 4 (top two rows,
A-H) shows various types of mesh mosaic patterns of
the network structures. These patterns were star shaped
(A;n = 9), polygonal (B-E; n = 6), fernlike (F;n = 7),
brushlike (G; n = 4), or evident of a augmented nuclear

I Cereb Blood Flow Metah, Vol 23, No. 7, 2003
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FIG. 2. Another typical process displayed in cell 11. The appearance time was 10 seconds, duration was 6 seconds, recovery time was
15 seconds (3-second disassembly time + 12-second disappearance time), fibers thickness was 0.75 um, spread speed was 10 pm/s,
and contraction was 14% (shortening of the long axis of the cell from 14.0-13.1 ym). The mesh pattern was starlike. The cell exhibits a
rather deformed cell body with a deviated nucleus and tailed ce!l body.

envelope (H; n = 4); however, these classifications were
not distinct and patterns overlapped in most cases, The
average growth speed of the network was 163 +84
pmfs (mean + SD). When the network was apparently
fully formed, oxygen delivery was discontinued. As
shown in Table 1, the average time from the commence-
ment of oxygen exposure to the appearance of network
formation was 6.5 + 4.6 seconds, and the average dura-
tion of the network was 12.0 £ 7.8 seconds. The thick-
ness of the mesh fibers in the network was 0.6 + 0.2 pm,
As soon as oxygen delivery was stopped (usually at
full development of the network), the observed fibers
rapidly began to disassemble into small particles
(0.7 £0.2 pm in diameter) over a period of 3.3+ 1.2
seconds, although this time is not reliable, since the oxy-
gen tension changes in the fluid were smeared owing to
saturation/evaporation processes. The small particles dis-
played a slow drift, exhibiting independent Brownian

J Cerel Bluud Flow Metal, Vol, 23, No. 7, 2003

motton for a few seconds, and then disappeared, gradu-
ally becoming incorporated into the cell components
(bottom row of Fig. 4). The cell shape recovered its
original appearance, as shown in the last images of the
two cells (Figs. 1 and 2). The overall recovery time,
including disassembly time, was 12.6 = 10.8 seconds,
The process of HBEC morphologic change during oxy-
genation could (in 26 of 30 cases) be summarized as
contraction-network formation in the cell to disassembly
of fibers and particulation to recovery of the original cell
shape, all occurring within 30 secconds. The sequential
process was reproduced in all cases tested (n = 10) each
time that oxygen gas was supplied. Interestingly, we
found that the mesh patterns were not strictly specific 1o
individual cells but varied (e.g., star shaped at first, fern
shaped second, and polygonal third) in the same cells,
even though the control appearance of cells was recov-
erable cvery time. In the other 4 of the 30 cases, the
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FIG. 3. Formation of a star-shaped mesh network starting from adhesion plaques. The spread speed was 30 pm/s for cell 28 (upper row),
10 pm/s for cell 8 (middle row), and 10 um/s for cefl 11 (bottom row). The arrow in the upper panel indicates a large adhesion plague,
whereas the adhesion plaques in the lower panel (cell 11) were too small to see (if present),

contraction process was similar to that in the abovemen-
tioned 26 cases, but there was failure to form a network,
and only a clear enhancement of the nuclear envelope
was seen (Fig. 3H). Subsequently, small particles ap-
peared in the absence of any detectable fiber network,
and the cell underwent a recovery phase as in other cases.
Figure 4 (bottom row) illustrates the resolution of a fiber
network with a fernlike pattern where the small particles
dissolved one by one and disappeared sooner or later,
fusing into the cell components.

We confirmed that air blowing did not induce such
contraction or the formation of networks. Changes in
wall shear rate from 0 to 200 wm/s, and changes
in temperature from 10°C to 40°C, also failed to pro-
duce contraction/network formation. Electrical stimula-
tion at 0.5 to 3.0 V DC/AC (50 Hz), with a square
pulse/triangular pulse at frequencies of ! to 100 Hz, also
failed to produce the previously described morphologic
changes, but rather led to an amorphous, disorganized
cell structure involving deformation, rounding, and lift-
ing up of the cell body from the floor to which the cell

had adhered. These changes were very different from the
above-described, clearly defined and organized sequen-
tial events.

DISCUSSION

Doukas et al. (1994) observed that endothelial cells
cultured on polymerized silicone deformed the underlying
substrate, producing microscopically visible wrinkles.
They interpreted this finding as being due to cellular
contraction, and concluded that endothelial cells nor-
mally maintain an active contractile tone. We observed
the endothelial tone more directly as wrinkles on the
surface of the plasmic membrane: oxygenation induced
tensioning and wrinkling of the HBEC plasmic mem-
brane, causing contraction of the cell body by 14%. If
we extrapolate this finding to the capillary {an endothe-
lial tube) in situ, the endothelial contraction would
correspond to the same magnitude of reduction in caliber
{2AR) based on the simple relation AD = 2wAR,
where AD is the change in endothelial cell diameter
or the change in the circumferential length of the

J Cereh Blood Flow Merab, Vol, 23, No. 7. 2003
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FIG. 4. Top: Various patterns of mesh network structure. {A) Starin cell 7. (B, C) Polygon in cells 21 and 22. (D} Small polygonal in cell
25 near the nucleus. {E) Small polygon in the lamella of the same cell 25. (F) Fern in cell 5. {G) Brush in cell 29. {H) Augmented nuclear
envelope in cell 3. Bottorn: Disassembly and resolution of the fern network structure in cell 6. Particles became detached from the
branches of the fern, drified with Brownian motion, and eventually fused with the intracellular structures.

capillary. In living tissue in siru, such active capitlary
contraction would cause a sharp rise in local capillary
flow resistance owing to the inverse Fihraeus-Lindqvist
effect. This may explain the marked reduction in blood
flow in response to oxygen inhalation in experimental
animals, in the absence of any appreciable pial arterial
diametric constriction,

Concerning the stimulus applied to the HBEC, we do
not consider oxygen to be the only stimulus that might
elicit such rapid changes in endothelial morphology or
capillary tone, although changes in various physical fac-
tors in our experimental design (e.g., temperature, shear
rate, electrical field potential, and surface vibration) had
no apparent effect. In the literature, there are reports of
numerous triggering stimuli, including not only chemical
substances but also such longstanding physical stresses
as fluid shear stress (Azuma et al., 2001; Barbee et al.,

J Cereh Blood Flenwe Metah, Vol. 23, No. 7, 2003

1994; Frame and Sarelius, 2000; Malek and Izumo,
1996; Schnittler et al., 1993; ), stretching per se (Sugi-
moto et al., 1995; Wang et al., 2000; Zhao et al., 1995),
and contact with leukocytes (Tomita et al., 19965; Yuan
et al., 2002) or lymphocytes (Etienne-Manneville et al.,
2000). Chien and Shyy (2001) found that integrins on the
abluminal side and receptor tyrosine kinases on the lu-
minal side of endothelial cells serve as mechanosensors.
Endothelial and therefore capillary tone changes in re-
sponse to various stimuli must be of physiologic impor-
tance for capillary vasomotion.

The mechanism of the HBEC contraction could be
related to spontaneous fiber network formation. How-
ever, peculiarly, the fibers became apparent only when
contraction was almost completed, after beginning at pu-
tative adhesion plaques (integrins) and spreading to the
whole cell. The fibers are presumably a cytoskeleton,
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TABLE 1. Summary of HBEC changes in response to oxygenation

Fiber Particle Contraction
Ne. Appearance Duration Recovery thickness diameter Speed (%) Mesh
1 4 4 7 05 1 NM 10 Brush
2 i 5 2 NM 0.7 NM 14 Aug. nucl, env.
3 13 10 2 1 1 NM 21 Brush
4 2 10 2 1 1 NM 14 Aug. nucl, env.
5 10 25 3 0.75 1 5 9 Fern
6 2 15 20 0.75 0.5 NM 7 Fern
7 3 1 20 0.5 0.5 10 4 Star
8 5 3 15 1 0.5 10 20 Star
9 10 12 20 0.75 0.5 10 12 Polygonal
10 10 30 50 0.75 0.5 30 12 Fern
11 10 6 15 0.75 0.5 10 14 Star
12 13 10 30 0.75 0.75 10 16 Fern
13 2 7.5 10 0.5 0.5 15 20 Polygonal
14 25 1.5 125 0.5 0.5 10 23 Fern
15 10 7 30 0.75 0.75 15 19 Femn
16 10 5 20 0.75 0.75 15 28 Star
17 1.5 NM 5 NM NM NM 4 Aug. nucl. env,
18 2 NM 3 NM NM NM 29 Aug. nucl. env.
19 25 8 4 0.5 NM NM 10 Brush
20 5 12 17 1 1 12 4 Fern
21 15 30 10 0.75 0.5 10 12 Polygonal
22 10 115 10 0.75 0.5 20 9 Polygonal
23 5 10 8 0.75 0.5 15 9 Star
24 12 10 20 0.75 0.75 15 33 Star
25 5 10 5 0.75 0.5 NM 13 Polygonal
26 15 26 10 0.5 05 30 10 Polygonal
27 3 20 5 0.5 .5 30 13 Star
28 4 13 16 0.5 05 30 o) Star
29 15 10 3 0.75 05 30 10 Brush
30 5 17 2 0.75 0.5 10 10 Star
Mean 6.5 12.0 126 0.7 0.6 16.3 14 —
sD 46 7.8 108 0.2 02 84 7 —

Values expressed as s and pm, except for that of speed which is in pm/s.

Aug. nucl. env., augmented nuclear envelop; NM, not measured; HBEC, human brain microvascular endothelial cell,

which might be stress fibers comprising thick bundles of
microfilaments lying along the ventral surface of the cell
with their ends attached to adhesion plaques. The stress
fibers are thought to contain all the elements required for
active contraction: myosin, «-actin, and tropomyosin.
Caldesmon, a protein regulating the motile interactions
of actin and myosin, is concentrated along the margins of
such stress fibers (Lodish et al., 1995). Stress fibers are
thus classified as contractile, like those in the sarcomere,
because they contract on addition of ATP when isolated
from the cell (Katoh et al., 1998). The network that we
observed is consistent in terms of fiber thickness (<0.6
pm) and manner of formation with the stress fibers re-
ported previously, except for its mesh network appear-
ance. Stress fibers have previously been reported to be
straight (Ishida et al., 1999), whereas ours consisted of
variable mesh structures. The fibers reported here could
consist of actin and vimentin, but this will need to be
confirmed by means of cytochemical and immunocyto-
chemical analysis.
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