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Figure 2,

Comparison of plasma cytokine concentrations. Concentrations were estimated by use of an immunoassay and compared between patients

with T cell-type {# = 20} and NK cell-type {# = 19) chronic active Epstein-Barr virus infection. Boxes and error bars indicate means and SEs,
respectively; the dotted lines indicate the upper limits of healthy individuals. The Mann-Whitney U/ test was used to compare plasma cytokine
concentrations, and Fisher's exact test was used to compare positivity rates. IFN, interferon; IL, interleukin.

titers of antibodies against the early and late EBV antigens and
the existence of cell-free EBY DNA in plasma suggest the pos-
sibility of lytic cycle infection {6, 32, 33]. In the present study,
a deoxyribomuclease-digestion experiment showed that the pres-
ence of EBV DNA in plasma was attributable to free nucleic
acids that were likely released from dead or damaged cells.
Furthermore, the pattern of EBV gene expression in PBMCs
was latency type 11, which supports the absence of lytic cycle
replication in the PBMCs, at least, of patients with CAEBV
infection. Lytic cycle infection may occur in tissue, although
our results for tissue samples, while limited, showed no sign
of a lytic cycle. It is also possible that we did not detect the
occurrence of lytic cycle replication if lytic cycle infection oc-
cutred in <1% of EBV-infected cells. There is no definite proof
of Iytic cycle replication in tissues from patients with CAEBV
infection. Some investigators have reported the expression of
early or late EBV gene transcripts, such as those for BZLFI or
viral 1L-10 [30, 34, 35], whereas other investigators have re-
ported the absence of expression of these transcripts in tissue
samples [36].

Our observation here of the absence of lytic cycle infection is
particularly important with regard to selection of the treatment
strategy for patients with CAEBV infection. Antiviral drugs that
suppress viral DNA polymerase and lytic cycle replication may
not be suitable for the treatment of CAEBYV infection; however,
therapies that reduce or eliminate EBV-infected T cells or NK
cells may be suitable choices. Chemotherapy or hematopoietic
stem-cell transplantation are suitable in this regard—the suc-
cessful treatment of CAEBV infection by hematopoietic stem-
cell transplantation has been reported {37, 38]. Alternatively,

EBV-related antigens expressed in T cells or NK cells may be
the targets of treatment. Cytotoxic T cells that were generated
from LCL and targeted to latency type III antigens have been
administered to patients with CAEBV infection [39, 40]. On
the basis of the present result that the pattern of EBV gene
expression was latency type II, cytotoxic T cells specific for
latency type II antigens, such as LMP1 or LMP2A, would be
more favorable for the control and eradication EBV-infected
cells if they are inducible [41, 42].

In the present study, patients with CAEBV infection had high
concentrations of proinflammatory (IL-18), Th1-type (IFN-y),
and anti-inflammatory (IL-10) cytokines. Transcription of the
genes for these cytokines was also high in PBMCs. The up-
regulation of various cytokine genes has also been reported in
patients with CAEBYV infection in other studies {43-45]. These
cytokines are thought to be produced either by EBV-infected
T cells or NK cells or by reacting inflammatory cells. On the
one hand, it has been shown that EBV-infected T cells produce
proinflammatory (IL-6 and TNF-a), Th1-type (IL-2 and IFN-
%), and anti-inflammatory (transforming growth factor 81) cy-
tokines [14, 46]. Shen et al. reported that, during EBV-infected
nasal NK/T cell lymphoma, human IL-10, an anti-inflamma-
tory cytokine that suppresses ¢ytotoxicity against EBV-infected
cells, was expressed [47]. On the other hand, reacting inflam-
matory cells, such as macrophages, can produce most of the
cytokines seen in the present study. Unfortunately, because of
our study design, it is impossible to determine whether EBV-
infected or reacting cells were the main sources of these cy-
tokines. However, the high concentrations of and the elevated
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transcription of genes for various cytokines must contribute to
the diverse symptoms seen in patients with CAEBV infection.

One of the purposes of the present study was to find virologic
differences between the T cell-type and the NK cell-type in-
fection. One main difference was that we found frequent de-
tection and a high concentration of IL-13 in the patients with
NK cell-type infection. 1L-13 is a Th2-type cytokine that in-
duces the differentiation of B cells, the production of antigen-
specific antibody, and a class switch to IgE and that also sup-
presses the cytotoxic functions of monocytes and macrophages
f48]. 1L-13 is primarily produced by activated T cells and is
not usually detected in plasma from healthy individuals [49].
The cytokine is produced by Reed-Sternberg cells during Hodg-
kin disease, which is associated with EBV infection [50]. Al-
though the reason why IL-13 was produced in the patients with
NK cell-type infection is unclear, the high concentration of IL-
13 may explain the high serum IgE levels and the hypersen-
sitivity to mosquito bites, both of which are frequently seen in
patients with NK cell-type infection [5].

The other difference between the 2 types of CAEBV infection
is that the patients with NK cell-type infection had a higher
viral load in PBMCs. This is particularly interesting, because
NK cell-type infection is usually milder and progresses slowly
[5, 12]. In contrast, the viral load in plasma was similar between
the 2 types of CAEBV infection. These results suggest that
sources of EBV DNA other than PBMCs exist in patients with
T cell-type disease, the more severe, rapid type of CAEBV in-
fection. In patients with T cell-type infection, the cell-free EBV
DNA may come from tissue, such as lymph nodes or the spleen,
where EBV-infected T cells infiltrate and proliferate. Indeed,
patients with T cell-type infection have a higher incidence of
hepatomegaly and lymphadenopathy, as was shown in the pres-
ent study. The higher viral load in plasma could also be ex-
plained by the naturally high rate of apoptosis in activated T
cells. It is still unctear why T cell-type infection is severe and
progresses rapidly. The distribution of infected cells, deter-
mined by the differences in homing receptors among cells, may
determine the symptoms and prognosis. A recent animal model
showed that activated T cells are selectively trapped in the liver,
primarily by intracellular adhesion molecule 1, which is con-
stitutively expressed on sinusoidal endothelial cells and Kupfter
cells [51]. We previously reported a patient with primary EBV
infection who had severe hepatitis and whose liver was infil-
trated with EBV-infected CD8* cells. In patients with T cell-
type CAEBV infection, EBV-infected, presumably activated T
cells might accumulate in the liver and cause hepatitis. Although
further studies are necessary, our findings should help to clarify
the pathogenesis of CAEBV infection and facilitate the devel-
opment of more-effective treatments.
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Retroviral vectors are the frequently applied gene delivery
vehicles for clinical gene therapy, but specificity of the
immunogenicity to the protein encoded by the inserted gene
of interast is a problam which needs to be overcome. Here,
we describe human cytotoxic T-lymphocyte (CTL) clones
recognizing epitopes derived from the protein encoded by the
retroviral vector backbone, which were established during
the course of our altempls to genserate CTls against
cytomegalovirus (CMV} or human papilloma vitus (HPV) in
vitro. In the case of heatthy CMV-seronegative donors, CTL
fines specific for retrovirally transduced cells were generated
in four out of eight donors by stimulating CD8 T cells with
CD40-activated B (CD40-B) cells retrovirally transduced with

Keywords: cytofoxic T lymphocyte; retroviral vector; epitope

Introduction

Murine leukemia virus (MLV)-based vector is one of
the frequently used gene delivery vehicle, being em-
ployed in approximately a quarter of the approved
clinical protocols worldwide (http://www.wiley.co.uk/
genmed/clinical). However, there are still problems with
the retroviral vectors used currently in the clinical
setting. In particular, the issue of safety has often been
raised, mainly because of the possibility of generation of
replication-competent retroviruses and unexpected acti-
vation of genes adjacent to the viral integral sites. In this
regard, it should be noted that development of leukemia
manifesting clonal integration of the retrovirus into a
proto-oncogene LMO2? was observed in two SCID-X1
patients in a French trial.’ Another important problem to
overcome is the immunogenicity of the retroviral vectors
themselves, that could induce humoral and cellular
immune responses in the hosts that eventually diminish
effective gene transfer.?'° Most retroviral vectors so far
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CMV-pp65. Two CTL clones derived from one of the CTL
lines were found to recognize epitopes from gag in the
context of HLA-B*4403 and -B*4601, raspectively. Similariy,
an HLA-B*3501-restrictad CTL clone from a cervical cancer
patient recognized an epitope located in the junctional
ragions of the gag and pol sequaences. These resufts show
that polypeptides encoded by components of the retroviral
vactor backbone are in fact immunogenic, generating CTLs
in vitro in human cells. Thus, potential CTL responses o
retroviral products should also be considered in clinical
sattings.
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reported contain retroviral coding sequences, such as the
5" end of the gag gene to increase their packaging effi-
ciency."='* Because a number of potential start codons,
such as ATG or CTG, remain intact in the extended
packaging sequences in most of the retroviral vectors,'?
polypeptides translated from them may induce immune
responses, in addition to those against transgene pro-
ducts such as a-L-iduronidase® or selectable markers (eg,
neomycin,'® hygromycin and/or herpes virus thymidine
kinase's'”). However, it siill needs to be determined
whether or not the products encoded by the retroviral
vector backbone sequences are immunogenic in humans.

The LZRSpBMN,'® Molony MLV-derived retroviral
vector used in this study, contains full-length long
terminal repeats (LTRs) and an extended packaging
sequence with a portion of the pol gene derived from
MEG retroviral vectors,” which have been used in a
number of clinical trials, including a French trial for
SCID-X1.! The extended packaging sequence is made by
a combination of the original packaging signal and
426 b;) of the 5’ end of the gag gene, followed by 375 bp of
the 3’ end of the pol gene which harbors the splicing
acceptor sites.'* In wild-type MLV, Gag and Pol proteins
are translated from the unspliced mRNA. The MFG
vector still expresses a significant amount of the
unspliced messages.?® There are many potential start



codons within the extended packaging sequence, such as

CTG of gPr80%*s and ATG of Pr65%°t. Moreover, some
{cryptic) polypeptides may be translated from genomic
(unspliced) mRNA. Thus, it is possible that these
preducts may give rise to host immune responses which
could lead to rapid clearance of retrovirally transduced
cells after in vive infusion.

In this study, we demonstrated that human cytotoxic
T-lymphocyte (CTL) clones recognizing epitopes
derived from the protein encoded by the retroviral
vector backbone. Two identified CTL epitopes were
located in the gag gene, and the other epitope was in
the artifidal polypeptide joining the gag and pol
sequences,

Results

In a previous study, we achieved efficient generation
of cytomegalovirus (CMV)-pp65-specific CTL lines
from CMV-seropositive donors using CD40-activated
B {CD40-B) cells retrovirally transduced with the
CMV-pp65 gene as antigen-presenting cells (APC).2*2
With all of eight CMV-seronegative donors, however,
we failed to generate pp6b-spedific CTL lines. Thus, to
enhance the efficiency of induction of pp65-specific
CTLs, we cultured CD8 T cells in the presence of
interleukin-12, which is known to be an immunostimu-
latory cytokine. In fact, CTL lines were then induced in
seven out of the eight seronegative donors. Unexpect-
edly, however, four of them showed cytotoxicity against
not only pp65-transduced EBV-transformed lymphoblas-
tic cell lines (LCLs) but also LCLs transduced with an
irrelevant antigen, EGFF, whereas untransduced LCLs
were not lysed (Figure 1a). These results suggest that
the CTL lines were specific for viral-related antigens
generated in the retrovirally transduced cells. These
interesting findings prompted us to identify the antigens
recognized. By limiting dilution, we established two CTL
clones, 8C7 and 9C10, from a CMV-seronegative donor
and their specificity was evaluated. IFN-y ELISPOT
assays revealed that clones 8C7 and 9CI10 recognized
293T cells transfected with the retroviral vector,
LZRSpBMN, in combination with HLA-B*4403 and
-B*4601, respectively (Figure 1b), indicating that the
antigens recognized by the CTL clones were indeed
derived from the retroviral vector.

Because, in the retroviral vector we used, 5LTR is
active as an RNA polymerase II promoter, and the start
codons of gPrB0s*s and Pr655°6 in the extended packa-
ging signal are not mutated, it is possible that several
different polypeptides may be translated from the
genomic mRNA.*® Thus, we subcloned the region
spanning the start codon of gPr80%# through a unique
BamHI site of the vector into a mammalian expression
vector, termed pcDNA3-gPr80, to determine which
polypeptides translated from the extended packaging
signal are antigenic. Both CTL clones could recognize
293T cells transfected with both pcDNA3-gPr80 and
restricting HLA alleles, indicating that the region
contains the CTL epitopes.

For their identification, linear expression fragments
encoding serial C-terminal truncations of the region were
constructed and expressed in 293T cells (Table 1}, as
previously reported.”? The HLA-B*4403-restricted CTL
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Figure 1 Effector cell activity of the CTL line and clones generated from a
CMV-seronegative donor. To generate CTL lines, CD8* T cells from a
CMV-seronegative donor were stimulated three times with autologous
CD40-B cells transduced with CMV-pp65 gene retrovirally, and tested. (a)
Cytolytic activity of the CTL lines was assessed against autologous LCL
retrovirally transduced with the CMV-pp65 (LCL{pp65; cosed squares)
or EGFP genes (LCL{EGFP; open circles), or untransduced LCL (open
triangles) over a range of E[T ratios. Cytolytic activity assessed by *'Cr
relense is shown as percenlage specific lysis. (b} By limiting dilution, twe
CTL clones (8C7, 9C10) were oltained from the CTL line shown in (a). To
determine HLA restriction and specificity of the CTL clones, IEN-y
ELISPOT assays were conducted using autologous LCL/pp65, LCL/EGFP,
LCL or 293T cells travisfected with the genes indicated. Each bar represents
the number of spots per 10° celis.

clone 8C7 recognized transfectants expressing aa 1-169
or lenger, but not 1-138, indicating that the epitope fully
or partially lies between aa 139 and aa 169. With the aid
of a computer algorithm,*® peptides presented by HLA-
B*4403 within the localized region were predicted (Table
2). Because a fragment encoding a decamer peptide,
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AEWPTFNVGW (aa 141-150), was well recognized by
the CTL clone 8C7, we defined this decamer as the CTL
epitope presented by HLA-B*4403 (Figure 2a).

In the case of CTL clone 9C10, the same region was
recognized (Table 1). The binding metif for HLA-B*4601
has been reported as Met at position 2 and Tyr or Phe
at the C-terminus,® but peptide binding prediction by
the computer algorithm for HLA-B*4601 is not currently
available. Because there were four Phe, but no Met and
Tyr within the region, we generated linear expression
fragments encoding four kinds of decamer peptides
ending at each Phe. A fragment encoding TFCSAEWPTF
(aa 137-146) was well recognized by the CTL clone 9CI10.
As shown in Figure 2b, C-terminal deletion affected
the recognition by the CTL clone, whereas N-terminal
deletions did not. By titration assay with synthetic
peptides (data not shown), a nonamer peptide,
FCSAEWPTF (aa 138-146), was identified as the minimal
epitope presented by HLA-B*4601.

Similarly, CTL clones specific for retrovirally trans-
duced cells were obtained by stimulation of CD8 T cells
from a cervical cancer patient using HPV16-E6 and E7
transduced CD40-B cells as APC. One of the CTL clones,
3B4, was restricted by HLA-B*3501 and recognized 293T
cells transfected with pcDNA3-gPr80 and HLA-B*3501
(Figure 3). With the linear expression fragments of serial
C-terminal truncations, a region containing the CTL
epitope was localized within aa 237-331 (Table 1). Several
HLA-B*3501-restricting peptides within this region were
predicted by the computer algorithm (Table 2). Among

Table 1 I[dentification of the regions recognized by the CTL clones
using deletion mutants in ELISPOT assays

CTL clone 8C7 9C10 3B4
Length of fragments  HLA restricted  B*4403  B*4601  B*3501
1-66 - - -
1-138 - - -
1-169 + + -
1-19 + + -
1-248 + + -
1-331 + + +
1-370 + + +

‘+ indicates the presence of specific spots by each CTL clone, and
‘-’ indicates the absence of spots.

them, the CTL clone 3B4 well recognized a decamer,
APIWPYEILY (aa 240-249, Figure 3b), which interest-
ingly was composed of the artificial junctional region of
gag and pol (Figure 4).'®

Discussion

In the present study, we demonstrated that human CTLs
specific for HLA class I-bound peptides encoded by
retroviral vector backbone sequences can readily be
induced in witro. To the best of cur knowledge, this is the
first identification of epitopes derived from residual
retroviral coding sequences rather than inserted cDNAs
recognized by human cells. In mice, it has been already
shown that Moloney MLV- or other retrovirus-induced
tumor cell lines, such as RMA and FBL-3, are lysed by
CTL responses, and that the immunodeminant epitope
of Moloney MLV restricted by H-2D" is located within
the gag leader protein encoded in the extended packa-
ging sequence of the retroviral vector.* With regard to
humoral immune responses, induction of anti-MLV
antibodies has been reported in mice and nonhuman
primates® as well as in patients treated for brain tumors
with murine retroviral vector producer cells.®® Thus, it is
likely that the immune responses against not only
inserted gene products but also retroviral coding
sequence products can similarly be induced in vivo, with
vector-based treatment of patients.

The immunogenicity of transferred gene products also
remains one obstacle in the development of efficient
clinical gene therapy protocols, particularly when intro-
ducing artificial or xenogenic sequences. Various at-
tempts have been made to overcome this problem,
including asanguineous perfusion after infection of
retroviral vectors in liver transplant cases,* transplanta-
tion of transduced hematopoietic stem cells™#2* or
infusion of antigen-specific regulatory T cells,® with the
aim of establishing immune tolerance to transgene
products. In the French clinical trial for the X-linked
form of SCID," which is the first recorded case of a
therapeutic effect of retroviral gene therapy in humans,
the transferred gene is expressed in the patients long
term. Immune responses against the transferred common
v-chain gene or MFG-based retroviral vector coding
sequences have not been reported so far, which may be
due to relative immunodeficiency in these X-5CID
patients.

Table 2 Results for HLA-binding motif prediction by computer algorithm

CTL clone HLA restricted Range submitted Rank Position Sequence Score

8C7 B*4403 129-169 1 141-150 AEWPTEFNVGW 48
2 161-169 ITQVKIKVFE 23
3 148-156 VGWPRDGTF 2
4 141-149 AEWPTFNVG 16
5 138-146 FCSAEWPTF 1

3B4 B*3501 237-331 1 240-249 APIWPYEILY 40
2 240-248 APIWPYEIL 20
3 305-314 HPYRVGDTVW 10
4 300-309 RPVVPHPYRV 8
5 268-276 NSPSLQAHL - 5
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Figure 2 Hentification of the CTL epitopes recognized by the CTL clones
8C7 and 9C10. Linear expression fragments encoding various peptides,
including the predicied epitopes by computer aigorithms, were transfected
to 293T cells, together with restricting HLA cDNA. Recognition by the
pp65-specific CTL clones was evaluated 48 1t later by ELISPOT assay.
Each bar represents the number of spots per 10* cells. (2) Recognition of
the linear expression fragment encoding the predicted peptide,
AEWPTENVGW, or other peptides by the CTL clone 8C7. (b) Recognition
of the linear expression fragments encoding the candidate peptides by the
CTL clone 9CI0 is shown in the upper colunms. Effects of N- or C-
terminal deletion are shown in the lower panel.

Retention of retroviral sequences may also result in
generation of replication-competent retroviruses as a
result of homologous recombination.!* Substitution of
the packaging sequence of MLV-based vectors by
sequences derived from other viruses has been success-
fully employed without loss of the transduction effi-
ciency.® Indeed, attempts have been made to remove all
ATG start codons without losing efficent viral packa-
ging.'2" These approaches may be able to provide more
effective ways to avoid immunogenicity of retroviral
vectors and also generation of replication-competent
retroviruses, Finally, the present identification of an
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Figure 3 Effector cell activity of the CTL line and clones generated from a
cervical cancer patient. A CTL line was generated by stimulating CD8* T
cells from a cervical cancer patient three times with autologous HPV16-E6
and -E7 transduced CD40-B cells, By limiting dilution, one CTL clone
3B4 was then obtained. (a) Cytolytic actvity of the CTL line (left) and the
CTL clone (right) was assessed against autologous LCL{E6 (closed
squares), LCYE7 (closed diamonds), or untransduced LCL (open
triangles} over a range of EfT ratios. (b) Determination of the epitope for
the CTL clone 3B4. ELISPOT assays were conducted using 2937 cells
transfected with plasmids encoding the indicated gene or with linear
expression fragments encoding the indicated peptides, together with HLA-
B*3501 ¢DNA. Each bar represents the number of spots per 10 cells.

immunogenic HLA-B35-restricted peptide derived from
the gag—pol junctional region may be of clinical signifi-
cance because vectors encoding various chimeric mole-
cules are currently often used.

In conclusion, peptides encoded by the retroviral
vector backbone sequence show potent immunogenicity
in witro so as to induce CTL responses. Thus, it is likely
that they may also stimulate CTL responses in vivo,
leading to rapid clearance of retrovirally transduced cells
and resulting in adverse effects. We should take into
consideration this problem by actively monitoring
immune responses in retroviral vector-mediated gene
therapies.

Materials and methods

Donors and cells

Peripheral blood samples were obtained from CMV-
seronegative healthy donors or cervical cancer patients
after we obtained informed consent under a protocol
approved by the Institutional Review Board of Aichi
Cancer Center according to the Declaration of Helsinki.
HLA typing was carried out at The HLA Laberatory
{Kyoto, Japan). Peripheral blood meononuclear cells
{PBMCs) were isolated from peripheral blood by
centrifugation on a Ficoll (Amersham Biosciences,
Uppsala, Sweden) density gradient, and CD8-positive
and -negative fractions were separated using CDS3
MicroBeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) and cryopreserved until use,
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Figure 4 Leader sequence of the retroviral vector, LZRSpBMN. (a)
Schematic representation of the leader sequence in LZRSpBMN. This
region is identical with that of the MFG oector. (b) The amino-acid
sequence translated from the gag-pol fusion region starting at gPr80s=s
start codon (CTG). The start codon of Pr655% is Met99 and the junctional
region of gag and pol is underlined. The CTL epitopes identified in this
study are boxed (see Figures 2 and 3).

Plasmids and synthetic peptides

Plasmids, pcDNA3-pp65, pcDNA3-EGFF, pcDNA31L.
(Invitrogen, Tokyo, Japan) encoding HLA-class [ cDNA,
LZRSpBMN-pp65 {the backbone plasmid, LZRSpBEMN-Z
was kindly provided by Dr G Nolan, Stanford University,
Stanford, CA, USA), pLBPC-pp65 and pLBPC-EGFP
were constructed as previously described.*'*! All pep-
tides were purchased from Toray Research Center
({Tokyo, Japan). HPV16-E6 or -E7 gene (kindly provided
by Dr T Kiyono, Nationa! Cancer Center Research
Institute, Tokyo, Japan) was inserted into the
LZRSpBMN vector (LZRSpBMN-E6 or LZRSpBMN-E7,
respectively) and the pLBPC vector (pLBPC-E6 or
pLBPC-E7, respectively). To generate pcDNA3-gPr80,
the region spanning the start codon of gPr80gag through
a unique BamHI site of the LZRSpBMN-Z vector (Figure
4a) was inserted intoc multiple cloning site of the
pcDNA3.T vector.

Generation of CD40-activated B cells and LCLs
CD40-B cells were generated as previously de-
scribed 223 In brief, a thawed CDB8-negative fraction
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of PBMCs was cultured on a y-irradiated (96 Gy) human
CD40L-transfected NIH3T3 cell line** (+-CD40L; kindly
provided by Dr Gordon Freeman, Dana-Farber Cancer
Institute, Boston, MA, USA) in the presence of IL-4
{4 ng/ml; Ono Pharmaceutical, Osaka, Japan} and
cyclosporin A (CsA, 0.7 ug/ml; Sandoz, Basel, Switzer-
land} in 2 ml of Iscove’s modified Dulbecco’s medium
{Invitrogen) supplemented with 10% pooled human
serum. The expanding cells were transferred onto freshly
prepared t+-CD40L cells and fed with cytokine-replen-
ished medium without CsA every 3-4 days. LCLs were
established from the CD40-B cells with supernatant of an
EBV producing cell line (B95-8, ATCC, Manassas, VA,
USA) in RPMI 1640 (Invitrogen) supplemented with 10%
fetal calf serum (FCS; IBL, Takasaki, Japan), referred to as
RPMI-10.

Retroviral transduction of CD40-B cells and LCLs
Retroviral transduction was conducted as previously
described ?! In brief, the retroviral construct, for example,
LZRSpBMN-pp65, was packaged in the Phoenix GALV
cell line® (a gift from H-P Kiem, Fred Hutchinson Cancer
Research Center, and from G Nolan, Stanford University,
Stanford, CA, USA) using FuGENE 6 (Roche Diagnostics,
Mannheim, Germany). CD40-B cells and LCLs were
infected with the retroviral supernatant ir the presence
of 10 pg/ml polybrene (Sigma, Chicagp, IL, USA), spun
at 1000 g for 1 h at 32°C, and incubated. Two days after,
LCLs transduced with CMV-pp65 (LCL/pp65), HPV16-
E6 (LCL/E6), HPV16-E7 (LCL/E?), EGFP (LCL/EGFP)
were selected in the presence of puromycin (0.7 pg/ml;
Edge Biosystems, Gaithersburg, MD, USA). Transduction
efficiency were assessed as previously described.®

Generation of antigen-specific CTL lines using
retrovirally transduced CD40-B cells

Thawed CD8-positive cells (1 x10%) were cocultured
with y-irradiated (33 Gy) autologous retrovirus-trans-
duced CD40-B (CD40-B/pp65) cells (1x10° in 2ml
RPMI 1640 supplemented with 10% pooled human
serum, recombinant human IL-7 (50 U/ml; Genzyme,
Cambridge, MA, USA) and IL-12 (5ng/ml; R&D
systems, Minneapolis, MN, USA) at 37°C in 5% CO..
On days 7 and 14, CD8* cells were restimulated, and 1
day after each stimulation, recombinant human IL-2
{Chiron, Emeryville, CA, USA) was added to the cultures
at the final concentration of 20U/ml If necessary,
rapidly growing cells were split into 2-3 wells and fed
with fresh media containing 20 U/ml IL-2.

Epitope selection and construction of linear expression

fragments

Linear expression fragments encoding various C-termi-
nus truncated gag-pol gene of LZRSpBMN (Table 1) or
various peptides (Table 2, Figure 2) were generated using
an overlapping PCR method.* Targeted region-specific
5 and 3" primers incorporating additional sequences
{single- and double-underlined, see below) were desig-
ned, for example, 5'primer, TCGGATCCACCATGCTGA
CGAGTTCGGAAC (30 bp) and 3'primer, GACTCGAGC
GCTATAAGATCTCATATGGCC (30 bp) for the fragment
encoding aa 1-248, and used for PCR (KOD Plus;
Toyobo, Osaka, Japan) with a template retroviral vector,
LZRSpBMN. The CMV promoter (Pcwyw) and BGH




polyadenylation signal (pA) were independently ampli-
fied from pcDNA3.1 by PCR using the following
primers: 5 Poyy, CTTAGGGTTAGGCGTTTTGC; 3' Py,
NNCATGGTGGATCCGAGCTCGGTA; 5 'pA, NNTAGC

TAGAGGG; ¥ pA, GGTTCTITCCGCCTC
AGAAG; ‘N’ means a mixture of A/C/T/G). The 3 Pouv
and 5 pA primers contained overlapping sequences
(underlined) with the 5primer and 3'primer, respec-
tively, of the targeted region. The three PCR products,
Peuw the targeted region, and pA, were conjugated
by second PCR using primers, 5 Pauv and 3’ pA.
Each linear expression fragment was termed ‘1-XXX'
(C-terminus truncated gag—pol gene; XXX’ indicates
the amino-acid positions of the C-terminus) or peptide
sequence.

ELISPOT assays

ELISPOT assays were performed as described earlier.?*
In brief, a MultiScreen-HA plate (MAHA 54510, Milli-
pore, Bedford, MA, USA) was coated with anti-human
IFN-y mAb (M700A; Endogen, Woburn, MA, USA) and
used as an ELISPOT plate. 2937 cells were cotransfected
with plasmids encoding each of the individual donor’s
HLA-class I alleles and either antigen encoding plasmids
or PCR products of the linear expression fragment by
TransIT-293 (Mirus, Madison, WI, USA), and used as
stimulator cells after 2 days. The transfected 293T
cells, LCLs or retrovirally transduced LCLs were mixed
with 10° or more effector cells from the CTL lines
or clones generated. After cells had been incubated in
200 p! RPMI-10 in a round-bottom 96-well plate (Costar
Corning, Cambridge, MA, USA) for 4 h, all the aliquots
were transferred into an ELISPOT plate and incubated
for an additional 16 h. To visualize spots, a biotin-labeled
anti-human IFN-y antibody (M701B; 1 pg/m], Endogen),
streptavidin-alkatine phosphatase (Biosource Interna-
tional, Camarillo, CA, USA), and substrate were used.
Spots were counted after computerized visualization
using a scanner (Canon, Tekyo, Japan).

Chromium release assays

LCLs or retrovirally transduced LCLs were labeled in
100 pl RPMI-10 with 3.7 MBq *'Cr for 1 h at 37°C. After
4h incobation with effector cells, supernatants were
counted in a gamma counter. The percentage of specific
lysis was calculated as follows: [{experimental relea-
se — spontaneous release)/(maximum release - sponta-
neous release)] x 100.
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