Supplemental ipformation
Table_S1. Characterization of ESCC patients and tissues. Tumors from surgical ESCC
specimens were immunohistochemically analyzed for Mimitin, Ki-67, and ¢-Myc. G1, well
differentiated; G2, moderately differentiated; G3, poorly differentiated.

Patient Stage Pathological _Mimitin staining Ki-67 staining c-Myc staining
No. (Sex, Age) Grade Intensity_ % Index Intensity % Index Intensity %  Index
1 (M, 62) 1 G2 2 86 1.72 3 89 267 1 58 0.58
2(M,72) I Gl I 56 0.56 3 83 249 2 82 164
3TN I G3 2 71 1.42 1 12 012 2 7% 158
4 (M, 56) III Gl 3 93 2.79 3 84 252 2 90 1.8
5, 59) III Gl 2 82 1.64 3 64 192 2 85 1.7
6 (M, 60) Ia Gl 2 91 182 3 63 189 2 87 174
7 (M, 67) v G2 2 91 1.82 3 49 147 05 19 0.1
8 (M, 67) I G2 2 85 17 3 39 117 0 0 0
9 (M, 69) 111 G2 3 85 2.55 4 71 284 3 81 243
10 (M, 51) I G2 3 34 1.02 0 0 0 05 56 0.28
11 (M, 49) I G2 3 67 2.01 3 84 252 3 94 282
12 (M, 47) I G3 3 95 2.85 3 65 195 3 92 276
13 (M, 57) v Gl 3 92 2.76 4 60 24 05 55 028
14 (M, 69) 1 G2 3 95 2.85 3 7 213 3 %0 27
15(F, 1) Ila G2 2 95 1.9 1 26 0.26 3 90 27
16 (M, 64) HI Gl 2 63 1.26 3 42 126 2 97 194
17 (M, 59) III G2 i 30 03 0 0 o0 3 98 294
18 (M, 46) I G2 2 60 1.2 3 51 153 3 75 225
19 (M, 70} I G2 2 82 1.64 4 40 16 3 9 294
20 (M, 68) v G2 2 44 0.88 0o 0 o0 2 64 128
21 (F,76) I G2 2 95 1.9 4 55 22 3 %0 27
22 (M, 68) Ila Gl 1 43 043 05 6 0.03 2 47 094
23 (M, 41) Ila G3 2 43 086 330 09 1 46 046
24 (M, 66) I G2 2 32 0.64 2 18 036 1 53 053
25 (M, 65) 101 G2 3 92 2.76 2 18 036 3 57 171
26 (M, 66) Ila Gl 3 88 2.64 4 72 288 3 920 27
27(F,71) III G3 3 94 282 4 95 38 2 79 1.58
28 (M, 50) v Gl 2 63 1.26 2 49 098 2 91 182
29 (M, 61) v Gl 4 98 3.92 4 93 372 3 93 279
oM, 67) v G3 2 98 196 2 48 096 0 0 0
31 (M, 66) IIh G3 1 72 0.72 o o o0 0 0 0
32(M,57) v Gl 2 78 1.56 4 47 1.88 3 Bl 243
33 (M, 61) IIT Gl 0 o0 0 05 6 0.03 0 0 0
34 (M, 80) Ila Gl 0 ¢ 0 0 0 0 0 0 0
35 (M, 63} 111 G2 2 95 19 3 47 14] 3 96 2.8%
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AUDIOLOGICAL FEATURES AND MITOCHONDRIAL DNA SEQUENCE
IN A LARGE FAMILY CARRYING MITOCHONDRIAL A1555G
MUTATION WITHOUT USE OF AMINOGLYCOSIDE

TATSUO MATSUNAGA, MD, PHD
TOKYO, JAPAN

HirOsSHI KUMANOMIDO, MD
TocCHIGI, JAPAN
Yu-1cHi GOTO, MD, PHD
ToOKYO, JAPAN

MASAE SHIROMA, PHD
TOCHIGL, JAPAN
SHIN-ICHI UsAaMI, MD, PHD
MATSUMOTO, JAPAN

To elucidate the pathophysiological and genetic mechanisms of hearing loss associated with the homoplasmic mitochondrial
A1555G mutation in the absence of aminoglycoside exposure, we conducted audiological and genetic analyses on 67 maternally
related members of a large Japanese family carrying this mutation. A consistent pattern was evident in the audiograms, with features
of sensory presbycusis, cochlear origin at all levels of hearing loss, and a high degree of vulnerability of outer hair cells. That the
degree of hearing loss was similar in affected subjects within the same sibling group but differed between sibling groups suggests the
invelvement of nuclear medifier genes. Total mitochondrial DNA sequences were completely identical among subjects with various
levels of hearing loss, and lacked additional pathogenic mutations. For the diagnosis of sensorineural hearing loss, the mitochondrial
A1555G mutation should be considered when these features are present even in the absence of aminoglycoside exposure.

KEY WORDS — cochlea, hereditary hearing loss, mitochondria, nonsyndromic hearing loss.

INTRODUCTION

Various mitochondrial DNA mutations have been
reported to cause hearing loss, either on their own or
in association with other clinical symptoms such as
neuromuscular disorders and diabetes.! The homo-
plasmic A1555G mutation in the mitochondrial 128
ribosomal RNA gene has been the first mitochondri-
al DNA mutation to be associated with nonsyndromic
sensorineural hearing loss.2 The A1555G mutation
was initially identified primarily in subjects with hear-
ing loss following aminoglycoside exposure. Indeed,
it has been reported that the increased binding affin-
ity of ribosomal RNA to aminoglycosides as a result
of the mutation constitutes the pathogenetic mecha-
nism underlying ototoxic susceptibility.? Subsequent-
ly, this mutation was also found in subjects who de-
veloped hearing loss in the absence of aminoglyco-
side exposure.4® In these cases, the clinical pheno-
type ranged from profound congenital hearing loss
to moderate progressive hearing loss of later onset
to only slight hearing loss. Although these phenotypic
differences may be the result of additional mutations
in the mitochondrial or nuclear DNA, or of unknown

environmental factors, the exact mechanism has not
been determined. Furthermore, the pathophysiclogi-
cal mechanism of hearing loss due to the A1555G
mutation in the absence of aminoglycoside exposure
has not been defined, because there are no reports
on temporal bone histopathology in patients with this
mutation, and the audiological evaluation of patients
has been limited to pure tone audiometry (PTA) in
most previous studies. Only one study carried out
detailed audiological evaluations, but most subjects
exhibited profound hearing loss.® Thus, such detailed
audiological evaluations of subjects with various lev-
els of hearing loss, especially those with mild or mod-
erate hearing loss, remain to be performed to uncover
the pathophysiological mechanism underlying the de-
velopment of hearing loss.

We previously identified a large Japanese family
in which the A1555G mutation is prevalent. None of
the family members were previously exposed to ami-
noglycosides, and the prevalence of hearing loss in
maternally related members was much higher than
that in the general population.!? To further elucidate
the pathophysiological and genetic mechanisms of
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B the hearing loss due to this mutation, we conducted
- a battery of audiological tests and sequenced the en-
- tire mitochondrial DNA in maternally related mem-
_.aES: bers of this family.
oSy MATERIALS AND METHODS

. o Subjects. The subjects were 67 maternally related
'N"g members (23 male, 44 female) of a large Japanese
o3 family with the homoplasmic mitochondrial A1555G

— i % mutation (Fig 1). During interviews prior to PTA test-

3 ing, 26 of the 67 subjects reported a hearing loss.

) O The original family included 124 matemally related

= =: members in 6 generations. The medical histories,

oY _.—OF< clinical phenotypes, and genetic features of these
N members have been reported previously.!% In 123 ma-

By TN ternally related members whose information about

R hearing was reliably obtained by interviews, 33 mem-
5 " bers (penetrance, 26.8%) were considered to have a

o PN g hearing disability and handicap. The inheritance pat-
L 5—& 2 tern was maternal and not paternal in this family.
L& g Apart from hearing loss, no other significant defects

N ° related to mitochondrial mutations were noted in this

% | [ n family. None of the family members had a history of

PN aminoglycoside exposure. All 41 maternally related
& members who were tested for the A1555G mutation

exhibited the mutation in a homoplasmic form. All
41 of these subjects participated in the present study.

T

Evaluation of Auditory Function. After otoscopic
examination, PTA testing was conducted on all sub-
jects. An AAT5 andiometer (Rion, Tokyo, Japan) was
used in a soundproof room for most subjects. For
some subjects, PTA testing was conducted with an
AA72B audiometer (Rion) and circumaural ear-
phones in quiet rooms in which background noise
was lower than 40 dB sound pressure level (SPL; as
measured with an NA29 sound leve! meter; Rion)
with A-weighting. Both air-conducted and bone-con-
ducted thresholds were measured. Subjects who ex-
hibited a pure tone threshold of 30 dB hearing level
(HL) or worse at any frequency were given further
detailed audiological tests when possible (Table I).
A speech recognition test was conducted with the
67-S monosyllable list (Japan Audiological Society,
Tokyo) in 19 subjects. The performance-intensity
function was made separately for right and left ears
in each subject, and both the maximum speech rec-
ognition score and the rollover index were deter-
mined.!! The short increment sensitivity index (SISI)
test was performed to examine cochlear dysfunction
at 1 or 2 frequencies in 14 subjects. The level of sound
stimulation was set at 20 dB above the level of the
pure tone threshold at the tested frequencies. Transi-
ent evoked otoacoustic emissions (TEOAEs) and dis-
tortion product otoacoustic ernissions (DPOAEs) were
examined to evaluate outer hair cell function with

N

5o g
ﬁllf..

11

i
418 &18_]17

!

v 18 13

7 iy - o[
N
e
Symbol definitions.

!

bl E-]
Ha®y
N

iy

tion numbers. Family members who were not subjects of this study are indicated by “N” to upper right of symbol. Subjects who reported hearing loss by interview are

Fig 1. Part of pedigree shows intrafamilial relationship of subjects. Generations are indicated on left in roman numerals, and numbers under symbols represent identifica-
indicated by solid symbols. Asterisks indicate subjects who were previously tested for A1555G mutation. Arrow indicates proband of family.
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TABLE 1. SUBJECTS OF DETAILED AUDIOLOGICAL TESTS

Test

Subjects

Speech recognition test
Short increment sensitivity index test
Transient evoked otoacoustic emissions and distortion product

otoacoustic emissions
Auditory brain stem response

II-1, II-5, -1, ITI-3, OI1-9, TH-15, -19, IM1-21, IM0-22, TI1-24,
IT0-25, 11-26, IV-1, V-4, IV-5, IV-6, IV-7, IV-8, IV-15

[f-1, -3, -9, II3-15, I-19, 1122, 111-24, I11-25, IT1-26,
IV-2, IV-5,IV-7, IV-8, IV-15
-1, ITf-3, II-9, TI-135, III-19, IMI-25, II-26, IV-15

11-1, IIL-3, I1-9, I-26, IV-4, IV-6, IV-8

the ILO292 Otoacoustic Emission Systems (Otody-
namics, Hatfield, England) in 8 subjects. For TEOAE
analysis, a nonlinear click stimulus train was used at
80 dB SPL, and the number of responses to be aver-
aged was set at 260. The DPOAE measurement was
performed at 3 points per octave across the F2 stimu-
lus frequency range of 1,000 Hz to 6,000 Hz with an
F2-F1 ratio of 1.221 and at F1 and F2 levels of 70
dB SPL. Each DPOAE result was evaluated with a
DP audiogram. The auditory brain stem response
{ABR) was evaluated to locate the site of the lesion
in the auditory pathway with the Neuropack 25504
{Nihon Kohden, Tokyo) in 7 subjects. Alternating
click stimulation was presented monaurally at a rate
of 10/s through an earphone while the contralateral
ear was masked with white noise. The responses were
recorded with vertex-earlobe electrodes. A total of
1,000 sweeps were added for each measurement.
Thresholds of wave I and wave V were determined,
and the latencies of wave I and wave V were mea-
sured with the click stimulation presented at 90 dB
normal hearing level (nHL).

Total Mitochondrial DNA Sequencing. Total mito-
chondrial DNA was sequenced for 8 subjects with
various degrees of hearing loss. The 8 subjects con-
sisted of the proband (IV-6), her daughter (V-7), her
mother (HI-4), her grandmother (II-1}, and 4 siblings
(I11-23, TI1-24, TI-25, I11-26). Genomic DNA was iso-
lated from peripheral leukocytes of the subjects by
conventional methods. As in a previous study,!? to
avoid nuclear pseudogene amplification, we applied
the long polymerase chain reaction-based sequenc-
ing method. With 96 primer sets designed for se-
quencing, we sequenced the polymerase chain reac-
tion products using the BigDye Terminator Cycle Se-
quencing Ready Reaction kit (PE Applied Biosys-
tems, Foster City, California). Each reaction prod-
uct was then analyzed with an ABI 3700 automated
sequencer (PE Applied Biosystems) according to the
manufacturer’s protocol. The sequence data were
compared with those in MITOMAP (http//www.mi-
tomap.org),!? as well as those from 200 unrelated
Japanese without hearing loss.

The study protocol was approved by the Ethics

Committee of the National Tokyo Medical Center,
and the study was conducted according to the prin-
ciples of the Declaration of Helsinki. Informed con-
sent was obtained from all individuals who partici-
pated in the study.

RESULTS

Pure Tone Audiometry. The results of PTA testing
in all of the subjects are summarized in Fig 2. Hear-
ing loss was categorized with respect to the mean
air-conducted pure tone thresholds at 0.5, 1, and 2
kHz (“PTA 0.5-2 kHz"),1! by which 59% of the sub-
jects were classified as having normal hearing (<15
dB HL), 14% had slight hearing loss (16 to 25 dB
HL), 9% had mild hearing loss (26 to 40 dB HL),
4% had moderate hearing loss (41 to 55 dB HL), 5%
had moderately severe hearing loss (56 to 70 dB HL),
3% had severe hearing loss (71 to 90 dB HL), and
5% had profound hearing loss (>90 dB HL)). The PTAs
were symmetric in the right and left ears in the ma-
jority of the subjects, in that 56 subjects exhibited
the same category of hearing loss on both sides. The
remaining 11 subjects showed somewhat asymmet-
ric hearing loss, but the categories differed by only 1
level. All subjects with hearing loss exhibited slop-
ing or sharp sloping audiograms except for 1 subject
(II-1) who had a history of noise exposure. This sub-
ject’s audiogram was typical of noise-induced hear-
ing loss (ie, increased bone-conducted thresholds at
4 kHz). The degree of hearing impairment was simi-
lar in affected subjects within the same sibling group,
but differed between sibling groups.

In 41 subjects who did not report any hearing loss
at the time of interview, normal hearing was detected
in both ears by PTA over 0.5, 1, and 2 kHz in 32
subjects, slight or mild hearing loss in one or both
ears in 8 subjects, and slight hearing loss due to oti-
tis media in 1 subject. The age of the 8 subjects (II-
3, I1-6, 11-7, 111-2, 1I-15, ITI-17, III-20, III-23) with
slight or mild hearing loss ranged from 42 to 80 years.
Considering the ages and the degree of hearing loss
in these 8 subjects, the lack of reported hearing loss
was considered to be reasonable in these subjects. In
these 41 subjects, the resulis of PTA at 8 kHz were
analyzed in order to find out whether any subclini-
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cal changes existed in their hearing, because the pure
tone thresholds at 8 kHz were most prominently af-
fected in the subjects with hearing loss. Thus, sub-
jects whose ages ranged between 18 and 70 years
and whose ears were free of otitis media were eligi-
ble for this analysis. Sixty-three ears of 32 subjects
met this criteria, and 11 of the 63 ears (17.5%) ex-
hibited significantly elevated pure tone thresholds at
8 kHz (>95th percentile) in comparison to the nor-
mal range for their respective ages and sexes.l4 A
statistical analysis performed with the binomial test
on which the threshold probability of the target popu-
lation is .05 revealed the frequency of the elevated
pure tone thresholds at 8 kHz (17.5%) to be signifi-
cantly higher than the frequency expected in the ears
of the otologically normal population {p < .0001).

Speech Recognition Test. The relationship between
the maximum speech recognition score and PTA0.5-
2 kHz is shown for each ear (Fig 3). The score ranged
from 100% in ears with normal hearing to 0% in ears
with profound hearing loss. None of the subjects ex-
hibited a disproportionately poor maximum speech
recognition score in relation to the magnitude of pure
tone thresholds. In 15 of 38 tested ears, the maxi-
mum speech recognition score was >50%, and the
rollover index of the performance-intensity function
could be reliably determined in these 15 ears. Signif-
icant amounts of rollover are pathological and are
associated with retrocochlear hearing loss. That the
rollover index was <40% in all of the 15 ears sug-
gests that retrocochlear dysfunction did not contrib-
ute significantly to hearing loss. o

SISI Test. The SISI score and the pure tone thregh-
old at the respective frequencies in each ear are shown
in Fig 4. We regarded SISI scores of 70% or higher
as positive for cochlear dysfunction, while those be-
tween 30% and 70% were regarded as semipositive,
and those of 30% or lower as negative.l! The SISI
scores were mostly negative at frequencies for which
the pure tone threshold was lower than 30 dB HL. In
contrast, the SISI scores were predominantly posi-
tive at frequencies for which the pure tone threshold
was 30 dB HL or higher. A few subjects exhibited

Fig 2, Pattern of pure tone thresholds for all tested fre-
quencies in each subject. Subjects are listed in order of
generation and identification number (ID) as designated
in Fig 1. Age of each subject is indicated by dot at corre-
sponding division of age scale classified at top. Thin hori-
zontal Lines divide different sibling groups, and thick hori-
zontal lines divide generations. Air conduction pure tone
thresholds of right and left ears are indicated by follow-
ing symbols: white square, <30 dB HL; dot in white
square, 31 to 60 dB HL; gray square, 61 to 90 dB HL;
black square, 291 dB HL: blank, not tested. Bone condue-
tion pure tone threshelds are shown instead of air conduc-
tion thresholds in 2 subjects (IV-18 and V-8) who had
otitis media at time of test.
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Fig 3. Maximum speech recognition score as function of
mean of pure tone thresholds at 0.5, I, and 2 kHz (“PTA
0.5-2 kHz") for each ear. For ease of visualization, over-
lapping symbols were moved from original position (in-
dicated by double dots) to neighboring positions (indi-
cated by dot).

semipositive or negative SISI scores despite elevated
pure tone thresholds (mostly at 1 kHz). Such occur-
rences have been noted in previous studies reporting
that SISI scores are occasionally semipositive or neg-
ative at low frequencies (including 1 kHz) even in
ears with cochlear dysfunction.!3

TEOAE. The TEOAE results were evaluated by
the response of the spectral amplitude against noise
across a broad frequency range (Fig 5A), as well as
by the reproducibility of the time waveform (Fig 5B).
The data were plotted against the PTA 0.5-2 kHz in
each ear, The response and reproducibility were lower
in ears with a PTA 0.5-2 kHz higher than 20 dB HL
than in ears with a PTA 0.5-2 kHz of 20 dB HL or
lower. No TEOAEs were detected in any of the 6
ears with a PTA (.5-2 kHz higher than 40 dB HL.

DPOAE. DPOAE:s with amplitudes higher than 2
standard deviations above the noise level were con-
sidered as positive responses, and DPOAE ampli-
tudes tested at 1, 2, and 4 kHz were compared with
the pure tone thresholds measured at the correspond-
ing frequency in each ear (Fig 6). The DPOAE am-
plitudes were reduced in ears with pure tone thresh-
olds of 20 dB HL or higher at the corresponding
DPOAE-tested frequency, and the DPOAE was most-
ly absent in ears with the pure tone thresholds of 40
dB HL or higher.

ABR. The thresholds of wave I and wave V were
determined with the click stimulation, and the laten-
cies of these two waves at 90 dB nHL were mea-
sured. The thresholds were then compared with the
mean of the air-conducted pure tone thresholds at 2
and 4 kHz (“PTA 2-4 kHz""; Table 2). This frequency
range is known to produce the largest ABR compo-
nents in the cochlea.!é The relationships of wave I
and wave V thresholds and PTA 2-4 kHz were consis-
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Fig 4. Short increment sensitivity index (SISI}) score as
function of pure tone threshold at SISI-tested frequency
for each ear. Tests were conducted at 1, 2, and 4 kHz.
Overlapping symbols were moved as indicated in Fig 3.

tent with cochlear dysfunction; ie, the wave V thresh-
olds were almost equal to the PTA 2-4 kHz, and wave
I thresholds were higher than wave V thresholds.1?
The wave V latency was within the range predicted
by the PTA 2-4 kHz based on the relationship in ears
with the corresponding degree of cochlear hearing
loss!8 in all but 3 ears (left ear of I1I-2 and both ears
of TV-4) that exhibited relatively long wave V laten-
cies, indicating mild retrocochlear involvement. These
2 subjects were 87 and 62 years old, respectively,
and both presented with mild cerebrovascular dis-
ease.

Total Mitochondrial DNA Sequence. The mito-
chondrial DNA sequences were identical in all 8 sub-
jects examined. These subjects exhibited 40 base sub-
stitutions relative to the human mitochondrial DNA
sequence in MITOMAP, including the A1555G mu-
tation {Table 3). The 39 base substitutions excluding
the A1555G mutation were previously reported as
polymorphisms in MITOMAP or found in normal
Japanese controls — a finding indicating that these
substitutions were not related to the observed hear-
ing loss.

DISCUSSION

In our previous study, 10 the proband of the present
family exhibited the mitochondrial A1555G muta-
tion in a homoplasmic pattern; ie, all of the mitochon-
drial genomes in different cells and tissues of the
proband harbor the mutation. Because mitochondrial
DNA exhibits exclusively maternal inheritance, !9 all
of the matemnally related members of this family were
assumed to carry the A1555G mutation in a homo-
plasmic form, and this presumption was substanti-
ated by genetic tests that revealed the mutation in a
homoplasmic patternin all 41 maternally related fam-
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Fig 5. Response (A) and reproducibility (B) of transient
evoked otoacoustic emissions as function of mean of pure
tone thresholds at 0.5, 1, and 2 kHz (“PTA 0.5-2 kHz")
for each ear.

ily members who were tested.10 Thus, all of the pres-
ent subjects who were maternally related members
of this family can be considered to carry the A1555G
mutation, and all of the present audiological find-
ings can be considered to represent the effects of the
A1555G mutation.

A battery of audiological tests conducted in the
present study showed a consistent pattern of audio-
logical characteristics, indicating a common patho-
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tested frequency for each ear. Tests were conducted at I,
2, and 4 kHz. Symbols between horizontal lines in lower
part of Figure (indicated by NR) represent no DPOAE
response. Overlapping symbols were moved as indicated
in Fig 3.

physiological mechanism in the development of hear-
ing loss due to the A1555G mutation. Exclusively
sloping or sharp sloping audiograms were noted in
all subjects with hearing loss except for 1 individual
whose hearing loss resulted from long-term noise ex-
posure. In subjects with slight or mild hearing loss
according to the PTA 0.5-2 kHz, the pure tone thresh-
olds at 8 kHz were always the most elevated. Even
in the subjects who did not report any hearing loss at
the time of interview, 11 of the 63 ears (17.5%) exhib-
ited significantly elevated pure tone thresholds at 8
kHz. This frequency was significantly higher than

. the frequency expected in ears of an otologically nor-

mal population. As a result, the relatively frequent
occurrence of elevated pure tone thresholds at 8 kHz.
was considered to be a subclinical andiological fea-
ture associated with the mitochondrial A1555G mu-
tation.

These audiogram characteristics have been known
in sensory presbycusis, a type of age-related audi-

TABLE 2. CHARACTERISTICS OF AUDITORY BRAIN STEM RESPONSES

Right Ear Left Ear
Threshold* Threshold*

PTA 2-4 kHz (dB nHL) Latencyf (ms) PTA 2-4 kHy (dB nHL} Latencyf (ms)
Subject (dB HL) I Vv 1 v (dB HL) I \4 I \'4
m-2 55 20 70 1.9 59 60 90 7.1
Iv-4 80 70 6.4 87.5 70 6.8
v-11 72.5 80 5.9 67.5 80 70 22 6.0
IV-35 92.5 105 100 115 105
V-7 115 110 105
V-10 115 115
V-12 115 115

PTA 2-4 kHz — average of pure tone thresholds at 2 kHz and 4 kHz.

*Threshold of wave I and wave V.

tLatency of wave I and wave V with click stimulation at 90 dB nHL.
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TABLE 3. MITOCHONDRIAL DNA SEQUENCE

VARIANTS IN SUBJECTS

Gene Product Nucleotide Change

D-loop AT3G, T152C, A263G, 311insC,
T489C

125 rRNA AT50G, Al438G, A1555G

168 IRNA A2706G, A3145G

NADH dehydrogenase 2 A4715G, A4769G

Cytochrome c oxidase 1 ~ T6632C, A6752G, C7028T,
C7196A

Cytochromie ¢ oxidase 2 A8188G

ATP synthase 6 G8584A, AST01G, AB860G,
T9090C

Cytochrome ¢ oxidase 3~ T9540C

NADH dehydrogenase 3~ A10398G, C10400T

NADH dehydrogenase 4  T10873C, G11719A

NADH dehydrogenase 5 C12705T

NADH dehydrogenase 6  CI4668T

Cytochrome b C14766T, T14783C, G15043A,
G15301A, A15326G, A15487T,
T15784C

D-loop C16185T, C16186T, C16223T,

C16260T, T16298C

tory impairment resulting from the degeneration of
sensory hair cells and supporting cells primarily at
the basal turn of the cochlea.2? Several other mito-
chondrial DNA mutations have been proposed to play
roles in age-related dysfunction in organs such as
the central nervous system and muscle,?! and there-
fore, the A1555G mutation may act analogously to
promote auditory dysfunction by a mechanism simi-
lar to that of sensory presbycusis.

The speech andiometry results in the present sub-
jects indicated cochlear dysfunction in subjects with
slight to severe hearing loss, and these subjects did
not exhibit features of retrocochlear dysfunction. The
SISI and QAE tests also detected cochlear dysfunc-
tion almost simultaneously with or even earlier than
the deterioration of pure tone thresholds, indicating
that cochlear dysfunction, especially outer hair cell
dysfunction, occurred at quite an early stage of hear-
ing loss in the affected subjects. The observed ABR
thresholds and latencies also indicated cochlear dam-
age. In agreement with these results, excellent audi-
tory performance with a cochlear implant has been
reported in a patient with profound hearing loss due
to the A1555G mutation.?2 Given that selective dam-
age to the outer hair cells induces only mild to mod-
erate hearing loss,23 it would be expected that other

cochlear components would thus be damaged in cases
of more advanced hearing loss.

The PTA testing confirmed various levels of hear-
ing loss in the present subjects, none of whom had a
history of aminoglycoside exposure. To explore pos-
sible genetic factors that may have contributed to
such phenotypic differences, we sequenced the en-
tire mitochondrial DNA, for 8 subjects who presented
with various levels of hearing loss. Previously, the
coexistence of two mitochondrial mutations, A1555G
and G7444A, was identified in Mongolian subjects
with hearing loss, and these subjects appeared to pres-
ent earlier onset and increased severity of hearing
loss as compared to patients with the A1555G muta-
tion alone.24 This finding suggests that an additional
new mitochondrial DNA mutation may be responsi-
ble for the intrafamilial phenotypic differences in this
family. However, our analysis revealed that all 8 sub-
jects had identical mitochondrial DNA sequences,
thus indicating that the observed phenotypic differ-
ences were not related to any variations in the mito-
chondrial DNA. In addition, except for the A1555G
mutation, no known pathogenic mutations were found
in the total mitochondrial DNA sequences; thus, the
A1555G mutation is probably the only mitochondrial
mutation involved in hearing loss in this family. The
degree of hearing loss was similar in the affected
subjects within the same sibling group, but varied
between the sibling groups. These results suggest that
nuclear modifier genes may also be involved in phe-
notypic differences in the present family, as previ-
ously reported in an Arab-Israeli family.25.26

In conclusion, our study revealed that various de-
grees of hearing loss could be caused by an A1555G
mutation in the mitochondrial DNA with identical
sequences, without any additional pathogenic muta-
tions, even in the absence of aminoglycoside expo-
sure. The affected subjects exhibited audiograms that
are characteristic of sensory presbycusis, and also
shared cornmon audiological features such as a co-
chlear origin for all levels of hearing loss and a high
degree of vulnerability of outer hair cells. These re-
sults further our understanding of the genetic and
pathophysiological mechanisms of hearing loss as-
sociated with the A1555G mutation, and may aid in
the diagnosis and development of new therapies for
the treatment of this genetic hearing loss.
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7 (B X U'mtDNA) @ & o3 B O HIRE4 M 21
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FRTHE, P2V FYTEBERTLERE
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I Pav P TROBRERIZETHA.
ZFhit, 3 bav P T7THEED (—LoFIN

rRE)DLOIMBIIFEL TV EDIT,
ZOIPaAavFITOEERIELORFETZEE
BITHLTHE 0L REBEEROSHK
HREFTEOEVEWI IS LB T, I
P FY7HRTIREBEE ANV —KEED
BULHECHEFEE S hLTnI ERFERIC
BmTks £E IAVYFRKEEOEWVE
EZz b HPiEEE, g8, OFRERI b
YR TROELRBERSETHS.

IPaAVFYTHORENREEELT, B
P 3 47 41 BR 5 BR B E 4E BE (chronic progres-
sive external ophthalmoplegia: CPEO), #HRfalT
AREHE - 34 70— XA TADAEEE (myo-
clonus epilepsy associated with ragged-red fi-
bers: MERRF), 3 b FV FHSFIE - FLEE
7 ¥—T R - BREFRERVEE R (mitochon-
drial myopathy, encephalopathy, lactic acido-
sis and stroke-like episodes: MELAS) %53 5.
Zhe 3HMBIXEERTS 2 PRAEERICE
S>THFHENTWBE LOD, EEIIIERKRIER
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3. ERRSEREZR LSS E S NI

Yu-ichi Goto: National Institute of Neuroscience, NCNP HEIZ i - {8t 7 — W0 %eT

0047-1852/04/%¥50/H/JCLS

— 549 —



Nippon Rinsho Vol 62, Suppl 4, 2004 221

CT® MRI 479 LWELERD, FlERom
B BCEEHALER LT 0P EETH

5., LALATEROEMEZEETHELH 5.

B THETZ 2 MEBLITMEOXRFR L
E92 5T LI -EEY, SEERTICEER
BEALLY, BAMCRE LAY, By

BREBZTERLLEYTAILWREN TS

D L) RIREOWKRBE), THB LY
ATHEEECOREREE LT, RO MmE
DEENEED, AR EAORBEOZL
BERTHLrOHEMIDH B, KiEDHIIZ, ME
LAS BEOBO/DER, $FICIREBOIME TG
O3 Fa Y FYTICEHRE DDA L%
WEL, IbIYFYT7rEFNF—LENS
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RS ERG O a7 BRBAKEESE (succinate
dehydrogenase: SDH) & THES TR TE 5
Z &H 5, SSV(strongly SDH-reactive blood
vessel) LN, I Fa v FY TREBEEOR
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LHEETH 5.
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e &L IR AR OEEIETT DERS
MEHEEINTVS, ERE, Coriik
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KU 7REQE T rdbb I mEdbdH s,
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X LMRMEZERS.
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Bk, TRUBRAHERLLEOREIZL Y ATP
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TOPCTEFEEREZRTEIRELUE
PHOTVWS, FOEMIE, BRTIBERYS
2=y PO—EBAFmDNAICI—-F3IhTHBY,
mtDNADKRBEEPBBL{EKBRLTWE P LT
5. mtDNAI, #16kb DEHR 2448 DNA
ThHh, I FITHTCRBEZEAE TS
HO MDY KV — A RNA, 22D RNA
¢, BEFEERBEREREOY T2y bO—%
HBET2EAZBE2-FLTwE, EE
bR, 12o0MERCET-BEREET
BE4ADI Fay FY7RHIC, mtDNAK5-10
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FREHEETH LIRS (e Fa—H), %
7z, DNAICHSR, ZROEI ) RT 45—
10ERELERTWE (BERE). £LT, £
BOBIZE bay FUTZRTTMICHEET S
ZERS, mDNALBEIL LAFiIZEbLR
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WA Py FUTHBCLL»THEEL
BEZAWEENRILTWS, B9 &hid,
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