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FIG. 4. The summarized 'H-
magnetic resonance spectroscopy
{MRS) results for the band hetero-
icpia patients. A: N-acetyl aspar-
tate {NAA)/creatinina (Cr) rafio in
the cortex of a normal voluntesr
{Con.), In the extemal! normal cor-
tex of the patients (CTX), and in
the laminar heterotopla (H). There
were no significant differences in
the NAA/Cr among Con., CTX,
and H. B: Tha choline (Cho)/Cr ra-
tio in CD and Con. The Cho/Cr ra-
tio was significantly higher in H {p
< 0.05), whereas no significant dif-
ference was seen between Con.
N.S. and CTX. Lines connect the data
from the same patient. N.S., no
significant ditfarance,
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tends to be highest in very young infants (15); therefore
the increased Cho/Cr ratio in the CD lesions suggests
that there is increased membrane turnover and tissue im-
maturity. A previous article reported that the Cho signal
is decreased in the CD area (18), Although the reason for
this discrepancy remains unknown, a possible explana-
tion may lie in the difference in the age of the patients. In
our study, the patients with CD were younger than those
in the previous report (18). The Cho level in CD might
change with age, presumably in a manner different from
that of the normal brain. Further study is required to
clarify the metabolic differences between other CDMs
and to assess age-dependent changes in the MRS signal
of CD lesions.

BH is characterized by a laminar heterotopia that is
mainly caused by mutations in the doublecortin gene in
Xq22.3 (21). Histologically, the external cortex appears
nearly normal, with the usual six layers (5). The heterotopic
band consists of morphologically differentiated pyramidal
cells that are randomly arranged (5). Fluorodeoxyglucose
positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) findings showed
similar glucose metabolism and blood flow in the het-
erotopic band and normal external cortex (22), whereas
these studies showed variably abnormal patterns in other
CDMs (22,23). These histologic and functional findings
imply fewer metabolic abnormalities in BH than in other
CDMs. Qur study revealed that the NAA/Cr ratio of the
laminar heterotopia did not significantly differ from that
of the external cortex in BH or of the normal cortex of
volunteers. Previous studies have shown that the NAA
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Con,
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signal from subcortical heterotopia ranges from normal
to below normal, suggesting that the maturity differs
from case to case (17). A few cases of BH have had a
normal or slightly decreased NAA signal (6,17). A recent
functional MRI study reported that finger tapping acti-
vated both the normal sensorimotor cortex and the lami-
nar heterotopia facing it, suggesting that the laminar
heterotopia of BH has specific synaptic connections with
the external cortex (6,7). Synaptic stimulation may fa-
cilitate neuronat differentiation in BH (24), By contrast,
the Cho/Cr signal was significantly higher in the hetero-
topic area than in the cortex. The intense Cho signal may
result from unusual Cho turnover, Another possible ex-
planation is the presence of bundles of myelinated fibers
projecting from the neocortex to remote brain areas,
which pass through the laminar heterotopia (5). As
shown in MRS specira of the white matter, myelinated
fibers have a relatively intense Cho signal (15); therefore
these fibers may enhance the Cho signal from the lami-
nar heterotopia.

This study revealed that the 'H-MRS signals of BH
were relatively normal, suggesting that neurons in the
heterotopic tissue of BH are relatively well differenti-
ated. However, BH is often associated with intractable
epilepsy, although the motor and mental impairment in
BH is less severe than in other diffuse CDMs. Therefore
the results of MRS do not predict the severity of the
epilepsy in BH. In CD patients, there alsc was no obvi-
ous correlation between the metabolite ratios and the
severity of the neurologic symptoms, as in previous re-
ports (16-18); therefore the MRS data are thought to
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comrelate more with developmental abnormalities or tis-
sue disorganization than with the clinical severity of the
disease in the patients.

The tissue of CD consists of abnormally developed
cells and is highly epileptogenic (19,25). By contrast, the
heterotopic neurons in BH are relatively differentiated;
consequently, the mechanism for the epileptogenicity of
BH might be distinct from that of CD. Interestingly, in
the #ish rat, an epileptic model rat for band heterotopia,
the heterotopic neurons have aberrant connections with
peurons in the external cortex (26), and the external cor-
tex is responsible for initiating the sefzure discharges in
heterotopic tissue (27). In BH patients, intraoperative
electrocorticography with a deep electrode showed that
clinical seizures arise in the external cortex, whereas
electrical activity in heterotopia does not produce clinical
seizures directly (28). Focal surgical removal of the pu-
tative epileptogenic tissue in BH patients produces inad-
equate results, even in the presence of a localized
epileptogenic area (28). These experimental and clinical
reports suggest that epileptic activity is not simply gen-
erated within the heterotopic tissue. The abnormal neu-
ronal network formed by the heterotopic neurons might
be responsible for the epileptogenicity in BH. Further
investigation is required to clant'y the mechanism of epi-
lcptogemc:lty in BH.
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Abstract

We isolated stable cell lines, designated as mitochondrial cells, from cybrids obtained by fusing mitochondria-less Hela cells
with platelets from patients with Leigh syndrome, a subtype of mitochondrial encephalomyopathy. The cells contain a
pathogenic point mutation, T9176C, in the mitochondrial DNA. Hematoxylin—eosin staining, confocal fluorescent microscopy
and flow cytometry in fixed or living cells showed that the majority of these mitochondrial cells lack nuclear DNA and nuclei,
but contain active mitochondria. Despite the absence of nuclear DNA, these cells can be continuously generated in culture.
Therefore, it is likely that they arise from the minority of cells which possess a nucleus.
© 2003 Elsevier Science B.V. and Mitochondria Research Society. All rights reserved.

Keywords: Mitochondria; Cybrids; Mitochondria-less cells; Leigh syndrome; Nuclei

1. Introduction

Mitochondria have a genome and an expression
system separate from those of nuclear DNA. How-
ever, only 13 polypeptides are encoded by human
mitochondrial DNA (mtDNA). All other mitochon-
drial proteins are encoded by nuclear genes. There-
fore, human mitochondria require nuclear DNA to be
maintained. Unlike most other cells, platelets have
mitochondria but no nucleus. They are formed by
fragmentation of megakaryocytes and they have

* Corresponding author. Tel: +81-3-3353-8111; fax: +81-3-
5269-7338.
E-mail address: knakano@ped.twmu.ac.jp (K. Nakano).

activity in blood for several days, but have no ability
to proliferate.

Human cell lines without mtDNA, designated as
Rho® cells, were previously isclated (King and
Attardi, 1989). These Rho® cell lines are useful for
investigating the role of mutant mtDNA, as this DNA
can be introduced by cytoplasmic transfer. The resul-
tant ‘cybrids’ have individual mtDNA but a common
nucleus, ruling out nuclear background effects. Cell
lines obtained by fusing Rho® cells with enucleated
cells from patients with a variety of mitochondrial
diseases have contributed to the understanding of
mitochondrial disorders (Chomyn et al., 1992, 1994,
Dunbar et al., 1996). This cybrid technique has been
widely accepted for analysis of mutant mtDNA.
Recently, Schapira and colleagues (Gu et al., 1998)

1567-7249/03/$20.00 © 2003 Elsevier Science B.V. and Mitochondria Research Society. All rights reserved.
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developed a method of constructing cybrids by fusing
platelets with Rho® cells for the analysis of Parkinson
disease, instead of using enucleated cells as mito-
chondrial donors.

2. Materials and methods
2.1. Rho® cell culture

Human HeLa cell lines depleted of mtDNA
{mtDNA-less Rho cells) were cultured in Dulbecco’s
modified Eagle medium (DMEM; Gibco BRL, USA)
supplemented with 10% fetal calf serum, 50 U/ml
penicillin, 50 pg/ml streptomycin, 0.2 mM uridine,
2 mM glutamine and 1 mM sodium pyruvate at 37 °C
in a humidified gas mixture containing 8% CO..

2.2. Platelet preparation

Blood samples were obtained from two siblings
with Leigh syndrome, both of whom had a T9176C
mutation in the mitochondrial ATPase 6 gene, and
two healthy volunteers, a 45-year-old man and a
30-year-old woman. Both volunteers provided
informed consent to participate in the study. The
siblings were an 18-year-old female and a 13-year-old
male whose guardian had agreed to the use of their
cells for this research. The clinical details of these
cases were reported previously (Makino et al., 1998;
Nakano et al., 1999). Platelet isolation was performed
within 2h of obtaining the blood samples, as
previously described (Shults et al., 1998).

2.3. Platelet-fused cybrids

Platelet-fused cybrids were obtained by a pre-
viously described method (Ohta, 1986). A total of
5% 107 Rho® cells were collected after the addition
of 0.05% trypsin—ethylenediaminetetraacetic acid
(EDTA), and resuspended in Hank’s buffer. The
suspension was gently added to the platelet pellet
followed by centrifugation at 200 X g for 10 min. The
pellet consisted of a mixture of platelets and Rho?
cells. Two hundred microliters of 0.1% ethylene-
glycol in dimethyl sulfoxide (DMSO) were added
twice, each time followed by 30s rest at room
temperature. Four milliliters of DMEM without fetal

bovine serum (FBS) were then added and gently
mixed with the pellet and allowed to stand for 10 min
at room temperature. The mixed buffer was added to
40ml of DMEM with 10% FBS. The cells were
cultured in a 96-well plate. Colonies of monoclonal
platelet-fused cybrids grew in each well with buffer
exchange every 3 days. Monoclonal platelet-fused
cybrid cell lines were then established.

2.4. DNA analyses

Genomic DNA was extracted from the cybrids and
their derivatives, and from mitochondrial cells
derived from the platelets of controls and patients
with the T9176C mutation as described by Sambrook
et al. (1989). Detection of the T9176C mutation was
performed by polymerase chain reaction—restriction
fragment length polymorphism (PCR-RFLP) analy-
sis as previously described (Makino et al,, 1998;
Thyagarajan et al., 1995; Campos et al., 1997). We
amplified a 178-bp fragment of mtDNA encompass-
ing the mutation using oligonucleotide primers
5-GGCCACCTACTCATGCACCTAA-3, - corre-
sponding to mtDNA positions 9025-9046 (forward),
and 5-GTGTTGTCGTGCAGGTAGAGGCTTCCT-
3/, corresponding to nt 9203-9177 (reverse), with a
T-to-C mismatch at nt 9179, 3 bp from the 3’ end of
the primer. The mtDNA nucleotide number was
determined as previously described (Anderson et al.,
1981). The PCR products were digested with 15 U of
ScrflI for 24 h at 37 °C, electrophoresed through a 3%
agarose gel and stained with ethidium bromide. In the
mutant mtDNA, the mismatch-containing primer
introduces a restriction site for Serfl at nt 9176.
Thus, Scrfl cleaves mutant mtDNA into two frag-
ments of 151 and 27 bp, whereas Scrfl does not cut
wild type mtDNA and a 178-bp size fragment
remains.

2.5. MitoTracker red, MitoTracker green, and SYTO
green nucleic acid staining

MitoTracker CMX-Ros probe (hereafter referred
to as MitoTracker red) (Molecular Probes, Inc.,
Oregon) is a lipophilic cationic dye derived from
X-rosamine, which is mitochondrion-selective and
can be used to measure mitochondrial membrane
potential, and is well retained during cell fixation

—438—



K. Nakano et al. / Mitochondrion 3 (2003) 21-27 23

(Ligon and Steward, 2000). MitoTracker green
{Molecular Probes, Inc., Oregon) is aiso a mitochon-
drion-selective but membrane potential independent
dye (Hollinshead et al., 1997). SYTO green (Syto 16)
(Molecular Probes, Inc., Oregon) is a flucrescent dye
that stains nucleic acid even in live cells (Frey, 1995).
After adding 20 nM MitoTracker red and 100 nM
MitoTracker green or 1 pM SYTO green, the samples
were left standing for 15 min. The sectional scans
with MitoTracker red dye, those with MitoTracker red
plus MitoTracker green dyes and those with Mito-
Tracker red plus SYTO green dyes were obtained
using computer-assisted confocal fluorescent micro-
scopy (Fluoview FV300, Olympus, Tokyo) for
analysis of the internal cellular structure.

2.6. Two color flow cytometry

After adding 20 nM MitoTracker red and 1 uM
SYTO green, the samples were left standing for
15 min. The samples were examined with a flow
cytometer (Epics Elite ESP, Beckman Coulter Inc.,
USA). The MitoTracker red dying was performed
under non-saturating condition. False positives
induced by the other spectrum band in two colors
were detected using a negative control, and single
labeling with MitoTracker red and SYTO green. Total
cell counts of the mitochondrial cells or the cybrids
were around 4000-8000.

3. Results
3.1. Generation of floating cells

To investigate the role of a pathogenic point
mutation at nt 9176 (T9176C) of the mitochondrial
genome, we constructed cybrid cell lines by fusing
HeLa cells containing no mtDNA with platelets from
healthy controls and patients with Leigh syndrome.

The resultant cybrid cell lines were cloned (five

control and 41 T9176C mutation cell lines). Cell line
#1 was obtained from an older sister of a patient with
Leigh syndrome who had the T9176C mutation. Cell
line #2 was from the younger brother of a Leigh
syndrome patient with the T9176 C mutation. Cell
line #3 was from the controls. The cybrids initially
showed an adherent form, but with continuing

proliferation, new overlying cells began to grow
over the adherent cells. As overgrowth proceeded, the
overlying cells separated from the adherent cells and
floated in the medium. The floating cells derived from
the cybrid cell lines were collected and cultured in
fresh DMEM medium supplemented with 10% FBS at
37 °C in 2 humidified gas mixture containing 8% CO».
These floating cells have continuously increased
under the same conditions for 1.5 years, with a
doubling time of approximately 1 month.

3.2. Analysis of mtDNA of floating cells

To examine whether the floating cells did indeed
originate from the cybrid cells that had been obtained
by fusing platelets and Rho? HeLa cells, we used
PCR—-RFLP analysis to detect the T9176C mutation.
The floating cells originating from the cybrids with
the T9176C mutation have the mutation as shown in
Fig. 1. However, the other floating cells originating
from the control platelet-fused cybrids have the wild
type mtDNA atnt 9176 (Fig. 1). The floating cells and
their original cybrid cells were confirmed to have
mtDNA derived from the platelets of the patient and
control.

3.3. Characteristics of floating cells

The floating cells were not adherent, but rather

153 B
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Fig. 1. Restriction fragment length analysis of the T9176C mutation
in mitochondrial celis. In the presence of this mutation, the 178-bp
amplified fragment was cut by Scrfl into fragments sized 151 and
27 bp (27 bp fragment not shown here), whereas wild type mtDNA
remained uncut. Lanes 1—10 show the 151-bp fragment harboring
the T9176C mutation, while lane 11 shows the wild type 178 bp
fragment. Lanes 1-5 represent cell line #1 derived from the
platelets of the older sister of a Leigh syndrome patient with the
T9176C mutation. Lanes =10 represent cell line #2 derived from
the platelets of the younger brother of a Leigh syndrome patient
with the T9176C mutation. Lane 11 represents cell line #3 (control).
Lane M is a size marker of {174/Hind II.
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Fig. 2. The microscopic features of the floating cells derived from cell line #2 are shown. (a,b} The mitochondrial cells lack nuclei as shown by
hematoxylin-eosin staining ({(a) 50 X magnification, (b) 100 X magnification). The hematoxylin—eosin stained cytosol had a homogeneous
eosin color, with no hematoxylin staining. (c) The positive control shows nuclei of the original cybrid cells stained with hematoxylin—eosin
(100 X magnification).

Fig. 3. Confocal fluorescence microscopic analysis of the floating cells and the original cybrids. (3-1) The wild type floating cells contained
mitochondrial membrane activity as shown by MitoTracker red fluerescent dye. (60 X magnification). (a) The red granular particles are
distributed throughout the cells, The shape and size are identical to mitochondria of the ¢ybrids. {b) Light microscopy revealed the floating cells
to be with rough membranous surface. Scale bar = 5 pm. (3-2) Mitochondria of wild type floating cells showed similar membrane specificity
with dyes selective to the mitochondria of wild type cybrids (100 X magnification). (a} The wild type floating cells showed red granular
particles when labeled with MitoTracker red, which is specific to mitochondrial membrane potential. (b) The wild type floating cells showed
granular green staining when labeled with MitoTracker green, which is alsd mitochondrion-selective but membrane potential independent dye.
(c.d) The mitochondria of the wild type cybrids showed granular red and green particles surrounding the nucleus, labeled with MitoTracker red
dye (c), and MitoTracker green (d). Scale bar = 10 pum. {3-3) The floating cells Tack nuclear structure and nuclear DNA, as shown by staining
with MitoTracker red, and SYTO green dyes (100 X magnification) (a) The floating cells labeled with MitoTracker red revealed granular red
particles. (b) The floating cells were negative for SYTC green staining. (¢) Light microscopy revealed a membranous surface on the floating
cells. (d) The mitochondria of the wild type cybrids showed granular red staining surrounding the nucleus, when labeled with MitoTracker red
dye. (e} The nucleus of the wild type cybrids stained green when labeled with SYTO green. Scale bar = 10 pm.
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formed loose aggregates. On microscopic exami-
nation, the cell surface had a rough membranous
structure (Figs. 2b and 3-1c). The hematoxylin—eosin
stained cells had a homogeneous eosin color, but
surprisingly there was no hematoxylin staining
suggesting the absence of a nucleus (Fig. 2a,b). In
contrast, the original cybrid cells were revealed to
have nuclei by hematoxylin staining (Fig. 2¢). These
results suggest that most of the floating cells lack
nuclear structure and nuclear DNA.

3.4. Confocal fluorescence assays

MitoTracker CTX-Ros (hereafter referred to as
MitoTracker red) detects mitochondrion-specific
mitochondrial membrane potential. The floating
cells were labeled with MitoTracker and observed
with confocal fuorescence microscopy. As shown in
Fig. 3-1a, granular particles were distributed in the
cells. The shape and size were identical to those of
the mitochondria of the cybrids (Fig. 3-2¢,d). The
MitoTracker green dye also labels mitochondria
specifically regardless of mitochondrial membrane
potential. Confocal fluorescence microscopy showed
the floating cells to be positively stained with both
MitoTracker red and MitoTracker green (Fig. 3-2a,b).
The mitochondria of the wild type cybrids showed
granular red and green stains surrounding the nucleus,
labeled with MitoTracker red and MitoTracker green
dyes (Fig. 3-2c,d). The positive MitoTracker green
area was wider than that of MitoTracker red in both
the floating cells and the cybrids (Fig. 3-2).

A fluorescent dye, SYTO green, stains nuclear

DNA by penetrating membranes in living cells. We
labeled the floating cells stained with MitoTracker red
and SYTO green dyes. Confocal flucrescence
microscopy showed positive MitoTracker red stain-
ing, while that of SYTO green was negative (Fig. 3-3a,
b), and the original cybrids were stained with both
MitoTracker red and SYTO green (Fig. 3-3d,e). These
observations strongly suggested that most of the float-
ing cells possessed mitochondrial membrane poten-
tial, but lacked nuclear structure and nuclear DNA.
Thus, we designated these floating cells as mitochon-
ddal cells. MitoTracker red and MitoTracker green
strongly stained the surrounding area, but only
weakly stained the central area, where nucleic acid
staining was negative, in mitochondrial cells
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(Fig. 3-2¢,d,3-3a,b). These findings suggest that
mitechondria are not evenly distributed in the
mitochondrial cells and that a non-staining substance
is present in the central area; this may be an organelle
other than mitochondria or nuclei, or some liquid as
matrix in mitochondria or the cellular cytosol.

3.5. Flow cytometry of mitochondrial cells with SYTO
green and MitoTracker

The MitoTracker red and SYTO green staining is
shown in Fig. 4-1. The areas were divided into four
parts depending on positive or negative SYTO green
and MitoTracker red staining. We found 97.6% of
T9176C mutation type mitochondrial cells and 99.6%
of wild type mitochondrial cells to be in the SYTO
green negative area. However, 92.4% of T9176C
mutant type cybrids and 97.3% of wild type cybrids
were in both SYTO green and MitoTracker red
positive areas. These results indicate that the majority
of mitochondrial cells lack a nucleus, while no more
than a few percent of these cells contain a nucleus or
nuclear DNA.

Using MitoTracker red, mitochondrial membrane
potential was compared between mtDNA with the
T9176C mutation and wild type mtDNA in the mito-
chendrial cells and cybrids (Fig. 4-2). The mitochon-
drial cells with the T9176C mutation had less
active mitochondrial membranes than those with
wild type mtDNA. The intensity of MitoTracker was
17.4 £ 20.4 (mean * standard deviation) in the
T9176C mutant type mitochondrial cells, and
37.8 + 30.9 in the wild type cells. The result was
comparable to the difference in staining between
the cybrids with the T9176C mtDNA mutation and
those with wild type mtDNA. The intensity was
43.5 = 79.9 in the mutation cybrids and 101.6 = 71.7
in the wild type cells. The cybrids with the T9176C
mutation also had less active mitochondria than those
with wild type mtDNA. The intensity of the
mitochondrial cells was lower than that of the cybrid
cells, because the mitochondrial cells were smaller
than the cybrids. This observation indicated that the
T9176C mtDNA mutation decreases in mitochondrial
membrane potential regardless of the existence of a
nucleus.
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Fig. 4. Flow cytometry in mitochondrial cells and original cybrids with SYTO green and MitoTracker red dyes. (a) Mitochondrial mutation
T9176C type cells. (b} Mitochondrial wild type cells. (¢) Mitochondrial mutation T9176C type cybrids. (d) Wild type cybrids. (4-1) The
mitochondrial cells lack a nucleus or most nuclear DNA, but still have mitochondrial membrane potential as shown by staining with both
MitoTracker red and $YTO green, The areas were divided into four groups based on positive or negative SYTO green and MitoTracker red
staining, The standard for positive vs, negative was defined by comparison with a negative control and single 1abel staining of the cybrids. (a)
TG176C mutation type mitochondrial cells (97.6%) and (b) wild type mitochondrial cells (99.6%) were in the SYTO green negative area,
consisting of areas 1 and 3 in each figure. (¢) T9176C mutant type cybrids (92.4%) and (d) wild type cybrids (57.3%) were in both SYTO green
and MitoTracker red positive areas, represented in area 2. (4-2) The mitochondrial cells with T9176C mutation mtDNA, had less active
mitochondrial membranes than those with wild type mtDNA as evaluated by MitoTracker red staining. The cybrids showed similar results. (a)
The left open curve represents the intensity of the mitochondrial cells with the mutation. The right closed black curve represents that of the wild
type mitochondrial cells. (b) The left open curve shows the injensity of cybrids with the mutation. The right closed black curve shows that of the

wild type cybrids.

4., Discussion unusual event. Since only a small percentage of cells
in the population contains a nucleus, it is likely that

Our results are surprising as this type of cell, «the mitochondrial cells were generated from progeni-
with active mitochondria but without a nucleus, has tor cells with nuclear DNA and maintained for a
not previously been reported. We would like to considerable time. However, the nuclear DNA of the
emphasize that these mitochondrial cells have been parental progenitor cells must have been derived from
obtained repeatedly from cybrids, with and without Hela cells. An unknown signal may stimulate the
the pathogenic mutation. It was not an isolated or HeLa nucleus from the cytosol or mitochondria.
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These mitochondrial cells are anticipated to be
useful for investigating how the nucleus is lost, the
signaling pathways involved and how mitochondnia
are maintained. In addition, they may be used for
investigating the role of mutant mitochondria as the
effect of nuclear background can be excluded in these
cybrids.
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E~HEECHRBRES, 5 KRERHARL
SEENEIL Tz (E3). 504 ARK
R, EmEmA Y, g AR, 514 HRE
T+ 2EE, EERE-BRETuhA, 5R6AA
HSIELES I 3ELSRBEL 2 SRR
T2 EPC %232 k5 ko, HERE, /N
REER, ZEE OBEEEE RV T HICHIEL,
e FouhAEiEg g 3 EPCHE,
H K BEEHEERAE 611 A A, IR
BLLAER & B LA TIC,
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P4‘02%Wf
1100uv_

ECG MMM
3 G2 B
Az 8 A A, BURFIFOTE DRIOEREE
~RFESEIC 1.5~2 Hz OFFABERBIRED, &
SITEEEZEICSHRENEEL TWS,

(fE@ 3] R

AR, 35 mRFEeiRst, (LR ELRD
N7 PR v, EREHR 4RO A»S
FEAPT L ko7, 42 2 A»5EEZHE
w5, 1486 A H, ERcestRER
B wh A, BEECT EMETREERRD
T, U4ERT A BBy, EFANETLL,
14310 7 B, 5 HMORE, ¥R 145
DeEEEEEAE T VWA, BEECT T
EEFR. 152428, HEEYBOEBF
FHTLEDY. BR»SEME I~4HBKEH,
i CIEH, SIS DOERIE. 4RI
REHMEREES S - BEAEE 2RO, JE
T3, EREECEREGEICSHENERL
7o (M4). 23mE RS TRBOERCT
TEBEREECBWUERIUSE 20T, SR
MifE, K54 T RRF #3® MELAS L2
BBk, B

EM 4] #R©

REFCBETREZ LR, 6BEETER
FOE ERLIDEEVEHBEEHRAERLDT
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Fpi —A1 WMMMWMWWMW
F7 —A1l BT T e P e i e el
F8—A2 T e e e e e R e i
T8 A e e e A A T N e
TE = AT e e s S I o A I ¥ andn e et o e et e S
TB — A2 N N AW s A LAt et i essel A B, i esstrirmssttests bt
F3 = AT W U A A A At et e N e o Attt e AN e At S strae s nrsntnc b iernd

F4 —A2 WwwmmMMWWTWWW
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02—A2 MiNSwra N MMHMWMWMWW

R4 EG 3 DK
1552 HA, B - BUEFCLZEOROFHTN, BWEKICE AEFEEEL
fox OIS, ERERINC, —RT5 L TRAUSMEEESRTIIH H4Y —HF 1.5Hz

DERIBHREICERBIEEL TS,

iz 9894 A, 2 AMOERE, BH:, ¥H
Bk, BB IVEWIHAOEENLIH
vz, 911 4 B, Sk X 0 EEL:, 5
&, TE»SERER, R EEEEC—
LT, B TERHEESERICATTLT
W/ — R B & USIREBRRCSHREVSER
L7z (K 5). 7 ¥/ aipECRIERIE—AE
Wik, 7x=bA EE 18 mg/kg TR
B EEHmHAREL, BNRARVWERIL. ]
HEREMCEIYEER LR HBMRIT
RERHHT. IR CER, FREMRREK
7. BETOLR, EACVEBELR, &
447 RRF %, mtDNABRE T A3243G HE
258, MELAS 2Lz,

10 % 0 # BEUE-TBHF64E, 105K 2 A AR
HWIEEE, BlEE BREI4A7o0-XAMBK
BB 7, RUERRE I, EHREE g/ —
A b, EREECHKE R MHSHE LR,
TR « A REERREREIC SR

BEL, EBFEHIZERETLL (H6),
# 4 > 2mg/kg/hr, 7 ==+ 4 ¥ 20mg/kg
HIESER). 4V T 4 0.3mg/kg FrER, 0.2
mg/kg/hr FegiEsE 8%, BEERE, MEEE
PEFRII P44 U 7>, EHZE MRI-FLAIR &R CEHRH
£, MEICH-> CTRESEE2R D,

1055 4 4 B, B, B, ZBARSHR. &
EI O REMERE - A N EED ISV I A
0.3 mg/kg B TRIB XS E, 0.3 mg/kg/
hr FrstE ClEIZIEE. 10R 9 A H, R,
UEE, EHESEIEHIER. 2/ E W MRI-T 2 BB
X U FLAIR TEHZHREREFESE,. 10510
2 BEEES, 118 10 # A, 4 HERGR T 2508,

- BFHF AT LFHIELHIR, RE MRI-T2

Eif@ 5 L ' FLAIR K Bn CEREECEES
HErTd, 12HBICRKEE.

113511 » AR, B354 55, ERREN
DA 70— ARMLT, 2V 7404
mg/kg/hr BPREHTHo/. I CK
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11ylim (the 2 nd day)

7 fEFI4 11811 HARD MRI
2EmHEICHEWT, MRI-T2E{®, FLAR, DW 1 TEEBEENSEEREICHTTEH LNIERSHY,
12BN E LT,

B 55 mg/kg B4k, L-7 NV F = R 500 mg/
kg HEONEHTH-o7. 2HFEBECMRI-T2
BEif%, FLAIR, DW 1 TEKIELE» & HEESE
NI TEEESERL, 12HHI{T RET
WRERHEELTWA (T, 12 K04 A, B
DFAFH, BXT6E, HEMHR, 34V
5 LABED A TRAE, L-7 ¥ =85k 450
me/kg B, ¥ 7 v o BRER A& MK 50 mg/
kg/H% 3EB L UEETHEIEL, BHIZE
L7z,

[fEM 5] =IR™

SIS BETIE, EEFEE WS VARG
6229 H A CIBEOERN - 2 HEEEE
FohARREIL, 6RIVALS8mM4AA
¥ C—iftE, A8 L UEORRERIRES 4 [H
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(the 12 th day)

EREL, TR 1l 2B XY ALEBOSSFEESE
it EELEE. U A Y VERE, 54k E RRF
28, MELAS L2Hi L7z, mtDNA BRI
KHITTH2. TN AAIZLED, TADA
M FEVED, 84 A AT 2 X VBEETHH
T AP AR EREDHIR, TRELLOH
HHET, EREITHEZ T, 135 4 BR
T, BEOLSHEThABTED SRS,

. BERGUZH T HFEPERREIMEC
B3 %54

HERBITOERERFOEERE, FihA,
B Ert, SAER —ANESRRETH-
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