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- Six- missense -mutations - were-located -in the S5-56
pore regions of domain 2 or 3 in the sodium channel xl-
-subunit: The substitution -of-arginine .with cysteine .at
codon 1638 was located in the S4 segment of domain 4.
These mutations were located on important regions
which play a role to generate action potentials. The part
of extracellular loop which links S5 and S6 segments
dips down into the membrane to form the ion pore.
Some positively charged arginine residues in the $4
segment are known to be essential for the 54 segment to
act as the voltage sensor, and the importance was veri-
fied by the experiment in which each of the arginine
residues in the S4 segment was replaced in turn by a
cysteine [22]. In addition to most missense mutations on
the regions which have an important function in the
electrophysiological properties of the channel [19], we
found 2 missense mutation at codon 1899 of an intra-
cellular C terminal region. The region may also have a
basic role in spite of a distal region on the molecule,
because this amino acid is highly conserved in a-subunit
gene family shown in Fig. 2. In fact, patients 23 and 24
who have the mutation in C terminal region showed
slight mental impairment and absence of ataxia, sug-
gesting that location of the mutation may influence the
phenotype. In the patients 8 and 17 who also showed
slight mental impairment and absence of ataxia, mis-
sense mutations of phenylalanine to cysteine and of
valine to methionine were detected, respectively. Both
phenylalanine and cysteine belong to an uncharged
amino acid group, and both valine and methionine are
also members of a non-polar and hydrophobic amino
acid group. The severity of clinical manifestation might
depend on the amino acid produced by missense muta-
tion in the SCNIA gene. It is very important to inves-
tigate whether the missense mutalions are gain-of-
function mutants, if the truncated protein functions asa
dominant negative mutant, if the remaining normal gene
shows haploid insufficiency in the channel protein level,
or if the remaining normal gene is a functional gene in
these patients. )
Spampanato et al. (23] reported functional analysis of
two missense mutations of the SCN1A gene in the pa-
tients with GEFS+, in which one mutation showed
hyperexcitability and the other showed hypoexcitability
of the sodium channel. Their results suggested that either
an increase or a decrease in sodium channel activity could
result in seizures. Usage of the mutations we detected
~.may be helpful for further analysis of the mechanism.
In only 5 patients with SME, we could not find any
mutations in the SCNIA gene. One of the possible
reasons is that there are some mutations in the neuronal
cells of brain but not in the blood cells. Another is that
an expression of the SCNI1A gene is decreased or none
in the neuronal cells by the mechanisms such as aberrant
regulation of the promoter in the SCNIA gene. How-
ever, the possibility is still remaining because the brain

tissues could not be acquired from the patients with
epilepsy.

We could not find the SCN1A mutations in the par-
ents of the patients we studied. One of critical causes of
SME may be de novo mutation of the SCNIA gene
occurred in the course of meiosis in the germ cells of the
parents. The high rate of a family history of convulsive
disorders and the presence of sibling cases [20] indicate
also a possibility that some mutations of other genes
may be associated with the occurrence of SME. To
clarify these unsolved issues, a functional analysis of the
SCN1A gene and a search for new target genes in SME
are required.
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The Relationship between

Paroxysmal Kinesigenic Choreoathetosis and Epilepsy

Abstract

Purpose: To clarify the relationship between paroxysmal kinesi-
genic choreoathetosis (PKC) and epilepsy, we investigated the
clinical and electroencephalographic (EEG) findings of patients
with familial PXC and epilepsy, as well as sporadic cases with
both PKC and epilepsy.

Patients and Methods: Patients consisted of 12 familial cases
from seven families and three sporadic cases. The period of fol-
low-up ranged from 17 months to 33 years, 7 months (average:
16 years, 8 months). During the follow-up, a total of 163 EEGs
{11 EEGs per subject) were studied, including interictal and ictal
EEGs. .
Results: Transient epileptic discharges were found in ten of the
15 patients (66.7 %} during the clinical course. As for focus, cen-

tro-midtemporal and frontat spikes were most often observed. ’

The ictal EEG of an afebrile convulsion in one patient showed a
partial seizure with secondary generalization which originated
from the frontal area.

Conclusions: It appears that patients who suffer from bath PKC
and epilepsy have a functional abnormality of the cerebral cor-
tex, particularly in the perirolandic and frontal regions.

Key words
Paroxysmal Kinesigenic Choreoathetosis - Epilepsy - Corticaf Hy-
perexcitability - Cortico-Striato-Pallido-Thalamic Loop

Introduction

It has been long debated whether paroxysmal kinesigenic chor-
enathetosis (PKC) is a type of reflex epilepsy or an extrapyrami-
dal disorder.

Recently, a common genetic basis of paroxysmal dyskinesia and
epilepsy was shown using linkage analysis. Szepetowski et al
{23] first revealed an association of paroxysmal choreoathetosis
with infantile convulsions in four French families, and desig-
nated it as ICCA syndrome, Guerrini et al [9] reported on autoso-
mal recessive rolandic epilepsy with paroxysmal exercise-in-
duced dystonia and writer’s cramp (RE-PED-WC) whose locus
was mapped to chromosome 16 piZ-11.2. They suggested the
existence of a group of diseases which exhibit functional abnor-
malities in the cerebral cortex and the basal ganglia.

In addition, a PKC locus was recently mapped to the pericentro-
meric region of chromosome 16 in eight Japanese families [24]
and in an African-American family [4]. A second PKC locus was
identified on the long arm of chromosome 16 in an Indian family
[25]. These regions of ICCA syndrome, RE-PED-WC and PKC loci
overlap one another.

The differences and similarities of the clinical symptoms of these
disorders are now being intensely debated.

In order to clarify the relationship between PKC and epilepsy, we
investigated the clinical and electroencephalographic (EEG) find-
ings of patients with familial PKC and epilepsy, as well as spora-
dic cases with both PKC and epilepsy.
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Fig.1 Pedigrees of the families with PKC
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Patients and Methods

Patients were drawn from individuals who were seen at the
Okayama University Hospital from 1967 to 2000. They consisted
of 12 familial cases from seven families, and three individuals
without a family history of PKC or epilepsy. Three sporadic cases
were affected by both PKC and epilepsy (Fig.1).

The age at initial examination ranged from three months to 15
years, 11 months. The period of follow-up ranged from 17 menths
to 33 years, 7 months (average: 16 years, 8 months). During the
follow-up, in principle, EEGs were performed once every 1-2
years on an outpatient basis. Interictal EEGs included waking
and sleeping EEGs and photic stimulation. Hyperventilation was
performed whenever possible. Three patients were admitted to
our hospital during infancy due to frequent convulsions.

Seven patients underwent ictal video-EMG-EEG polygraphic re-
cordings of PKC attacks during hospitalization. A total of 163 of
EEGs (11 EEGs per subject) were recorded, including both inter-
ictal and ictal EEGs:

Neuroimaging studies were conducted on all but one patient (pa-
tient 8). Computed tomography (CT) was performed in four pa-
tients, magnetic resonance imaging (MR!) in six, and CT plus
.MRI.in one. In addition, MR angiography (MRA) and single-pho-
ton emission CT (SPECT) were performed in one patient. Left
middle cerebral arteriography was performed in another. The 15
patients were evaluated retrospectively with respect to clinical
course and chronological changes in EEG findings.

Results

Clinical characteristics of convulsions

Thirteen of 15 patients had febrile andjor afebrile convulsions.
Febrile, afebrile and febrile plus afebrile convulsions were pres-
ent in one, eight and four patients, respectively. Age at initial
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seizure ranged from three months to 13 years, six months. Seid
ure frequency ranged from several times to about ten times
throughout the clinical course. In four of these 13 patients
(30.8%), seizure frequency was several times per day in infancy.
Seizures disappeared by the age of two years in seven patients
(53.8%). The oldest age of seizure remission was 14 years.

Seizure types included generalized tonic-clonic seizures in 12
patients and complex partial seizures in one patient. Two of the
13 patients (patients 12 and 15) also had PKC attacks which were
immediately followed by a generalized tonic-clonic seizure. Pa-
tient 12 had choreoathetosis and muscle weakness on the right
side of the body which were triggered by sudden movements.
Some of these PKC attacks were immediately followed by cloudi-
ness of consciousness and secondarily generalized tonic-clon
convulsion. Patient 15 had right upper limb dystonia which was
also triggered by sudden movements. Sometimes PKC attacks
gradually proceeded to the right jerky movement, cloudiness of
consciousness and generalized tonic-clonic convulsions.

Clinical characteristics of PKC attacks

PKC attacks were seen in 12 of 15 patients. Age at onset ranged
from three to ten years. Brief episodes of dystonic, choreic and
athetoid movements were triggered by sudden voluntary mov
ments in all patients. Precipitants included not only sudden
movements, but also"mental stress in three patients and-coffe
intake in one patient.

PKC attacks involved the bilateral extremities in three patients
only one side of the body in four, the right upper extremity i
one, and only one side of the body of which laterality change
from time to time in four patients.

The duration of PKC attacks varied from several seconds to abou
one minute. The frequency of PKC attacks ranged from severa
times per week to about 50 times per day.



= uaamjaq diysuce(ay 4L e 12 | Howyo

0z =51 €€ 'Z00Z SHHIepadoinan

Table 1 Interictal EEG findings

Background activities No. of cases (%)
Normal 7 {467
: "“'f-fjfpersynchmnods alpha rhythm 3 -~ {20.0)
Slow posterior waves of youth 2 (13.3)
Occiptial 3-4 ¢fs rhythm 3 {20.0)
Epileptic discharges B
No epileptic discharge 5 . .(“33.3)
C-m spikes s (31.3)
C-mT # frontal spikes 1 {6.7)
T + frontal spikes + diffusespw 1+ en
C-mT spikes + diffuse sp-w 2 (13.3)
diffuse sp-w 1 (6.7

C-mT; centro-midtemporal, sp-w: spike-and-waves

with regard to prodromal symptoms, one patient (patient 13)
felt discomfort in the lower extremity prior to the appearance of
choreoathetosis or dystonia. Six patients (patients 1, 2, 4, 5, 11
and 12) complained of muscle weakness in the lower extremity
or on one side of the body. Four patients (patients 4,5.11 and 12)
were not able to maintain an upright posture due to muscle
weakness, which was triggered by sudden movements.

EEG findings

Interictal EEGs -

Background activities and epileptic discharges are shown in Ta-
ble 1. Hypersynchronous alpha rhythms, slow posterior waves
of youth and paroxysmal bursts of occipital 3-4Hz rhythm [7]
were blocked by opening the eyes. Hypersynchronous alpha
rhythms were observed from five to 22 years of age, slow poste-
rior waves of youth from seven to 11 years of age and paroxysmal
burst of occipital 3-4 Hz rhythm from five to 17 years of age.

(b)

EEGs showed epileptic discharges in ten of the 15 patients
(66.7%). These epileptic discharges appeared only transiently. In
addition, they were seen in only 29 (17.8%) of 163 EEG records. As
for the focus,centro-midtemporal spikes were most often ob-
served. These spikes increased during sleep. However, the wave-
form differed from typical rolandic spikes (Fig. 2).

Ictal EEGs of convulsion and PKC attack:

An ictal EEG of an afebrile convulsion in infancy was recorded in
one patient (patient 7). It was a partial seizure with secondary
generalization which originated from the frontal region (Fig. 3).

Thera were no epileptic changes in eight ictal EEGs of PKC attacks
in four patients (patients 4, 5,9 and 13).

Clinjcal course and prognosis

A summary of chronological changes in EEG findings and clinical
course is presented in Fig.4. Of the 13 patients having afebrile or
febrile convulsions, phenobarbital was effective in stopping con-
vulsions in seven patients, phenobarbital/valproate in two pa-
tients, phenobarbital/phenytoin in one patient, and carbamaze-
pine (CBZ) in one patient. Two patients who received no antiepi-
leptic drugs (AEDs) showed spontaneous remission after several
febrile or afebrile convulsions. In general, the response to AEDs
was favorable and there were no refractory cases.

CBZ was administered to all patients with PKC. CBZ dosage was
100-600mg per day (blood concentration ranged from 1.1 to
9.4 ug/ml). PKC attacks were easily controlled with regular CBZ
medication. However, attacks returned sporadically upon cessa-
tion of CBZ administration. In patients having both convulsions
and PKC attacks (patients 12 and 15), both were suppressed by
CBZ administration.

At the end of the follow-up, nine patients had not experienced
PKC attacks for at least one year on CBZ medication. Two patients
had occasional PKC attacks when they forgot to take CBZ (pa-
tients 10 and 12). Another patient experienced a recurrence of
PKC attacks when she decided to stop CBZ due to pregnancy (pa-

Fig.2aandb Epileptic discharges on
interictal EEGs. a Centro-midtemporal
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Fig.3 The ictal EEG of an afebrile generalized tonic-clonic convulsion
was seen in a three-rmonth-old boy (subject 7). It reveals 4 -5 Hz rhyth-
mic spikes in the left frontal region are subsequently replaced by dif-
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fuse irreqular spike-and-wave complexes. The total duration of the
seizure was 110 seconds.

Fig.4 Chronological change in EEG find-
ings and clinical course. C: centro-mid-
temporal spikes, F: frontal spikes, D: dif-
fuse spike-and-wave.
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tient 4). These three patients still had PKC attacks but learned to
abort these attacks at the onset of the aura by stopping all volun-
tary movement.

Neuroimaging study
CT and MRI showed no abnormalities in our patients. Likewise,
angiography, MRA and SPECT showed no abnormalities.

Other neurological manifestations

Patient 15 complained of migraines. Three family members from
family F also had migraines. The brother of the patient 11 had
several afebrile seizures at six months of age. At age 20, he began
to have migraines with aura which were associated with ictal
hemiparesis, followed by frequent vomiting and confusion last-
ing approximately 24 hours.

2.5 30

Discussion

Although the coexistence of epilepsy and PKC in the same indi-
vidual or family is not rare, the characteristics of the epilepsy
which eccur along with PKC have not yet been fully elucidated.
Nor have any long-term follow-up studies been performed on
these patients. Szepetowski et al [23] reported that partial seiz-
ures or secondarily generalized convulsions occur from three to
12 months in ICCA syndrome. However, other authors reported
that some patients in whom convulsions began in infancy con-
tinued to have infrequent seizures up to early adolescence or
adulthood [15,22].

Our patients share clinical features with those syndromes which
have been mapped to the pericentromeric region of chromosome
16.
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To the best of our knowledge, there have been no reports on ictal
EEGs of convulsions in a patient with PKC. Moreover, long-term
follow-up studies of EEGs have not yet been carried out. We re-
corded an ictal EEG of an afebrile convulsion in infancy and dis-
covered that it was a partial seizure with secondary generaliza-
tion originating from the frontal lobe.

Interictal EEGs showed frontal and centro-midtemporal spikes in
most of our patients. Therefore, it is likely that seizures are par-
tial seizures of the frontal and perirolandic regions with second-
ary generalization in other patients who had interictal spikes in
the same regions.

Epileptic discharges were observed even during the. period of
PKC after remission of epilepsy in our patients. Consequently, it
is thought that during the period of PKC, a functional abnormal-
ity of the cerebral cortex, particularly in the frontal and periro-
landic regions, continued and influenced the occurrence of PKC
attacks. According to most previous studies, epileptic discharges
were not found in patients with PKC [2,10,12,14). It is possible
that the epileptic discharges might have been overlooked in
these studies since, in our series, epileptic discharges were seen
in only 12.8% of all EEG records.

The PKC attacks of our patients showed many typical features of
PKC: short duration of involuntary movement triggered by sud-
den movement, high frequency of attacks, and favorable re-
sponse to CBZ. On the other hand, a significant number of pa-
tients showed muscle weakness triggered by voluntary move-
ment, and inability to maintain an upright posture. Muscle

weaknesses have sometimes been described as a symptom of -

PKC [2,14,17]. Fukuda et al reported a family with an atonic var-
iant of PKC |8].

Four patients in whom ictal EEG-EMGs were recorded during
PKC attacks revealed no changes. Many previous reports showed
no EEG changes during PXC attacks {2,21] except for a few re-
ports, in which central-dominant diffuse 12-15Hz rhythms
[18]. bifrontal high-voltage slow waves at 2-4Hz with mixed
hypersynchronous alpha rhythms [13} and diffuse 5Hz spikes
[11] were reported. These changes were thought to be of subcor-
tical origin [11].

It is necessary to understand the mechanisms of normal volun-
tary movement in order to comprehend mechanisms of involun-
tary movement. The motor circuit comprises the cerebral cortex
(including the supplementary motor area, motor cortex and pre-
motor cortex), putamen, internal and external segment of the
globus pallidus, substantia nigra pars reticulata, subthalamic nu-
cleus and thalamus [1). There are two pathways in the motor cir-
cuit. The direct pathway functions as a positive feedback loop
and generates increased cerebral cortex activity, while the indi-
rect pathway acts as a negative feedback loop and controls its
own activity. In the cortico-striato-pallido-thalamic loop, the di-
rect pathway is considered to be relatively dominant in hyperki-
netic disorders such as Huntington’s chorea [6].

With regard to the mechanism in the occurrence of PKC, sympto-
matic patients of PKC with organic brain abnormalities have
been reported. These lesions include demyelination of the puta-
men and thalamus in multiple sclerosis [20), calcification of the

basal ganglia in hypoparathyroidism {3], infarction of the thala-
mus [5] and brain injury in the frontal lobe [19]. These data indi-
cate that a pathological lesion in the frontal lobe, basal ganglia or
thalamus can cause PKC attacks.

Lombroso reported the existence of ictal discharges during PKC
attacks arising focally from the supplementary sensory-motor
cortex and ipsilateral caudate nucleus using depth and subdural
electrodes [16]. In our study, some patients experienced PKC at-
tacks immediately followed by a clouding of consciousness and a
convulsion. Some of our patients aborted a PKC attack at the on-
set of the aura by stopping all voluntary movements. These find-
ings support the contention that PKC attacks are caused by a dis-
turbance in the cortico-striato-pallido-thalamic loep.

Based on the findings in the ictal EEG of an afebrile convulsien
during infancy and the existence of.the frontal and centro-mid-
temporal spikes, we conclude that the patients who suffer from
both PKC and epilepsy have the cortical hyperexcitability partic-
ularly in the frontal and perirolandic regions. A functional abner-
mality of the cortex in the cortico-striato-pallido-thalamic loop
influence the occurrence of PKC attacks.
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Benefit of Simultaneous Recording of EEG and MEG in
Dipole Localization
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Summary: Purpose: In this study, we tried to show that EEG
and magnetoencephalography (MEG) are clinically comple-
mentary to each other and that a combination of both technolo-
gies is useful for the precise diagnosis of epileptic focus.

Methods: We recorded EEGs and MEGs simultaneously and
analyzed dipoles in seven patients with intractable localization-
related epilepsy. MEG dipoles were analyzed by using a BT]
Magnes 148-channel magnetometer. EEG dipoles were ana-
lyzed by using a realistically shaped four-layered head model
(scalp—skull-fluid-brain) built from 2.0-mm slice magnetic
resonance imaging (MRI) images.

Results: (a) In two of seven patients, MEG could not detect
any epileptiform discharges, whereas EEG showed clear
spikes. However, dipoles estimated from the MEG data corre-

sponding to the early phase of EEG spikes clustered at a loca-
tion close to that of the EEG-detected dipole. (b) In two of
seven patients, EEG showed only intermittent high-voltage
slow waves (HVSs) without definite spikes. However, MEG
showed clear epileptiform discharges preceding these EEG-
detected HVSs. Dipoles estimated for these EEG-detected
HVSs were located at a location close to that of the MEG-
detected dipoles. (c) Based on the agreement of the results of
these two techniques, surgical resection was performed in one
patient with good results.

Conclusions: Dipole modeling of epileptiform activity by
MEG and EEG sometimes provides information not obtainable
with either modality used alone. Key Words: MEG—EEG—
Localization-related epilepsy—Dipole.

The dipole localization method has been widely used
for noninvasive localization of spike foci (1-3). After the
development of magnetoencephalography (MEG), most
comparative studies of MEG and EEG have focused on
comparing the localization accuracy of MEG and EEG
dipoles (4,5). We addressed the way in which dipole
localization with a combination of MEG and EEG
supplements the information obtainable by either tech-
nique alone. We try to show that EEG and MEG are
clinically complementary to each other, and that a com-
bination of both technologies is useful for the precise
diagnosis of epilepsy patients.

PATIENTS AND METHODS

Subjects were drawn from all the outpatients and in-
patients of Okayama University Hospital who were be-
ing considered for antiepileptic surgery between July
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2000 and June 2001. We obtained consent from the par-
ents of seven of these patients to perform MEG investi-
gation at the Okayama Ryogo Center. The patients
consisted of six boys and one girl (average age, 15 years
and 1 month; range, 5 years and 7 months to 19 years and
2 months). All the patients had intractable localization-
related epilepsy.

We recorded EEGs and MEGs simultaneously. MEGs
were recorded with a 148-channel whole-head magn-
etometer (BTI Magnes, San Diego, CA, U.S.A)) with
simultaneous 21-channel EEG recording by using the
international 10-20 system with additional electrodes at
Fpz and Oz referenced to the ears. The MEG and EEG
sampling rates were 678.17 and 500 Hz. The MEG signal
was filtered in real time with a highpass of 200 Hz and
a lowpass of 0.1 Hz. EEG was filtered with 0.5-100 Hz.
Common reference points (nasion, inion, and ear holes)

-were used for MEG, EEG, and magnetic resonance im-

aging (MRI) for coregistration of the data.

-Both EEG and MEG outputs were monitored on real-
time displays. The data epochs were visually selected by
using both the MEG and EEG waveforms. We marked

— 167



SIMULTANEOUS EEG-MEG DIPOLE 925

0.5- to 1-s segments that contained epileptiform spikes
and were free of artifact and selected 10 to 20 of these
segments to be analyzed.

MEG dipoles were calculated based on data from 37
channels selected over the region of interest. MEG di-
poles were analyzed by the single-dipole model with the
BTI program. In the calculations, the head was modeled
as a sphere with a radius that best fit the local skull
curvature at the probe positions. The skull shape was
derived from a three-dimensional (3D) digitalization of
the surface of the patient's scalp before the recording
session.

According to the Homma's dipole theory (6), EEG
dipoles were analyzed by using a realistically shaped
four-layered head model (scalp-skull-fluid-brain) built
from 2.0-mm slice MRI images (Real-Neurotechnology
Co., Toyama, Japan). Both MEG and EEG dipoles were
estimated every 2 ms, and the locations of dipoles ex-
hibiting >0.98 correlation were displayed. The MEG di-
pole localizations were coregistered with MRI (1.5
Tesla, GE Co.) of the patient’s brain automatically. We
compared the EEG dipole localizations on MRI by visual
inspection. When either EEG or MEG could not detect
any clear epileptic discharges, the dipole analyses were
performed at the corresponding points to the epileptic
discharges found with the other technique. That is to say,
EEG spikes were used to determine the MEG epoch for
analyzing in cases without MEG spikes and vice versa.

We received consent to perform surgery on one of the
patients mentioned in this series (case 3, described later).

RESULTS

In two of the seven patients, the EEG showed clear
spikes where MEG could not detect any clear epilepti-
form discharges. The following is an example of such a
case.

Case 1

An 18-year-old man had complex partial seizures with
visual symptoms. His EEG showed focal spikes at the
right occipitai electrode. MEG could not detect a dipolar
field at a single section comresponding to the early phase
of the EEG spikes. Therefore, averaging techniques were
applied to 38 MEG segments, by using EEG spikes as
markers, and this produced a clear dipolar field on av-
eraged MEGs. Dipoles estimated for this dipolar field
were located in the mesial occipital lobe, which corre-
sponded well with his clinical features (Fig. 1).

In another case, dipoles estimated from the MEG data
corresponding to the early phase of the EEG spikes clus-
tered at a location close to that of the EEG dipole (both
dipoles were located in the right mesial temporal lobe).
These results corresponded well with his clinical and
neurogimaging data.
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In two of the seven patients, EEG showed only inter-
mittent high-voltage slow waves (HVSs) without definite
spikes. MEG showed clear spikes preceding these EEG-
detected HVSs. Dipoles estimated for the ascending
phase of these EEG-detected HVSs were located close to
the dipoles estimated by MEG. The following case is
representative of these two cases.

Case 2

A 16-year-old boy had complex partial seizures with
motor signs predominantly in his left arm, and second-
arily generalized seizures. Interictal single-photon emis-
sion computed tomography (SPECT) revealed a
hypoperfusion area in both his frontal and temporal
lobes, whereas MRI revealed no abnormal lesions. His
EEG showed bilateral HVS bursts in the frontal area.
MEG showed clear epileptiform discharges preceding
these EEG-detected HVS bursts, EEG dipoles estimated
for the peak of these HVS bursts were located at the
bottom of the frontal lobe, far from the MEG-estimated
dipole locations. However, dipoles estimated for the as-
cending phase of these EEG-detected HVS bursts were
located close to the location of the MEG-estimated di-
poles (in the same or the neighboring gyri as the MEG-
estimated dipoles; Fig. 2).

Three patients showed clear epileptic spikes on both
EEG and MEG. In these cases, EEG and MEG dipoles
corresponded well to each other. The following is an
example of such a case.

Case 3

A 19-year-old man had complex partial seizures with
vocalization followed by ballistic movement of his arms
and legs. Ictal SPECT revealed a hyperperfusion area in
the bottom of the left mesial frontal lobe, and MRI re-
vealed cortical dysplasia in that area. Both EEG and
MEG showed clear epileptic spikes in the bilateral fron-
tal lobes. EEG also showed bilateral HVS bursts in the
frontal area. MEG showed clear epileptiform discharges
preceding these EEG-detected HVS bursts. Both dipoles
estimated for the ascending phase of these EEG-detected
HVS bursts and EEG epileptic spikes were located in the
bottom of the left frontal mesial lobe, close to the loca-
tion of the MEG-estimated dipoles (Fig. 3). Conversely,
dipole analysis also was performed for other high-
voltage discharges observed on MEG but not accompa-
nied by EEG discharges. The resulting dipoles were
located far from the epileptogenic area indicated by the
other imaging techniques. In this case, EEG would not
have accurately detected the dipole location without the
information provided by MEG, and MEG would not
have accurately detected the dipole location without the
information provided by EEG. Thus, in this case~EEG
and MEG played complementary roles in dipole analysis.
Based on further data obtained by subdural and deep
electrodes, surgery was performed on the patient’s left

Epilepsia, Vol 43, No. 8, 2002
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FiG. 1. EEG splke in the right occipital area (arrow, lower teft). In the middle of the figure is the averaged magnetoencepha-
logram (MEG), which was produced by averaging 38 segments of the MEG. This ylelded an apparent spike. Upper right, the

topography of the averaged MEG. Lower right, the MEG dipole.

mesial frontal area at Nara Medical University. At the
time of writing, the patient has been seizure free for 6
months.

DISCUSSION

When it was first introduced, EEG dipole analysis held
great promise as a noninvasive method for presurgical
epilepsy evaluation (1-3). However, EEG has now been
overshadowed by the newer MEG technology. One rea-
son for this is that MEG has better localization accuracy
than EEG, because the signal is not distorted by concen-
tric heterogeneities in conductivity.

The complementary nature of MEG and EEG has been
described in the past 10 years (7-10). The authors of
these articles pointed out that these techniques are
complementary for the following reasons: (a) EEG re-
flects all intracranial currents, whereas MEG is sensitive
mainly to tangential sources (i.e., activity of the fissural
cortex); and (b) the magnetic field from sources near the
center of the head falls off more quickly than the corre-

Epilepsia, Vol. 43, No. 8, 2002

sponding electric field; as a consequence, MEG is less
sensitive to deep sources than is EEG. '

In two of our seven cases, MEG could not detect any
clear epileptiform discharges, whereas EEG showed
clear spikes. In these cases, EEG spikes were useful for
determining which MEG epoch to analyze. In case 1, the
averaging procedure reduced background noise and pro-
duced the dipolar field in MEG. It would have been
impossible to know which sections to analyze and aver-
age without the EEG information.

In contrast, in another two of our seven cases, EEG
showed only intermittent high-voltage slow waves
(HVSs) without definite spikes, whereas MEG showed
clear spikes preceding these EEG-detected HVSs. Di-
poles estimated for the ascending phase of these EEG-
detected HVSs were located at a location close to that of
the MEG dipoles.

Nakasato et al. (11) found that EEG sometimes inac-
curately detected dipoles in an area deep in the base of
the skull, significantly displaced from where MEG indi-
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FIG. 2. The upper portion of the figure shows magnetoencephalography (MEG) dipoles. The middle shows EEG dipoles
ostimated at the ascending phase of the high-voltage slow waves (HVSs). The lower shows EEG dipoles estimated at the peak
of the HVSs, The lower right portion of the figure shows EEG-detected HVSs. The colored area was investigated for EEG dipoles.

cated these lesions to be, The reason for this disparity
could be the wide spread of the radial EEG pattern,
where one polarity covers the entire upper hemisphere in
the spherical EEG model. In our cases, the HVS peaks
might have been the result of widespread electrical ac-
tivity. Thus the EEG dipoles at the peaks of the HVSs
were located at the bottom of the frontal lobe.

Some authors found that MEG peaks preceded the
main EEG peak by 940 ms in some patients (12,13).
Therefore they emphasized the importance of modeling
the early phases of EEG spikes when localizing interictal
epileptic zones. Epileptic spikes commonly propagate,
and both magnetic and electric fields change over the
course-of -the-spike. -Minami-et al. (13) explained this
propagation based on findings that MEG and EEG spikes
propagate in a similar manner to somatosensory-evoked
magnetic field (SEF). Ochi et al. (10) also showed how
differences between the odentation of EEG and MEG
dipoles could explain time differences between the two
dipoles. Because magnetic fields can lead or lag EEG
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fields, depending on the orientation of the initial source
cortex and that of the cortex to which the spike propa-
gates, it is important to model the early fields, which
more closely reflect the actual spike origin.

In our case 2, the epileptogenic focus would have been
incorrectly estimated if dipele analyses were performed
only at the peak of these HVSs without the information
provided by MEG. In addition, we sometimes encoun-
tered patients who showed no definite epileptic spikes
but only paroxysmal HVSs on EEGs. The results indi-
cated by EEG dipoles of these HVSs, which corre-
sponded well to MEG spike dipoles, suggest that these
HVSs point to the true location of the epileptogenic zone.

Conclusion

In at least five of our cases, the combination of MEG
and EEG dipole analysis provided information_ that
would not have been obtained by use of either modality
individually. In one case, combined use led to successful
localization for surgery.

Epilepsia, Vol. 43, No. 8, 2002
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FiG.3. The upper portion of the figure shows magnetoencephatography (MEG) dipoles estimated tor MEG spikes correspond-
ing to EEG spikes. The lower shows EEG dipoles estimated at the ascending phase of the high-voltage slow waves (HVSs).
Upper right, MEG dipoles estimated for high-voltage discharges on MEG, not associated with EEG spikes. Lower right, EEG-

detected HVSs. The colored area was investigated for EEG dipoles.
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C G, Michacl L H. Phenobarbital and cerebral blood

Non-Intravenous High-Dose Phenobarbital
Therapy for Status Epilepticus Refractory to Continuous Infusion of
Midazolam or Pentobarbital: Report of Three Cases

Akira Sudoh, M D, Kenji Sugai, M D, Takeshi Miyamoto, M D, *
Masakazu Mimaki, M D, Michio Fukumizu, M D,
Shigeru Hanaoka, M D and Masayuki Sasaki, M D
Depariment of Child Neurology, National Center Hospital for Mental, Nervaus and
Muscular Disorders, Kodaira, Tokyo

The management of refractory status epilepticus (RSE) is crucial in preventing neurologic impairment. Adthough
a varicty of treatments for RSE including cominuous infusion of midazolam {MDL) or pentobarbital (PTB) have
been catried out, they are nat always effective. Intravenous very-high-dose phenobarbital {PB} has becn recommend-
ed as having many advamages in the United States, but is not available in Japan.

We treated 3 paticnts sulfcring from long term RSE with non-intravenous high-dose PB (NIHDPB}. Their
seizurcs were not controllcd by conlinuous infusion of MDL and/or PTB. PB was initially given intramuscularly or
rectally and then orally. Within a few or ten days, seizures were completely controlled, and consiousness level grad-
ually improved in all cases, The serum tevels of PB at scizure control ranged from 50 to 58 y p/mi. The epileptiform
activities on EEG nearly disappeared in the absence of the burst suppression paticrn. Hypotention and respiratory
depression did not develop during NIHDPB. Elevated gamma-GTP levels with noninal hepatic transaminases were
scen in all cases, but it was not necessary to discentinue NIHDPB. NIHDPB may be one of the mosl effective and

safe treaumcnts in Japan for siaws epileptics refractory (o continuous infusion of MDL or PTB.
No To Hattatsu 2002:34:3-9
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