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Engineered Blood Vessels
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Summary. Autologous tubular tissues as small caliber vascular prostheses
were created in vivo using tissue engineering. We named them “Bio-
tubes”. The six kinds of polymeric rods made of polyethylene (PE), poly-
fluoroacetate (PFA), poly-methyl methacrylate (PMMA), segmented poly-
urethane (PU), polyvinyl chloride (PVC) and silicone (Si) as 2 mold were
embedded in the dorsal skin of six of New Zealand White rabbits. Bio-
tubes were formed after 1 month by fibrous tissue encapsulation around
the polymeric implant except PFA. None of the Biotubes were ruptured
when a hydrostatic pressure was applied up to 200 mmHg. The wall
thickness of the Biotubes ranged from 50 to 200 um depending on the im-
plant materials in the order PFA<PVC<PMMA <PU<PE. The tissue
mostly consisted of fibroblasts and collagen-rich extracellular matrices.
The tissue created by Si rod was relatively firm and inelastic and the one
created by PMMA was relatively soft. For PMMA, PE and PVC the stiff-
ness parameter (B value; one of the indexes for compliance) of the Bio-
tubes was similar to those of the human coronary, femoral and carotid ar-
teries, respectively. Biotubes, autologous tubular tissues, can be applied
for use as small caliber vessels and are ideal prostheses because of avoid-
ance of immunological rejection.

Keywords. Graft prosthesis, Tissue engineering, Autologous transplant,
Small caliber vessel
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Introduction

In vivo, the encapsulation of foreign materials by own fibrous tissue has
been well documented as a biological reaction of self-defense system since
the 1930°s. Peirce et al. attempted to utilize capsular tissues as artificial
vascular vessels (Knott I, et al. 1973, Peirce EC II, 1953). Sparks et al. ex-
amined the clinical application of grafts consisting of a combination of
capsular tissues and Dacron tubes in the latter half of the 1960’s (Hallin
RW and Sweetman WR 1976, Sparks CH, 1972). Recently, Campbell et
al. studied capsular tubular tissues obtained by implantation of silicone
rods into animal peritoneal cavities(Campbell JH, et al. 1999). Tubular
tissues possessed a wall with severa! layers of myofibroblasts and colla-
gen-rich extracellular matrices covered with a single layer of peritoneal
mesothelium. By inverting the tubular tissues, mesothelial cells became
internal lining cells within tubes like endothelial cells. Autotransplantation
of these tubes as grafts resulted in high patency for several months, sug-
gesting the possible application of capsular tissue prosthesis for arteries.

The patency rate of small caliber artificial grafts is much worse than
medium to large diameter artificial grafis because of thrombosis in the
early stage and of neointimal hyperplasia in the chronic stage. Among the
many factors determining the patency of small caliber artificial grafts, the
compliance mismatch between the native artery and grafts has been dis-
cussed as a major detrimental factor of graft failure (Abott WH, et al.
1987, Kinley CE and MarbleAE 1980, Pevec EC I, et al. 1992, Stewart SF
and Lyman DJ 1992).

In this study, the mechanical properties of the tubular tissues were in-
vestigated for small caliber blood vessels. Various polymeric rods were
implanted in subcutaneum of the dorsa!l skin of rabbits. Then, own tubular
tissues by encapsulation were obtained and we called them “Biotubes”.
The mechanical properties including pressure resistance, pulse follow-
ability and compliance of the Biotubes were measured after histological
analysis of their components. The designs of the matrix including luminal
surface, mechanics and shape of the Biotubes were discussed.
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Methods and Results

Preparation of Biotubes

Nine New Zealand White rabbits, weighing 2.0 to 2.5 kg, according to the
Principles of Laboratory Animal Care (formulated by the National Society
for Medical Research) and the Guide for the Care and Use of Laboratory
Animals (National Institutes of Health Publication, No. 56-23, revised
1985) were used as hosts. Six kinds of polymers with rod shape (length; 20
mm, diameter; 3 mm) were placed in the subcutaneous layer of dorsum of
rabbits. The polymer materials were polyethylene (PE), poly-fluoroacetate
(PFA), poly-methyl methacrylate (PMMA), segmented polyurethane (PU), -
polyvinyl chloride (PVC) and silicone (Si). The coating thickness was 50
pm. At 1 month after insertion, rods were found to be encapsulated by a
membranous tissue in the subcutaneum of rabbits (Fig. la, 1b). After 3
months, all implants were still covered with membranous capsular tissues.
We called these autologous capsular tissues “Biotubes”.

Fig. 1. (a): * Biotube”, which was formed by implantation of the PMMA
for 1 month in rabbit dorsal skin. (b): A photomicrograph of a cross sec-
tion of the PMMA tube obtained after 3-months implantation
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Histological Examination

The explanted Biotubes were fixed in 10 % buffered formalin solution and
embedded in paraffin. Tissue cross sections were stained with hematoxy-
lin and eosin for histological evaluation (Fig. 1b, 2). The wall thickness of
the Biotubes was approximately 70 um one month after implantation of Si,
PVC, and PFA rods. In cases of PU or PMMA implants the wall showed
100-150 pm in thickness (Fig. 2). The capsules by the PE implant re-
vealed the thickest wall (approximately 200 um). For PMMA, PVC, and
PE, the wall thickness increased by 1.5 to 2 fold after 3-month (Fig 3).
The Biotube walls around the PFA showed sparse collagen with fibro-
blasts. Regarding the Si rod, the Biotube wall was thin but contained col-
lagen fibers with sparse fibroblast. The walls around PMMA, PU and
PVC rods were of a moderate thickness and contained relatively thick col-
lagen fibers. The Biotubes that formed around the PU, PE and PVC bases
showed numerous inflammatory cel! infiltrations such as lymphocytes. Es-
pecially in the tubular tissues of PE and PU, foreign body giant cells were
also observed. The capsular wall of PE rod showed 200pum in thickness but
almost no regular mesh structure of collagen fibers.

Immunohistochemistry was also performed to identify the muscular
component of the Biotubes. Vimentin, a mesenchymal tissue marker, was
positive for all tubular tissues around the various rods after 1- and 3-month
implantation. o.-smooth muscle actin was intensely positive for all tubular
tissues after 3 months. Desmin as a cytoskeleton of matured muscle was
negative in all tubular tissues after 1 and 3 months. A small number of
macrophages (RAM 11), were observed in the tubular tissues of PU, PFA
and PMMA after 3-month of implantation.

Fig. 2. Photomicrographs of cross sections of the Biotubes, They were formed
by 3 months implantation of six kinds of polymer rods in the rabbit skin (he-
matoxylin and eosin stain)
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Mechanical Properties of the Biotubes

The luminal pressure-diameter relationship was determined using an appa-
ratus designed by Takamizawa and Hayashi (Takamizawa K and Hayashi
K 1987). Changes in the outer diameter of the Biotubes were measured.
None of the Biotubes ruptured even after 200 mmHg of inner pressure af-
ter 1 month of implantation. The Biotubes around Si rod became stightly
dilated when exposed to water at low pressure but did not change signifi-
cantly with high pressure (about 20 mmHg or higher). In contrast, the Bio-
tube formed around the PMMA rod became dilated at low-pressure ranges
and gradually increased with pressure up to a high range, indicating “J”-
shaped curves. The dilatation rate of the outer diameter at a water pressure
of 200 mmHg was about 5 % for Si and about 25 % for PMMA.

Repeated water pressure loadings, range of 0 to 200mmHg, were inves-
tigated in the PMMA Biotube rods. The external diameter of the PMMA
Biotube was about 2.7 mm before loading and dilated to about 3 mm after
loading at several 10 mmHg water pressure and thereafter continuously di-
lated slowly with an increase in inner load reaching about 3.2 mm at 200
mmHg. Changes in the outer diameter luminal pressure were basically the
same with repeated pressure loadings in the lumen (Fig 3).

Repeatdhle Diameter Change of Biohbe with Change in Inbrakmminal Pressure

Fig. 3. Extemnal diameter changes in loading and removing of water pressure
in range of 0 to 200 mmHg to the lumen of the Biotube around the PMMA
rod after 3 months of implantation

The compliance of the tube was determined by the stiffness parameter

(B) as defined by Hayashi et al., (Hayashi K, et al. 1980, Hayashi K and
Nakamura T 1985) which is described according to the following equation:
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In(P/Ps) = B(D/Ds-1)

where P, Ps, D and Ds denote luminal pressure, standard pressure (100
mmHg in this study), external diameter and diameter at the pressure Ps, re-
spectively. The relationship between logarithmic value of the relative
pressure and relative outer diameter was obtained from the relationship be-
tween outer diameter and luminal pressure. After 1-month of implantation,
the highest B value was obtained from the Si Biotube and the 3 value de-
creased in the order of PMMA, PE and PVC (Fig 4). The Biotube around
the PMMA rod exhibited the B value resembling that of the human coro-
nary artery whilst the B values of the Biotubes formed around PE and PVC
bases were similar to those of the human femoral and common carotid ar-
teries, respectively.

Compliance of Tubular Tissues

ve [ |
pE | ]
PMMA ]
Si ]

Human Coronary Astery

Human Femoral Artery

Fuman Commen
Carotid Artery

60

Stiffness Parameter (§ valuc)

Fig. 4. The stiffness parameters (B values) of the Biotubes by | month of
implantation. The Biotubes formed around the PMMA, PE, and PVC rods
exhibited a B value close to those of the human coronary artery, the human
femoral artery, and common carotid artery, respectively

Discussion

Considering immune responses among tissu¢ or organ transplants, grafts
are better if they consist simply of own self tissues. For example, auto-
grafts such as a great saphenous vein, an internal thoracic artery, and a ra-

dial artery are used for conventional aorto-coronary bypass operations.
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However, it is sometimes difficult to obtain a sufficient amount of grafts or
healthy grafts due to the patient’s limited supply of vessels.

Larger caliber grafts vessels, with more fhan 5 mm in diameter, are usu-
ally composed of artificial materials such as Dacron fabrics or expanded
poly-tetrafluoroethylene (ePTFE). Small caliber artificial grafts, however,
may occlude within a short period after implantation by thrombosis.
Therefore, the development of hybrid type artificial blood vessels combin-
ing artificial and biological materials is expected. The layered hybrid ves-
sels resembling biological vascular walls have been developed in vitro.
(Ishibashi K and Matsuda T 1994, Matsuda T and Miwa H 1995, Miwa H
and Matsuda T 1994). The invented hybrid vessels with 4 mm in diameter
showed high patency after 1-year of autotransplantation in a canine carotid
artery. Other hybrid grafts prepared by seeding and culturing cells from
the own great saphenous vein in a polylactic acid tubular sponge, have
successfully been used in reconstruction of the pulmonary artery in hu-
mans (Hibino N, et al. 2003, Shin’oka T, et al. 2001, Shin’oka T, et al.
1998). Recently, it has been proposed that the preparation of various hy-
brid artificial vessels could be achieved by in vitro tissue engineering tech-
niques using stem cells, including endothelial progenitor cells (Asahara T
and Isner JM 2002, Isner JM, et al. 2001) and ES cells (Nishikawa S 1997,
Yamashita et al. 2000), as a cell source (Kaushal S, et al. 2001, Shirota T,
et al. 2003).

For patency of artificial blood vessels, particularly those with a small
caliber (5 mm or less in diameter), the following factors are required. 1)
Resistance to blood pressure, 2) antithrombotic properties to avoid throm-
botic occlusion in the early stage of implantation, and 3) mechanical com-
patibility including compliance matching and pulse follow-ability to avoid
occlusion in the chronic stage. We aimed to develop small caliber artificial
blood vessels for a clinical application that have high patency in combina-
tion of the tubular tissue preparation technique and in vivo tissue engineer-
ing (Nakayama Y, et al. 2004). Biotubes consist of own self cells and ex-
tracellular matrices, which s similar to autotransplantation. Therefore,
immunological rejections to the tubular tissue may be avoided. Moreover,
the tissue may grow after transplantation in the body. In this study, various
polymeric rods as a2 mold were implanted in the skin'to form own tissue
tubes. The materials used for the polymeric rods were PMMA, PU, PVC,
PE and Si, all of which are hydrophilic, and PFA, which is water-repellent,
and all are currently used as biomaterials. None of the Biotubes ruptured
with 200-mmHg inner pressures except for tissue created by PFA. The
walls of the Biotube by PFA showed sparse collagen fibers with numerous
inflammatory cells, without capsularization (Fig. 2). In the tube that
formed around PU, inflammatory cell infiltration was noted. Although PU
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is used as a tissue compatible material for artificial hearts (Zdrahala RJ and
Zdrahala 17 1999), when transplanted as an artificial vessel, granulation is
often recognized (Seifalian AM, et al. 2003, Sonoda H, et al. 2003). PU is
considered to have a strong tissue response. A dense collagen mesh struc-
ture was formed around Si. The wall thickness of the Biotubes after |-
month of implantation decreased in the order of PE>PU>PMMA>
PVC>Si>PFA and increased with transplantation period apart from PFA,
PU, and Si.

The Si base tubular tissue as a graft strengthened with Dacron has been
attempted for arterial bypass in the lower limbs clinically (Hallin RW and
Sweetman WR 1976, Sparks CH, 1972). The tubular tissue showed vascu-
lar function at an early stage of the transplantation. However, the grafts
were occluded within a short period in most cases because of lack of endo-
thelialization. It has recently been reported that mesothelial cells were ar-
ranged on the luminal surface of tubular tissue obtained using Si bases
(Campbell JH, et al. 1999). The patency rate was high, about 70 %, after
2-month of transplantation in animal experiments.

The stiffness parameter (B) is one of the indexes for compliance of
blood vessels and indicates the mechanical property under physiological
blood pressure (Hayashi K, et al. 1980, Hayashi K and Nakamura T 1985).
Lower values in the 3 value indicate the material is soft and flexible.
Within the polymers used in this study, the B value decreased in the order
of Si>PMMA>PE>PVC. The Biotubes that formed around Si were rela-
tively firm and inflexible, while the Biotubes that formed around PMMA
were elastic within a low-pressure range and less extensible at a high-
pressure range, showing a mechanical property similar to that of biological
arteries. The relationship between intraluminal pressure and external di-
ameter showed a ‘J’-shaped curve, similar to genuine arteries. The Biotube
obtained after one month by PMMA, PE and PVC exhibited compliance
similar to that of the human coronary artery, human femoral artery and
human carotid artery, respectively. Selection of specific rod materials and
embedding period allow the design of artificial blood vessels with match-
ing mechanical properties to that of genuine vessels. This matching is ex-
pected to prevent intimal hyperplasia causing luminal occlusion in the
chronic stage. Biotubes are expected to grow with the patient blood vessels
and are ideal vascular grafts. Furthermore, it is possible to design specific
mechanics and it is easy to match the host’s vascular shapes. We are plan-
ning to establish the Biotube preparation method that combines surface de-
sign as described above and demonstrate the usefulness of Biotubes as
small caliber artificial blood vessels by animal transplantation experi-
ments. These results will be reported in near future.
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