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OVERVIEW OF SKELETAL MUSCLE ADAPTATION

TO DIET-INDUCED WEIGHT CONTROL

Buhao ZOU!, Masataka SUWA?, Shuzo KUMAGAI**

Abstract

Skeletal muscle plays an important role in energy metabolism. Therefore, its characteristics have been studied in

numerous experiments on obesity as well as diabetes to investigate their contribution. According to the clinical and

experimental data mainly obtained from cross-sectional studies, fiber composition, capillarization, enzyme activi-

ties, glucose transporter (GLUT) 4 and uncoupling protein (UCP) 3 levels in the muscle were considered to be
involved in the possible pathogenesis of obesity. In this review, we summarize these characteristics of skeletal mus-

cle in diet-induced weight control and suggest that these characteristics are the consequences of cbesity-related

metabolic alteration rather than the predeterminate factors of obesity.
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1. Intraduction
1) Obesity is a worldwide epidemic

In industrialized countries, obesity has reached epi-
demic proportions and it has recently been declared a
major public health problem. Obesity and overweight
are highly prevalent at every age in both sexes. In the
United States (U.S)), data derived from 1999 National
Health and Nutrition Examination Survey suggest
that 61% of U.S. adults are either overweight (body
mass index (BMI)=25) or obese (BMI=30). It is esti-
mated that about 300,000 deaths a year are caused
directly or indirectly by obesity there. In the last 10
years, the incidence of obesity in the U.8. has
increased by about §%. According to the data from the
Japanese Ministry of Health and Welfare Survey in
1998, Japan's obese (BMI=Z25) population older than
15 years old was reported to be more than 23 million.
The numbers of obese young men have increased by
about twofold in the past 20 years. Similarly, the

obese population has been forecast to reach 200 mil-
lion in the next 10 years in China.

2) The health risks of obesity

Obesity is roughly classified into Simple Obesity
and Symptom Obesity. Here, we will only focus on the
former, which is an important part of life-style related
diseases. Although clinical problems usually occur
when overweight exceeds 20%, being overweight by
more than 10% of standard body weight is defined as
"Obese".

Obesity is not just a matter of being overweight. It
is also hazardous to health, although some near-nor-
mal weight subjects may also suffer the same ¢linical
complications as obese individuals. The most impor-
tant of these disorders that obesity appears to play a
role in precipitating or at least aggravating are non-
insulin dependent diabetes mellitus (NIDDM), hyper-
tension, atherosclerosis, coronary heart disease and
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cerebral hemorrhage. In particular, visceral obesity,
among several obese indices, has been more closely

¥ and syn-

associated with these chronic diseases
dromes® such as "insulin resistance syndrome" or
*Syndrome X" than subcutaneous obesity***” . In
addition to these metabolic disorders, it can't be
ignored that in today's body-conscious society, over-
weight individuals are also subjected to diverse
degrees of sui)jective and objective discrimination.
This causes social adjustment disorders that range
from moderate to severe.

The term "Obesity" is derived from the Greek
expression "ob-edere", which literally means over-eat-
ing. Along with the industrialization process, a
decrease in physical activity and other pathogenesis
have arisen from a sedentary life-style. That is to say,
whenever the intake of calories exceeds calories con-
sumed, the body becomes obese. Skeletal muscle
accounts for about 40% in the resting status, and
more during exercises, of total energy consumption.
Since it was reported that the percent of type I fibers
was negatively correlated with the percentage of body
fat (%fat), skeletal muscle characteristics have been
investigated in many obesity-related studies. As for
intervention methods, there have been two basic
research approaches: weight control by intake admin-
istration or by exercise training. In this article we

overview only the former.

3) Skeletal muscle characteristics

Due to its utilization of glucose and fatty acids,
skeletz]l muscle plays an important role in energy
metabolism as well as the liver. Thus, it has been
uged to study the mechanism of the development of
obesity in maﬁy studies. The main characteristics of
skeletal muscle found in studies are muscle fiber com-
position, muscle capillarization, enzyme activity, glu-
cose transporter 4 (GLUT4) and uncoupling protein 3
(UCP3) level, etc,

Skeletal musecle fibers are categorized as slow-
twitch (type I) and fast-twitch (type II) fibers accord-
ing to their contraction velocity. This contractive dif-
ference is due to the ATPase activity of the contrac-
tive protein, myosin heavy chain. Recently, type II
fibers have been further subclassified by myosin
ATPase staining into type IIA, type IIX and type IIB
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fibers in the rat muscle and type I1A and type IIX in
the human muscle” . The indices of capillaries around
fibers were seldom investigated. Muscular capillary
density is an important factor in insulin resistance
and glucose uptake since it affects not only the
absorption of nutrients but also insulin function.
Utriainen et al.” found that the ratio of capillaries
per fiber was positively correlated with both basal and
insulin- stimulated blood flow. The nutritive extent of
a single capillary of type IIB fibers is 20~30% larger
than that of type I fibers. This is compatible with the
insulin-insensitivity rank of muscle fibers and is con-
sidered to explain the difference in insulin sensitivity
between different fibers'® . Generally, it is believed
that type II fibers have more capillaries around
them’ . Andersen et al.'? reported a rank order of
this index In man as type I=type IIA>type IIX and a
similar mean fiber area of types I and IIX.

As for oxidative capacity, the resting oxygen uptake
adjusted for muscle size was found to correlate posi-
tively with the proportion of type II fibers and
inversely with the proportion of type I fibers' .
Muscle oxidative enzyme activity followed in rank
order by type I>type IIA>type IIX in human'’, while
type IIA>type IIX>type I>type IIB in rat™ . The rank
order for glycolytic enzyme activity in both humans™
¥ ig type IIB>type ITX>type A>type I
The Randle cycle theory indicates the interaction

and rats

between fatty acid and glucose metabolism' .
Skeletal muscle is guantitatively the most important
tissue involved in maintaining giucose homeostasis,
and accounts for ~80% of glucose disposal following a

11819 Tnsulin-mediated

glucose infusion or ingestion
glucose uptake oceurs principally in the skeletal mus-
cle, which is thus the major déterminant of insulin
1% Type I fibers have a higher insulin

sensitivity and a higher glucose uptake at rest and

sensitivity

during hyperinsulinemic euglycemic clamp than type
IT fibers. This is compatible with the observation that
NIDDM subjects whose insulin sensitivity is dimin-
ished have a low percentage of type I fibers™ and a
high percentage of type IIX fibers®** , Type IIB mus-
cle fibers are the most insulin-insensitive and are not
adapted to oxidation of fat during muscle work. This
characteristic most probably reflects or contributes to
the further development of insulin resistance and



BREESTR
WoAEB1E  1-14, 2003

- Glucose

thus to the further perpetuation of obesity
transport across the cell membrane is mediated by a
family of structurally related carrier proteins GLUTs.
GLUT4 is one of these and has been proposed to be
the predominant glucose transporter isoform
expressed in insulin-sensitive tissues such as skeletal
muscle and adipose tissue®* (Fig. 1). Its expression
correlates with the metabolic nature (oxidative vs.
glycolytic) of skeletal muscle fibers, rather than with
their contractile properties (slow twitch vs. fast
twitch) ® . In humans, the GLUT4 concentration in
oxidative muscle fibers (type I and type IA) is higher
than that in glycolytic fibers (type IIX). In rats,
GLUT4 is expressed higher in red compared with
white muscle®?®®  Furthermore, GLUT4 has been
regarded as being of particular importance for main-
taining whole body glucose homeostasis, because it
has been thought to catalyse the rate-limiting step for
glucose uptake and metabolism. Glucose transport in

the skeletal muscle is mediated by a process involving -

the translocation of GLUT4 from an intracellular site
to the plasma membrane and t-tubules®” . Red muscle
contains a higher amount of GLUT4 transporters at
the plasma membrane than white muscle in the basal
and insulin-stimulated states but GLUT4 transloca-
tion does not differ between muscle types™ .

UCPs are mitochondrial carrier proteins that catal-

yse a regulated protein leak across the inner mito-
chondrial membrane, diverting free energy from ATP
synthesis to the production of heat, making them
important for thermogenesis (Fig. 2). The uncoupling
protein homologues UCP2 and UCP3 could account
for this adaptive thermogenesis in a wide variety of

31,32,33,34,35)

animal species . UCP3 is a particularly good
candidate as a regulator of adaptive thermogenesis,
because it is expressed predominantly in brown adi-
pose tissue in rodents and in skeletal muscle® , a tis-
sue that makes an important contribution to net ener-
gy balance®™” , in both rodents and humans. The
expression of UCP3 at the protein level is fiber-type
specific, following a rank order of type IIX>type
I1A>type I . The abundant expression of UCP3 in
type IIB fibers does not fit with a role of IJCP3 in fatty
acid handling.

2. Discrepancies in cross-sectional studies on the relationship

between muscle characteristics and obesity

Lillioja et al. observed a significant correlation
between the %fat and the muscle fiber composition
{r=-0.32 for percent type I and r=0.32 for percent type
ITX). This observation was consistent with those in
other human studies in that the proportion of type I
fibers was negatively correlated with the percentage
of bady fat®*** or BMI® . Moreover, women with a

Fig. 1. Glucose transporter (GLUT) 4
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higher waist-hip ratio had less type I muscle fibers
and were more insulin-resistant when evaluated by
hyperinsulinemic glucose clamp measurements®' .
Abdominally obese subjects with insulin resistance, as
well as patients with NIDDM, showed a low percent-
age of type | fibers and elevated type II (particularly
type IIB) fibers® . In obese Zucker rats, the propor-
tion of type II fibers was larger in the vastus lateralis
and rectus abdominis muscles* . The muscle fiber
composition was then considered to be a predetermi.
nate factor for obesity. However, according to the dif-
ferent rank orders of muscle oxidative enzyme activity
in humans and rats, it is highly unlikely that humans
and rats have the same muscle fiber composition in
obese subjects.

A different opinion was raised by Simoneau and
Bouchard* who found no relationship between skele-
tal muscle fiber type proportion and relative subcuta-
neous fat distribution. From their data, which showed
significant and negative correlations in both genders
between the sum of six skinfold thicknesses and aero-
bic-oxidative capacity of skeletal muscle, a low oxida-
tive capacity of skeletal muscle was suggested to be
associated with obesity. In another study reported by
Simoneau et al.””, both obese and NIDDM subjects
exhibited a higher glycolytic-to-oxidative ratio than

lean controls did. This hypothesis was supported later
by the observation of a lower oxidative enzyme activi-

W8NS0 oy a negative correlation

ty in obese subjects
between oxidative capacity of muscle and percentage
of body fat* or visceral adiposity®™ . However, differ-
ent results also arose, which negated the difference in
absolute oxidative enzyme activity between obese par-

53,54}

ticipants and non-cbese controls or even suggested

the opposite opinion®*®

Capillarization was also suggested to be a determi-
nant of obesity. Several studies indicated an inverse
correlation between obesity and the capillary to fiber

39,57)

ratioc or capillary density™*® although there were
some contradictory reports from other groups. Lithell
et al*® studied muscle samples from 48 glucose-toler-
ant middle-aged men. They found that the lipoprotein
lipase activity was correlated with capillary density.
The serum insulin concentration, which is closely
associated with obesity, correlated positively with the
mean fiber area per capillary. In the study by Marin
et al.*, control subjects with abdominal obesity and
insulin resistance, as well as patients with NIDDM,
exhibited a low capillary density suggesting a possible
regulatory effect of insulin on myosin synthesis in
muscles,

In rats, the difference in skeletal muscle fiber types

Fig. 2. Uncoupling protein
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was accompanied with different insulin receptor™
and GLUT4 levels but not the intrinsic activity of
GLUT4®® . Megeney et al.*” found a significantly
high correlation between the proportion of oxidative
fibers and GLUT4 content. The GLUT4 protein level

8162 However, in the

is not decreased in obese subjects
skeletal musele of obese® or obese diabetic® sub-
jects, GLUT4 translocation was found to be impaired.

Compared to lean controls, obese Zucker fa/fa rats
have a 41% decrease in UCP3 mRNA concentration in
the soleus muscle®® . In human obesity, the muscle
UCP3 mRNA concentration had no correlation with
BMI®"  In NIDDM patients, a positive correlation
between UCP3 expression and whole-body insulin-
mediated glucose utilization rate, that is, an inverse
correlation with insulin resistance was noted™ .

Unfortunately, without interventions, all of these
cross-sectional studies were inadequate to clarify any
of these discrepancies.

3. Studies of diet-induced obesity
1) Muscle fiber composition

Abou Mrad et al.*¥ carried out a high-fat-diet (HFD)
trial using rats to determine whether a significant
relationship exists between susceptibility to HFD-
induced obesity and skeletal muscle fiber type or not.
They observed a significantly higher proportion of
type I muscle fibers in cbesity-resistant rate’ medial
head of the gastrocnemius muscle than obesity-prone
rats both before and after the HFD feeding period.
Together with the cross-sectional data of Wade et
al.’ | they considered the preexisting differences in
muscle fiber composition to be a determining factor of
susceptibility to dietary obesity. This hypothesis was
widely accepted in view of the higher oxidative capaci-
ty of type I fibers. However, the hypothesis could not
explain the different rank order of oxidative capacity
in muscle fibers between humans and rats. To clarify
this, Suwa et al.™ employed genetically fast-twitch
fiber dominant rats (FFDR) and fed them HFD as well
as control rats. Interestingly, the FFDR were more
obegity-resistant than the control rats. This observa-
tion precluded the skeletal muscle fiber composition
as a determinant of obesity. Less type I fibers in obese
subjects may be a consequence rather than a prede-

terminate factor of obesity. The significant difference
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in oxidative enzyme activity and its increase between
the FFDR and control rats suggest muscle oxidative
capacity and its adaptation to be possible candidates.

2) Muscle capillarization

There have been few studies on the relationship
between the obese process and capillarization.
Increased circulating insulin concentration has a cap-
illary proliferative effect, perhaps to compensate for
reduced capillary insulin diffusion and metabolic
capacity of the muscle™ . Holméng et al.™ demonstrated
that the number of capillaries per unit muscle surface
area was significantly increased after insulin expo-
sure. In the later stage, obesity causes insulin resist-
ance of the skeletal muscle and then, more seriously,
hyperinsulinemia. This is why the process of obesity is
usually accompanied with an increase in the serum
insulin concentration. So, exposure to jnsulin, which
was used by Holmang et al.”®, can be considered as a
simulation of the obese process by this means. It is
then difficult to explain the inverse correlation
between obesity and the capillary to fiber ratio™ or
capillary density™™ found in cross-sectional studies.
Further studies are needed.

3) Enzyme activity

Accompanying the accumulation of adipose, a high-
fat diet (HFD) brought about an increase in the mus-
cle oxidative enzyme activities®™ ™™™ and the abil-
ity to endure exercise. The improved aercbic capacity
was considered to be the result of the oxidative enzy-
matic adaptation in the muscles™™ . However, Iossa
et al.” did not find an increase in activity of suceinie
dehydrogenase (SDH) and citrate synthase (CS) in
HFD-fed rats, although the whole body lipid oxidation
was enhanced through an increased mitochondrial
capacity to use lipids as metabolic fuels. Similarly,

Gayles et al*™

reported that no significant difference
in absolute enzyme activities was observed between
obesity-prone rats and obesity-resistant rats after a 5-
week HFD period. HFD did not produce an adaptation
in those muscle enzyme systems. By the correlations
between enzyme ratios (phosphofructokinase (PFE)/
8 -hydroxyacyl coenzyme A dehydrogenase (3 -HAD}
and 8-HAD/CS) and body weight gain, they suggest-
ed that rats most susceptible to weight gain on a HFD
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were characterized by an early tissue enzymatic pro-
file that favors carbohydrate over fat use®™ . It worth
noting that metabolic differences among HFD rats
tended to occur early (1-2 week) and disappear by
week 5 in this study. Reestablishing a normal weight
gain profile at the expense of an elevated body weight
might occur due to the prolonged diet intervention, in
which case both the difference in the percentage of
diet fat and the diet period may contribute to the dif-

ferent results.

4) GLUT4

Wilkes et al.® fed male Sprague-Dawley rats a
modified HFD for 3 weeks and found that feeding a
HFD induced a reduction in insulin-stimulated glu-
cose uptake in rat skeletal muscle. This was consis-
tent with other studies in rats®*****  HFD reduces
glucose tolerance, insulin-stimulated glucose disposal
and glucose uptake in the skeletal muscles®™ . The

#9759 in the skeletal muscles of ani-

insulin resistance
mals subjected to the HFD appeared to be due to a
reduced GLUT-4 protein concentration®*** and the
impaired translocation of GLUT4 to the plasma mem-

brane %,

S)UCP3

Although having an important contribution to ther-
mogenesis, UCP3 was not modulated by changes in
environmental temperature®™ or acute exercise™ but
by food intake™ or the fatty acid flux® . The skeletal
muscle UCP3 mRNA™** or UCP3 protein levels®™
are upregulated by a HFD. However, Surwit et al.*®
negated the effect of HFD on UCP3 in mice. Clapham
et al.”” reported that transgenic mice which overex-
press human UCP3 in the skeletal muscle weighed
less than their wild-type littermates even though they
were hyperphagic and had a striking reduction in adi-
pose tissue mass. Weigle et al.™ measured the muscle
UCP3/actin mRNA ratio in moderate fat high-energy
diet-fed rats. The obesity-resistant rats had a 3-fold
higher UCP3/actin mRNA ratio than obesity-prone
rats. It seemed that these rats might initially resist
weight gain through a greater induction of muscle
UCP3. Elevation of the circulating free fatty acid lev-
els in animals fed by intralipid plus heparin infusion
caused significant increases in the UCP3/actin mENA
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ratio compared with saline-infused fed controls in
both the extensor digitorum longus and soleus mus-
cles. Brun et al.® have shown that the muscle UCP3
levels are increased during postnatal development in
mice using diets that elevate the circulating free fatty
acid levels. The gastrocnemius muscle UCP3 levels
were increased in previously fasted rats when they
were re-fed a HFD which increased the circulating
free fatty acid (FFA) levels® . Muscle UCP3 did not
change when these rats were re-fed a low-fat diet
which did not increase FFA. It seems that muscle
UCP3 functions more to aid in the disposition of FFA
than to defend body fat stores against chronic changes
in energy intake® .

4. Studies of diet-induced weight loss
1) Muscle fiber composition

Yamaguchi et al.'™ reported the absence of a differ-
ence in muscle fiber composition of the soleus and
extensor digitorum longus muscles between food-
restricted and control rats. Niskanen et al.'®™ investi-
gated the influence of an improvement in insulin
resistance by weight loss on skeletal muscle fiber com-
position. They took skeletal muscle biopsies before
and after a 12-week very low calorie diet from 7 obese
non-diabetic subjects. No significant change in the
proportion of type II fibers occurred during the study.
Similarly, Kempen et al. " reported the absence of a
change in fiber type distribution after 8 weeks' energy
restriction. Energy restriction was also used to study
the age-associated fiber loss and fiber type changes of
the vastus lateralis muscle in rats. The data indicated
that calorie restriction begun in late middle age could
retard this kind of degeneration in the skeletal muscle
19 Instead of food restriction, a fructose-rich diet was

used in other studies™'*®

. The body weight of rats in
the diet group was significantly lower compared to the
rats in the control group. The percentage of type I
fibers decreased and type ITA fibers increased signifi-
cantly in the diet-fed rats. Fructose-rich diet-induced
insulin resistance was suggested to contribute to

these changes.

2) Muscle capillarization
Niskanen et al.’® demonstrated that the skeletal

muscle capillary density did not change with the
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improvement in insulin sensitivity induced by weight
loss. Lindgarde et al.®® used a 6-month diet-exchange
protacol to study middle-aged men with impaired glu-
cose tolerance. The number of eapillaries per fiber was
normal throughout, but as the muscle fiber size was
reduced in relation to the decreased body weighf, the
capillary density increased during the dieting period.

3) Enzyme activity
Simoneau et al.** found that the activities of some

muscular oxidative enzymes (cytochrome c oxidase
(COX) and B-HAD but not CS) in women but not in
men decreased after a 4-month weight loss program
which combined a very low calorie diet and an inten-
sive program of behavioral intervention. The glycolyt-
ic enzyme (glyceraldehyphosphate dehydrogenase
(GAPDH) for both genders but phosphofructokinase
(PFK) for men only) activities decreased in both men
and women. Enzymes reflecting S -oxidation (8-
HAD) in obese women did not change after the 8
weeks' energy restriction™® , Similarly, Steinberg et
al.® found that two weeks of 66% food restriction
compared to ad libitum-fed controls had no effect on
rats' 8-HAD or CS activities, although the mean body
weight decreased by more than 10%. Lindgarde et al.
199 studied middle-aged men with impaired glucose
tolerance. Enzyme activities in the gastrocnemius
muscle were subnormal and uninfluenced by changed
dietary habits, although the body weight was reduced
significantly.

4) GLUT4

Morbidly obese patients have been studied before
and 6 months after biliopancreatic diversion, an oper-
ation that induces predominant lipid malabsorp-
tion"™ . Glut4 expression was restored and insulin
resistance was fully reversed in parallel with signifi-
cant weight loss. However, in the gastric bypass sur-
gery study by Friedman et al., muscle biopsies
obtained from the vastus lateralis before and after
weight loss revealed no significant change in the lev-
els of GLUT4 glucose transporter protein, although
maximal insulin-stimulated glucose transport activity
in incubated muscle fibers was increased twofold to
88% of normal™™ . Seraphim et al™ obgerved the
same phenomenon in their study. Weight loss did not
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change the skeletal muscle GLUT4 content in rats.
The study of Cartee et al."” in adult, middle-aged,
and old rats duplicated this result. A similar result
was obtained in a 30% calorie restrictive survey for 6
years in monkeys. Whole body insulin sensitivity was
significantly increased while the expression of GLUT4
was not altered"® . It seems that the mechanism for
the improvement in insulin sensitivity due to energy
restriction results from enhanced transporter translo-
cation and/or activation rather than GLUT4 concen-

tration.

5)0CP3

The muscle UCP3 expression levels are increased
acutely with fastingss.os.w.ﬂ,m.m.ns.us) but decreased by
50% food restriction for 1 week® . A much longer
intervention such as in a study with 10 weelks of .
dietary restriction, which led to a 10% weight loss, did
not result in any significant changes in the muscle
UCP3 mRNA levels in either obesity-prone or obesity-
resistant animals® ., The upregulation of UCP3
mRNA concentrations during the fasting pertod seems
to be transient, maybe in response to acute metabolic
and hormonal changes. The long-term downregulation
is consistent with the increased feeding efficiency that
contributes to the increased weight gain observed
after cessation of energy restriction. Weigle et al™”
supposed the free fatty acids to be a potential media-
tor of the increase in muscle UCP3 expression that
occurs during fasting. This was supported by the data
of Schrauwen et 8l*", which showed that regulation
of UCP3 was a fat metabolism-mediated effect.

5. Conclusions and perspectives

Longitudinal studies provided the possibility to
reveal the causality between skeletal muscle charac-
teristics and cbesity. Except for a few differing opin-
jons, which might be due to the difference in method-
ology, muscle fiber composition, capillarization and
enzyme activity, the GLUT4 and UCP3 levels seem to
be the consequences of an obesity-related metabolic
alteration rather than the predeterminate factors of
obesity. They are affected by the adipose accumula-
tion/consumption-induced change in glucose, insulin,
FFA, etc. The difference in adaptation to these
changes may lead to the difference in obesity/lean sus-
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ceptibility.

The different results in this review might result
from some limitations in the study protocols, Muscle
oxidative enzyme activities are different in various
muscles or muscle portions. Compared to the precise
open biopsy method used in animal studies, it is diffi-
cult to obtain muscle tissue from the same portion
using a needle muscle biopsy method in human stud-
ies. Physical activity is another important confound-
ing factor that should be taken into account since it
greatly regulates the muscle enzyme activities.
Generally speaking, cage-raised animals are much
easier to contral in terms of their physical activities
than humans. A similar energy intake is also impor-
tant for comparability. In view of the above, we are
carrying out studies based on a more precise study
protocol. In these studies, skeletal muscle adaptation
to diet-induced weight control is being investigated in
rats. Visceral adipose was chosen to be the classifica-
tory criterion. Energy intake is not significantly dif-
ferent. Muscle samples are collected from the same
portion of the same muscle before and after the diet
periods. Results which may contribute to the knowl-
edge of obesity/lean-susceptibility are expected.
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