PROTEASOMES AND MOLECULAR CHAPERONES

found that in vivo and in vitro inactivation of Hsp90 caused disso-
ciation of the 26§ proteasomes into their constituents. Conversely,
these dissociated constituents reassembled in Hsp90-dependent
fashion both in vivo and in vitro. These processes were
ATP-dependent and were suppressed by geldanamycin, an Hsp90
inhibitor. These results strongly suggest that the ATPase activity of
Hsp90 is essential to the assembly and maintenance of the 26S
proteasome and that Hsp90 plays some regulatory roles on the UPS
pathway through assembly and disassembly of the 26S proteasome
(Fig. 1). At this point of view, the complete dissociation of the 26S
proteasome after severe heat shock might be worth mentioning. Our
data showed that during 4-hour after incubation at 50°C, the activities
and the amount of the 26S proteasome were repressed during this
petiod and were partally suppressed by overexpression of Hsp90.
Such suppression is rational, considering that the 26S proteasome
presumably requires heat-shock protein, Hsp90, for its biogenesis.
Hsp90s are also required for heat-damaged proteins and might be
busy after thermal insults. The disappearance of the 268 proteasome
is also reasonable because while cells must acquire vital proteins
without protein synthesis, they have to refold heat-denatured proteins,
which usually might be degraded by the 26S proteasome. In this
regard, the regulation of the 26S proteasome by Hsp90 is important
for cell viability under severe stress conditions, which might form
part of a fundamental survival mechanism. Considering this regula-
tory role of Hsp90, impairment of the UPS pathway caused by
protein aggregation®” might be partially brought about by the collapse
of this regulation; the protein aggregates deprived of Hsp90 in cells.

PERSPECTIVES

Although recent studies have revealed that multiple steps of inter-
actions between molecular chaperones and the UPS pathway enable
cells to survive stressful environments, our understanding of these
interactions is not fully satisfactory. In the endoplasmic reticulum
(ER) quality control system, the fate of unfolded proteins is regulat-
ed by two transcriptional programs to induce ER chaperones®® and
ER-associated degradation (ERAD)-components,”® depending on
the quality and/or quantity of unfolded proteins accumulated in ER.
Since the degradation of unfolded proteins in both ER and cytosol
is responsible for the cytosolic UPS pathway, more highly organized
mutual interaction between cytosolic molecular chaperones and
UPS might be required to give versatility to cells; cells have to
change the proportions of unfolded proteins to be refolded or
to be degraded in response to environmental conditions. Further
identifications should be made to define these interactions and their
physiological significance.

One of the unanswered fundamentally critical issues in the pro-
tein quality control system is how unfolded proteins are designated
to either refolding or degradation in the cell. How does the cellular
machinery know the degree of protein impairment? Is there a pathway
for severely unfolded proteins incapable of refolding by the chaperone
team to be processed through the UPS pathway for their degradation?
Even though molecular chaperones and UPS are principal players
that work jointly in this pathway, the possibility that as-yet-uniden-
tified molecule(s) handles refolding and destruction of unfolded
proteins cannot be excluded. Whether the cell can indeed manage
such a balance awaits future study.

In this review, we focused on the Hsp70 and Hsp90 as chaperone
molecules responsible for the quality control system, but we should
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keep in mind that ubiquitin is also a member of the heat shock family
proteins. During the last decade, it has become evident that cells
have at least two or more polyubiquitin genes encoding multiple
ubiquitins in 2 tandem fashion,’ and expression of the polyubiquitin
gene is up-regulated in response to various stresses. This elegant way
devised evolutionarily to produce ubiquitin efficienty means that
large amounts of ubiquitin are required for cell survival under
environmental stressful conditions. In fact, two polyubiquitin genes
are not necessary in normally proliferative budding yeast, but they
become essential under stress conditions. Thus, it is worth emphasizing
that not only the refolding machine but also the degrading machin-
ery is also stress-inducible. Intriguingly, inhibition of the UPS path-
way induces heat shock-response,%0-62 and increased ubiquitin-
mediated proteolysis can replace the essential requirement for the
heat shock protein induction.® Moreover, molecular chaperones,
such as Hsp70 and Hsp90, are responsible for the maintenance of
functional states of the UPS pathway, particularly the 268 proteasome
as mentioned above.36 These observations uncover a strong functional
link between UPS and molecular chaperones.

Various diseases are caused by failure of proper protein folding.
Accumulation of protein aggregates, which are cytotoxic, is tightdly
linked to neurodegenerative diseases, and the instability caused by
misfolding is associated with cystic fibrosis, maple syrup urine discase,
cancer,%4 myotonic dystrophy,%> immunodeficiency,% and type 2
diabetes.5” These facts indicate that regulation of intracellular balance
between refolding and degradation is a critical issue for cells. We
speculate that not only mutations of each protein, but also the
deficiency of the chaperone or the UPS system may cause protein
misfolding or aggregation. It is noteworthy to point out that pro-
teasome inhibitors increase the frequency of ubiquitin-positive
intracellular inclusions that carry the genes of many neurodegenera-
tive disorders.586? Therefore, one could assume that a critical aspect
of various neuronal degenerative diseases is failure of protein quality
control mediated by molecular chaperones and/or UPS. There is a
great interest in the interaction between some putative protein folding
diseases and the chaperone system or the UPS pathway. Further
studies are required to clarify this issue molecularly.
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