A Spinal
cord

Muscle C S

C S

Fig. 4. Effects of castration on transgene ex-
pression and neuropathology of male AR-97Q
mice. (A) Western blot analysis of total homoge-
nates from the spinal cord and muscle of castrated
(C) and sham-operated (S) male AR-97Q mice,
that were immunolabeled by N-20. (B) Western
blot analysis of nuclear (N) and cytoplasmic (CY)
fraction from muscle of castrated (C) and sham-
operated (S) male AR-97Q mice, immunolabeled
by N-20. (€) Immunohistochemical study using
1C2 showed marked differences of diffuse nuclear
staining and nuclear inclusions between castrated
and sham-operated AR-97Q mice in the spinal
anterior horn and muscle.

sir et al., 1995). More recently, conditional inactivation of wild-
type huntingtin selectively in forebrain and testis resulted in a
progressive degenerative neuronal phenotype and sterility
(Dragatsis et al., 2000). Additionally, an anti-apoptotic effect of
wild-type huntingtin was revealed in a cell model (Rigamonti et
al., 2000). These results imply that loss of normal huntingtin
function may contribute to the neurodegeneration in HD.
Androgens have been found to have neuroprotective effects.
Administration of testosterone immediately after nerve injury
impacts positively on functional recovery through actions me-

C S N CY N CY

sham-operated

diated by the androgen receptor (Jones at al., 2001). In a cell
culture model, AR with 24 CAGs showed trophic effects,
whereas AR with 65 CAGs did not demonstrate any neuropro-
tection (Lieberman et al., 2002). The role of normal AR func-
tion in the pathogenesis of SBMA should be further studied in
cell and animal models.
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Fig. 8. Hypothetical dynamics of mutant AR
in SBMA. In the absence of ligand, mutant AR is
confined to a multi-heteromeric inactive complex
with heat shock proteins (HSPs) and immuno-
philins in the cell cytoplasm, Upon testosterone-
binding, the conformational change of mutant AR
facilitates its dissociation from the complex and
translocation into the nucleus. Mutant AR is
cleaved and aggrepgates in the nucleus, whereas
cellular mechanisms such as molecular chaperone
and ubquitin-proteasome system attemnpt 10 miti-
gate its toxicity. Aggregation sequestrates critical
cellular proteins such as CREB-binding protein
(CBP) resulting in aberrant transcription, and
finally forms nuclear inclusions. On the other
hand, decreased transactivating function of mu-
tant AR may contribute to the neurodegeneration
and androgen insensitivity in SBMA.

Toward therapy for SBMA and other poly( diseases

As mentioned above, our recent study indicated that testos-
terone reduction exerts therapeutic effects by preventing nu-
clear translocation of mutant AR in the SBMA transgenic
mouse model (Fig, 5). This approach can easily be applied to
human SBMA therapy. Although no specific ligand of the
mutant protein has been revealed in other polyQ diseases, the
striking therapeutic effects of castration in our SBMA mice fur-
ther suggest that patients with polyQ disease can be rescued by
preventing the nuclear translocation of the mutant proteins.
We emphasize the need of investigating hormone-like small
molecules which alter the nuclear localization of mutant pro-
teins for developing therapeutic intervention.

No substantially effective therapeutic approach to polyQ
diseases has been developed in spite of continuous efforts.
However, some promising results using transgenic animal mod-
els have been reported. Molecular chaperones, which renature
misfolded mutant proteins, have exeried beneficial effects in
cell and animal models of polyQ diseases (Kobayashi et al.,
2001). Over-expression of molecular chaperone HSP70 had
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SHORT REPORT

Sjégren’s syndrome associated painful sensory
neuropathy without sensory ataxia

K Mori, M lijima, M Sugiura, H Koike, N Hattori, H lto, M Hirayama, G Sobue

---------------------------------------------------------------

ensory neuropathy with prominent ataxia reflecting

kinesthetic sensory impairment is a well recognised form

of neuropathy associated with Sjogren’s syndrome.’™*
Pathologically, T cell invasion of dorsal root ganglia, loss of
large sensory neurons, and secondary large fibre degeneration
is seen in this neuropathy.* However, a form of neuropathy
associated with Sjogren’s syndrome, presenting with pain and
superficial sensory involvement without sensory ataxia has
been described anecdotally’ and in a case report.® Clinico-
pathological details of the second form of neuropathy have not
been elucidated. In this report we describe seven patients with
Sjogren’s syndrome showing painful sensory neuropathy
without sensory ataxia.

Patients studied were referred for painful neuropathy to
Nagoya University Hospital and its affiliated institutions. All
seven patients fulfilled diagnostic criteria for Sjogren’s
syndrome by the American-European Consensus Group’ and
showed painful peripheral neuropathy (table 1). Patients
included six women and one man, ranging from 25 to 72 years
old. In all patients initial symptom of neuropathy was paraes-
thesia or painful dysaesthesia in the most distal portions of
the extremities, later extending proximally to involve the
entire legs and arms. The trunk became involved in three
patients, and the trigeminal nerve was impaired in three
patients. Asymmetry in sensory impairment was present in
four patients. None of the patients showed sensory ataxia in
the initial phase. Most patients retained essentially normal
muscle strength, but patient 1 showed slight weakness in dis-
tal limb muscles. Painful sensation was the most characteris-
tic, and this symptom compromised activities of daily living in
all patients. Superficial sensation for pinprick and tempera-
ture was prominently impaired. Deep sensation such as joint
position and vibratory sense was substantially well preserved.
Sensory ataxia and Romberg’s sign was not seen. Autonomic
dysfunction was seen in four patients including Adie’s pupils,
urinary disturbance, and loss of '*I-MIBG cardiac accumula-
tion; however, orthostatic hypotension was not present.
Apparent hypohidrosis was seen in three patients. Thermal
stimulation in two patients, resulted in absent sweating on the
forehead, trunk, arms, and legs, with preserved sweat gland
function on pirocarpine test. Thermography showed abnormal
skin temperature gradient in four patients. Deep tendon
reflexes were comparatively well preserved except in two
patients. Moter nerve conduction studies showed no slowing
{mean (SD) 52.3 (3.9) my/s in the median, 44.8 (6.1) m/s in the
tibial nerves) and preserved compound muscle action
potentials (CMAPs) (7.5 (3.5) mV in the median, 9.0 (6.3) mV
in the tibial nerves). Sensory nerve conduction (50.1 (6.0) m/s
in the median, 47.2 (10.4) m/s in the sural nerves) and sensory
nerve action potentials (SNAPs) (13.6 (11.7) uV in the median
and 9.0 (6.3) uV in the sural nerves) were generally well pre-
served; only in patient 4, SNAPs were not evoked. Somatosen-
sory evoked potentials (SEPs) were also well preserved (mean
(SD) 20.0 (1.1) ms at N20, 13.7 (1.2) ms at N13, and 9.3 (0.4)
ms at N9).

Sural nerve biopsy in five patients showed a variable degree
of myelinated fibre loss, predominantly affecting small diam-
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eter fibres (table 1, fig 1). Unmyelinated fibre density also was
severely reduced. Axonal sprouting was essentially absent in
all patients. In teased fibre preparations, degeneration was
seen in 32% to 55% of axons, predorminantly small diameter
fibres. Vasculitis was not seen.

Patient 2 developed sensory ataxia in the legs over the next
nine years, and more details of this patient are given below.
Patient 4 developed localised sensory ataxia in the fingers of
the right hand over 11 years. Other patients showed persistent
painful sensory neuropathy with gradual extension of
distribution over 4 to 11 years of follow up.

CASE REPORT

A 68 year old man had painful dysaesthesia and numbness in
the feet for about 10 years, with spread to the proximal of the
legs and arms. When he was 56 years old, he noticed painful
dysaesthesia in the legs, and subsequently in the hands.
Neurological examination demonstrated light touch and pin-
prick were disturbed, and painful dysaesthesia was elicited in
glove and stocking distribution. Vibration and joint position
sense was comparatively well preserved for the first time. Sen-
sory ataxia and Romberg’s sign were not seen. Deep tendon
reflexes were well preserved in upper limbs, but mildly
decreased in lower limbs. Muscle strength was normal. Auto-
nomic disturbance was not present. Nerve conductions were
nearly normal except for sensory conduction in the median
nerve, 40 m/s. SNAPs were well preserved. Result of routine
blood haematology and biochemistry screening tests were
normal. CSF protein was 33 mg/dl with no cells. A sural nerve
biopsy specimen revealed myelinated fibre loss predominantly
involving small diameter fibres with axonal degeneration.

G
Figure 1

(A) Transverse section of a sural nerve specimen from a
control subject. [B) Specimen from a patient of painful sensory
neurcpathy with predominant small fibre loss associated with
Sjgren’s syndrome {patient 1}. Small diameter myelinated fibres are

more noticeably involved and no axonal sprouting. Bars=25 pm.
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In the next nine years, involvement of deep sensation
gradually developed. At 68 years old, he showed sensory ataxia
in the legs and positive Romberg’s sign without muscle weak-
ness. The deep tendon reflexes were almost absent. Motor
nerve conduction velocities were still preserved, but sensory
nerve action potentials were not elicited in the median and
sural nerves. At this time, sicca symptoms were obvious, and a
Rose Bengal test was positive. A lip biopsy specimen showed
periacinar lymphocytic infiltration. Second sural nerve biopsy
on the other side showed severe large fibre loss as well as small
fibre loss without axonal sprouts.

DISCUSSION

The most well recognised form of Sjogren’s syndrome associ-
ated neuropathy has been sensory ataxic neuropathy associ-
ated with profound impairment of kinesthetic sensation.™* **°
Neuropathologically, T cell invasion in the dorsal root ganglion
as well as loss of large ganglion neurons and their iarge axons
have been verified.* However clinicopathological findings in
our patients differed remarkably from those of sensory ataxic
neuropathy. Painful sensation and hyperalgia in our patients
suggested involvement of small nociceptive nerve fibres as has
been demonstrated."”

Indeed, in sural nerve of our patients, small myelinated and
unmyelinated fibres were predominantly involved; electro-
physiologically, amplitudes of SNAPs were comparatively pre-
served, particularly in contrast with sensory ataxic neu-
ropathy. Findings in the dorsal root ganglion in this
neuropathy have not been described, but predominant small
fibre loss, extremely rare axonal sprouts, lack of vasculitis, lack
of motor involvement, and fairly well preserved SEPs suggest
that small dorsal root ganglion neurons can be involved.

As demonstrated by the clinical course of our patients, some
patients show persistent symptoms or a slowly progressive
course while remaining limited to a painful small fibre type of
neuropathy, while others, including one of our patients, may
later develop sensory ataxic neuropathy presumably involving
large sensory neurons. Additionally, one of our patients devel-
oped localised unilateral semsory ataxia in the fingers,
suggesting that some patients may develop localised sensory
ataxia. These observations suggest that painful sensory
neuropathy with predominant small fibre loss and sensory
ataxic large fibre neuropathy are elements of a spectrum of
sensory neuropathy in Sjégren’s syndrome.

www.jnnp.com
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In summary, these patients suggest that painful sensory
neuropathy with predominant small fibre loss is an identifi-
able subtype of Sjogren’s syndrome associated neuropathy.

Authors’ affilictions

K Mori, M lijima, M Sugiura, H Koike, N Hefteri, H Ho,

M Hirayama, G Sobue, Depariment of Neurology, Nagoya University
Graduate School of Medicine, Nogoya, Japan

Competing interests: none declared.

Correspondence to: Dr G Sobue, Depariment of Neurology, Nagoya
University Graduate School of Medicine, Nagoya 466~8550 Japan;
sobueg@med.nagoya-u.ac.ip

Received 31 October 2002
In revised form 26 January 2003
Accepted 14 March 200

REFERENCES

1 Kennett R®, Hording AE. Peripheral neuropathy associated with the
sicca syndrome. J Neurol Neurosurg Psychiatry 1986;49:90-2

2 Graus F, Pou A, Kanterewicz E, et al. Sensory neuronopathy and
Sjbgren’s syndrome: clinical and immunologic study of two patients.
Neurology 1988:38:1637-9.

3 Gemignani F, Marbini A, Pavesi G, et al. Peripheral neuropethy
associated with primogl Sidgren’s syndrome. J Naurol Neurosurg
Psychiatry 1994,57:983-6.

4 Griffin JW, Comblath DR, Alexander E, et al. Ataxic sensory neuropathy
and dorsal root ganglionitis associated with Sjégren’s syndrome. Ann
Neurol 1990;27:304-15,

5 Gront 1A, Hunder GG, Homburger HA, ef ol. Peripheral neuropathy
associated with sicca complex. Neurology 1997;48:855-62.

6 Denislic M, Meh D, Popovic M, ef al. Small nerve fibre dysfunction in a
patient with Sjdgren’s syndrome. Naurophysiologicol and morphelegicol

confirmation. Scand J Rheumatal 1995;24:257-9.

7 Vitgdi C, Bombardieri S, Jonsson R, e ol. Classification criteria for
Sitgren's syndrome: o revised version of the European criteria propossd
bypgm American-European Consensus Group. Ann Rheum Dis
2002;61:554-8.

8 Scbue G, Yo?udo T, Kachi Té:l' F:éfhro;ic ressive ;efsxw'y ataxic
neuropathy: clinicopathologi res of idiopathic and Sjdgren’s
syndrome-z;ssocicbed cases. J Nevrol 1993;240:1-7.

9 Kumazowa K, Sobue G, Yamamoto K, ef al. Segmental anhidrosis in
the spinal dermatomes in Sjdgren’s syndrome-associated neuropathy.
Neurology 1993;43:1820-3.

10 Mori K, Koike H, Misu K, ef al. Spinal cord
demonsirates sensory neuronal involvement a
neuron associated with Sjdgren’s syndrome. J Neurol Neurosurg
Psychiairy 2001;71:488-92.

11 Wekke JH, van Difk GW. Sensory neuropathies including painful and
toxic nevropathies. J Neurol 1997,244:209-21.

netic resonance imaging
clinicol severity in



The EMBO Journal (2004) 23, 1977-1986 | © 2004 European Molecular Biology Organization [ Alf Rights Reserved 0261-4189/04

www.embaojournal.org

THE

EMBO

JOURNAL

A novel protein-conjugating system for Ufm1,

a ubiquitin-fold modifier

Masaaki Komatsu', Tomoki Chiba’,

Kanako Tagsumi‘, Shun-ichir40 lemura?,

Isei Tanida®, Noriko Okazaki®, Takashi
Ueno?, Eiki Kominami®, Tohru Natsume?
and Keiji Tanaka'*

!Department of Molecular Oncology, Tokyo Metropolitan Institute

of Medical Science, Bunkyo-ku, Tokyo, Japan, ®National Institutes

of Advanced Industrial Science and Technology, Biological Information
Research Center (JBIRC), Kohtoh-ku, Tokyo, Japan, *Department of
Biochemistry, Juntendo University School of Medicine, Bunkyo-ku,

Tokyo, Japan and “Kazusa DNA Research Institute, Kazusa-Kamatari,
Kisarazu, Chiba, Japan

Several studies have addressed the importance of various
ubiquitin-like (UBL) post-translational modifiers. These
UBLs are covalently linked to most, if not all, target
protein{s) through an enzymatic cascade analogous to
ubiquitylation, consisting of E1 (activating), E2 (conjugat-
ing), and E3 (ligating) enzymes. In this report, we des-
cribe the identification of a novel ubiquitin-fold modifier 1
(Ufm1) with a molecular mass of 9.1kDa, displaying
apparently similar tertiary structure, although lacking
obvious sequence identity, to ubiquitin. Ufm1 is first
cleaved at the C-terminus to expose its conserved Gly
residue. This Gly residue is essential for its subsequent
conjugating reactions. The C-terminally processed Ufm1 is
activated by a novel El-like enzyme, Uba$, by forming a
high-energy thioester bond. Activated Ufm1 is then trans-
ferred to its cognate E2-like enzyme, Ufcl, in a similar
thioester linkage. Ufml forms several complexes in
HEK293 cells and mouse tissues, revealing that it conju-
gates to the target proteins. Ufml1, Uba5, and Ufcl are all
conserved in metazoa and plants but not in yeast, suggest-
ing its potential roles in various multicellular organisms.
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Introduction

Protein modification plays a pivotal role in the regulation and
expansion of genetic information. In the past two decades, a
new type of post-translational protein-modifying system has
been identified whose uniqueness is that protein(s) is used as
a ligand, that is, modification of protein, by protein, and for
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protein. A typical system is the ubiquitylation, a modification
system in which a single or multiple ubiquitin molecules are
attached to a protein, which serves as a signaling player that
controls a variety of cellular functions (Hershko and
Ciechanover, 1998; Pickart, 2001). Protein ubiquitylation is
catalyzed by an elaborate system highly regulated in the cells,
which is catalyzed by a sequential reaction of multiple
enzymes consisting of activating (E1), conjugating (E2), and
ligating (E3) enzymes. E1, which initiates the reaction, forms
a high-energy thiolester bond with ubiquitin via adenylation
in an ATP-dependent manner. The El-activated ubiquitin is
then transferred to E2 in a thioester linkage. In some cases, E2
can directly transfer the ubiquitin to substrate proteins in an
isopeptide linkage; however, E2s mostly requires the partici-
pation of E3 to achieve substrate-specific ubiquitylation
reaction in the cells. E3s are defined as enzymes required
for recognition of specific substrates for ubiquitylation, other
than E1 and E2 (Varshavsky, 1997; Bonifacino and Weissman,
1998; Glickman and Ciechanover, 2002).

A set of novel molecules called ubiquitin-like proteins
(UBLs) that have structural similarities to ubiquitin has
been recently identified (Jentsch and Pyrowolakis, 2000).
They are divided into two subclasses: type-1 UBLs, which
ligate to target proteins in a manner similar, but not identical,
to the ubiquitylation pathway, such as SUMO, NEDDS, and
UCRP/ISG15, and type-2 UBLs (also called UDPs, ubiquitin-
domain proteins), which contain ubiquitin-like structure
embedded in a variety of different classes of large proteins
with apparently distinct functions, such as Rad23, Elongin B,
Scythe, Parkin, and HOIL-1 (Tanaka et al, 1998; Jentsch
and Pyrowolakis, 2000; Yeh et al, 2000; Schwartz and
Hochstrasser, 2003).

In this report, we describe a unique human UBL-type
modifier named ubiquitin-fold modifier 1 (Ufml) that is
synthesized in a precursor form consisting of 85 amino-acid
residues. We also identified the human activating (Uba5) and
conjugating (Ufcl) enzymes for Ufml. Prior to activation by
Ubas, the extra two amino acids at the C-terminal region
of the human proUfml protein are removed to expose Gly
whose residue is necessary for conjugation to target mole-
cule(s). Lastly, we show that the mature Ufm1 is conjugated
to yet unidentified endogenous proteins, forming ~ 28, 38,
47, and 70kDa complexes in human HEK293 cells and
various mouse tissues.

Results

Identification of a novel protein-activating enzyme,
Ubab

Our initial plan was to identify the molecule(s) that interacts
with human Atg8p homolog GATE16, a type-1 UBL modifier
required for autophagy (Klionsky and Emr, 2000; Ohsumi,
2001), using a yeast two-hybrid screening. Please note that
the nomenclature of the autophagy-related genes was re-
cently unified as ATG (Klionsky et al, 2003). Among several
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positive clones, we identified fragments of FLJ23251
(Figure 1A), which encodes a 404-amino-acid protein
highly conserved in various multicellular organisms, such
as Homo sapiens, Caenorhabditis elegans, Drosophila
melanogaster, and Arabidopsis thaliana, but absent in yeasts
(Saccharomyces cerevisiae and Schizosaccharomyces pombe)
(Figure 1B). The sequence of FLJ23251 in the region contain-
ing residues 72-229 is highly homologous to the correspond-

ing regions in Ubal (i.e., E1 for ubiquitin) and other El-like
proteins for UBLs including the ATP-binding motif (GXGXXG)
(Figure 1A and B). We named this protein Uba5, because it is
a member of the El-like enzyme family. UbaS also has a
metal-binding motif conserved in other El-like enzymes such
as Uba2, Uba3, Uba4, and Atg?. Most of El-like enzymes
have an active site Cys residue within the conserved 10-20
amino-acid residues downstream from the metal-binding
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Figure 1 Uba5, a novel El-like enzyme. (A) Schematic representation of Ubal and Uba5 in H. sapiens. Ubal is divided into several domains,
including I, Ib, II, III, and IV boxes, which are conserved in other El-like enzymes, and other regions without obvious similarity, described
previously (Komatsu et al, 2001). Note that Uba5 is of a relatively small size and includes the box I and two other parts. The box I region of
Ubal (amino acids 459-611) has 48.4% similarity and 22.3% identity to amino acids 72-229 of Uba5, which includes the conserved ATP-
binding motif (GXGXXG). The sequence of UbaS is available from GenBanK™ under the accession number AK026904. hs, H. sapiens; ce, C.
elegans; dm, D. melanogaster; at, A. thaliana. (B} Sequence alignment of hsUba5 and its homologs of other species (dm, NM_132494; ce,
NM_058847; at, NM_100414). The amino-acid sequence of hsUba5 is compared by the ClustalW program. Asterisks, identical amino acids;
single and double dots, weakly and strongly similar amino acids, respectively, determined by the criteria of ClustalW program. Open box
indicates an ATP-binding motif. The putative active site Cys residue is boxed in black. The metal-binding motif is underlined. (C) Identification
of the intermediate linked to Uba5 in HEK293 cells. Both Uba5 and Uba5%%*%, in which the predicted active site Cys positioned at 250 was
changed to Ser by site-directed mutagenesis, were tagged with Flag peptide at N-terminus, resulting in Flag-Uba5 and Flag-Uba5%*%%%,
respectively. Each Flag-Uba5 and Flag-Uba5%**® was expressed in HEK293 cells. The cell lysates were subjected to SDS-PAGE and analyzed by

immunoblotting with anti-Flag antibody.
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motif. In the case of Ubas, the Cys?®*® seems to be the most
possible active site Cys residue (Figure 1B). If an active site
Cys residue within an E1 and El-like enzymes is changed to
Ser, an O-ester bond instead of a thioester bond is formed
with its respective modifier protein and the intermediates
become stable even under reducing conditions. Therefore, we
mutated Cys**° within Uba5 to Ser and expressed it as a Flag-
fused Ubas“*® (Flag-Uba5°*°%%) or Flag-Ubas as control in
HEK293 cells. As shown in Figure 1C, both Flag-Uba5 and
Flag-Uba5%°% were expressed as ~50kDa proteins in
HEK293 cells. When Flag-Uba5“***® was expressed, an addi-
tional band with a higher molecular mass of ~60kDa was
clearly observed, indicating that Flag-Uba5“***® forms an
intermediate complex with an endogenous protein. These
results suggest that Uba5 is indeed a novel protein-activating
enzyme for a presumptive modifier (see below).

Identification of a novel ubiquitin-fold molecule, Ufm 1
Because Uba5 was identified as GATE-16-binding protein, we
initially assumed that Uba5 is another GATE-16-activating
enzyme, in addition to Atg7. To test this possibility, we
examined whether Uba5®?*%® (the presumptive active site
Cys at position 250 was replaced by Ser) forms an intermedi-
ate complex with GATE-16 or not. Unexpectedly, we could
not identify a stable complex between Uba5**%% and GATE-
16 (data not shown). Therefore, we attempted to identify a
protein(s) that physically associates with Uba5 in the cells.
To do this, Flag-Uba5 was expressed in HEK293 cells, then
immunoprecipitated by anti-Flag antibody. The immuno-
precipitates were eluted with a Flag peptide, then digested
with Lys-C endopeptides (Achromobacter protease 1) and the
cleaved fragments were directly analyzed using a highly
sensitive ‘direct nano-flow LC-MS/MS’ system as described
in Materials and methods. Following database search, a total
of 28 peptides were assigned to MS/MS spectra obtained from
four nano-LC-MS/MS analyses for the Flag-Uba5-associated
complexes. These peptide data identified three proteins as
UbaS-associated components: GATE-16, and hypothetical
proteins BM-002 and CGI-126 (excluding the bait protein
Uba5 and the background proteins, such as HSP70 and
Kkeratins).

One of these identified proteins, BM-002, is an 85-amino-
acid protein with a predicted molecular mass of ~9.1kDa.
This protein is conserved in multicellular organisms, but not
in yeasts, like Uba5 (Figure 2A). The human BM-002 has high
identity over the species in the central region but has elon-
gated sequences at both N- and C-terminal regions in some
species. Although the protein shows no clear overall sequence
identity to ubiquitin or other modifiers (Figure 2B), the tertiary
structure of BM-002 displays a striking resemblance to human
ubiquitin (Figure 2C). The human structure of BM-002 was
constructed by a computer-assisted modeling, based on the
structure of its C. elegans homolog that has been analyzed
previously, as a protein possessing ‘ubiquitin-like fold’ with
secondary structure elements ordered B-p-o-f-p-o (a-helix
and B-sheet) along the sequence (Cort et al, 2002). Thus, we
named human BM-002 as Ufml.

Ubiquitin is synthesized in a precursor form that must be
processed by de-ubiquitylating enzymes (DUBs) to generate a
Gly-Gly sequence at the C-terminus. Similarly, Ufm1 has a
single Gly residue conserved across species at the C-terminal
region, although the length and sequences of amino acids
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extending from this Gly residue vary among species. To test
whether the C-terminus of Ufml is post-translationally
cleaved, we consiructed an expression vector for Ufml
tagged at both the N- and C-ends, that is, a Flag epitope at
the N-terminus and an HA epitope at the C-terminus (Flag-
Ufm1-HA) (Figure 2D). After transfection of Flag-Ufml-HA
into HEK293 cells, the cell lysate was subjected to SDS-PAGE,
and Flag-Ufm1-HA was detected by immunoblotting. A 10-kDa
protein corresponding to Ufm1 was recognized with anti-Flag
antibody, while no appreciable protein was observed with
anti-HA antibody (Figure 2E, lanes 2 and 7). The mobility on
SDS-PAGE was similar to that of Flag-Ufm1AC2 (equivalent
to mature Ufm1*™® protein) lacking the C-terminal Ser®* and
Cys® of proUfm1 (Figure 2E, lane 4), These results suggested
that the C-terminus of Ufm1 is post-translationally cleaved in
the cells, producing mature Ufm1 with the C-terminal Gly*
residue. It is known that the replacement of C-terminal Gly
residue of Ub and other UBLs with an Ala residue inhibits the
C-terminal processing (Kabeya et al, 2000; Tanida et al, 2003).
To examine whether Gly®® of Ufml is essential for the
cleavage, Gly®® of Flag-Ufm1-HA was mutated to Ala, and
expressed in HEK293 cells (Figure 2D, Flag-Ufm1°%*A-HA).
The mobility of most Flag-Ufm1°**AHA on SDS-PAGE was
apparently slower than that of Flag-Ufm1-HA (Figure 2E, lane
3). This mutant was recognized by immunoblotting with anti-
HA antibody as well as anti-Flag antibody, suggesting that
mutation Gly®® to Ala confers resistance to its C-terminal
cleavage.

Ubab is an Ufm1-activating enzyme

We next investigated whether Uba5 forms an intermediate
complex with Ufml. We expressed Flag-Uba5 or Flag-
Uba5“%*% with Myc-tagged Ufml (Myc-Ufml) in HEK293
cells. Myc-tagged Ufm1AC3 lacking the C-terminal Gly®? of
mature Ufml (Myc-Ufm1AC3; i.e., deletion form of three
residues from precursor Ufm1'"®® protein) was used as con-
trol. Each cell lysate was prepared and analyzed by immuno-
blotting with anti-Flag antibody. Flag-Uba5“%*®® formed an
intermediate with an endogenous protein as shown in
Figure 1 (Figure 3A, lane 7). When Flag-Uba5%*%® was
coexpressed with Myc-Ufml, the intermediate shifted to
higher molecular weight (Figure 3A, lane 8). The higher
band was not detected when Myc-Ufm1AC3 was coexpressed
(Figure 3A, lane 9). To verify that the intermediate is indeed
the Uba5-Ufm] complex, Flag-Uba5“%*% was immunopreci-
pitated and blotted with anti-Flag and anti-Myc antibody.
Consistent with the above data, a higher sized intermediate
was observed when Flag-Uba5%%% was coexpressed with
Myc-Ufm1 (Figure 3B, top panel, lane 5), but not alone or
with Myc-Ufm1AC3 (Figure 3B, top panel, lanes 4 and 6). The
intermediate was also recognized by anti-Myc antibody
(Figure 3B, lower panel, lane 5), indicating the existence of
the Flag-Uba5%%*%_Myc-Ufm1 complex. Note that the small-
sized intermediate is presumably a complex with an endo-
genous Ufml, as mentioned. These results indicate that Uba5
forms an intermediate with Ufml and the Gly®® residue of
Ufm1 is essential for the formation of the intermediate with
Ubas in vivo.

We subsequently tested whether Uba5 can activate
Ufm1 in vitro. The thioester formation assay was performed
using recombinant proteins expressed in Escherichia coli.
Recombinant GST-tagged Uba5 and mature Ufml
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Figure 2 Ufm]l, a novel ubiquitin-fold molecule. (A) Sequence alignment of hsUfm1 and its homologs. The sequence of hsUfm1 is available
from GenBanK™ under the accession number BC005193 (dm, a coding region of dmUfm1 was found from D. melanogaster genomic sequence;
ce, NM_066304; at, NM_106420). The homology analysis was performed as described in Figure | B. The C-terminal conserved Gly residue is
boxed in black. (B) Sequence alignment of hsUbiquitin with hsUfm1. The homology analysis was performed as described in Figure 1B. The
C-terminal conserved Gly residue is boxed in black. {C) Structural ribbon of hsUbiquitin and predicted structural ribbon of hsUfm1. «-Helices
and f-strands are shown in green and vellow, respectively. The homology model of hsUfm1 was created from the C. elegans Ufm1 structure
(Cort et al, 2002) by using MOE program (2003.02; Chemical Computing Group Inc., Montreal, Quebec, Canada). (D} Schematic representation
of mammalian expression plasmids for Ufm1 and the derivative mutants. Flag epitope tags at the N-terminus, HA epitope tags at the
C-terminus, and putative cleavage site Gly™ residue {vertical dotted lines) are indicated. To construct Ufm1°%**, a single point mutation was
introduced into Uim1, which led to an amino-acid substitution from Gly to Ala at position 83. To construct UfmlAC2, the two C-terminal
residues were deleted by PCR. Ufm1AC2%%* was also produced by site-directed mutagenesis of Ufm1AC2. The AC2 mutants were tagged with
the Flag epitopes at N-terminus. {E) ProUfm] processing. HEK293 cells were transfected with Flag-Ufml-HA, Flag-Uim1“%“HA, Flag:
UIm1AC2, or Flag-Ufm1AC25%%. The cell lysates were subjected to SDS-PAGE and analyzed by immunoblots with anti-Flag and anti-HA
antibodies. ProUfm1 and mature Ufm1 are indicated on the left. The numbers at the top from I to 1V are similar to those in (D).

[UfmIAC2) with exposed C-terminal Gly** residue were Uba5 intermediate complex was clearly observed when the
purified, mixed and incubated in the presence of ATP and mixture was applied at nonreducing conditions (Figure 3C,
then subjected to SDS-PAGE at either reducing or nonredu- lane 3). This intermediate was not observed when ATP or
cing conditions. GST-UfmMIAC3 was used as control. An GST-Uba$5 was excluded from the mixture (Figure 3C, lanes 1
~100kDa band corresponding to the GST-UIm1AC2-GST- and 2), or when the mixture was loaded in the presence of
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Figure 3 Demonstration that Uba5 is an Ufml-activating enzyme.
(A) Immunoblotting analysis. Each Myc-tagged Ufml (Myc-Ufml)
and Myc-UfmlAC3 was expressed alone (lanes 2 and 3, respec-
tively), and coexpressed with Flag-Uba5 (lanes 5 and 6, respec-
tively) or Flag-Uba5“** (lanes 8 and 9, respectively). Each
Flag-Uba5 and Flag-Uba5“**"® was also expressed alone (lanes 4
and 7, respectively). The cell lysates were subjected to SDS-PAGE
and analyzed by immunoblotting with anti-Flag antibody. The bands
corresponding to Flag-Uba5, Flag-Uba5“%*%%, and Flag-Uba5“25%°
intermediates are indicated on the right. (B) Immunoblotting ana-
lysis after immunoprecipitation. Each Myc-Ufml and Myc-
Ufm1AC3 was expressed alone (lanes 2 and 3, respectively), and
coexpressed with Flag-Uba5%2°% (lanes 5 and 6, respectively). Flag-
Uba5%%5% was also expressed alone (lane 4). The cell lysates were
immunoprecipitated with anti-Flag antibody. The resulting immu-
noprecipitates were subjected to SDS-PAGE and analyzed by im-
munoblotting with anti-Flag and anti-Myc antibodies. The bands
corresponding to Flag-Uba5“*5%%, Flag-Uba5“**®>-endogenous
Ufm1, and Flag-Uba5°****-Myc-Ufm1 intermediates are indicated.
(C) In vitro activating assay of Ufm1 by Uba5. Purified recombinant
GST-Ufm1AC2 (2 ug) (lanes 1-7) was incubated for 30 min at 25°C
with some of the following: 2 of‘guriﬁed recombinant GST-Uba5
(lanes 2-5, 7, and 8), GST-Uba5***** (lane 6), and 5 mM ATP (lanes
1 and 3-8). Lane 8 was conducted similar to lane 7, except that GST-
Ufm1AC3 was used instead of GST-Ufm1AC2. Reactions were then
incubated with SDS loading buffer lacking reducing agent (lanes
1-3 and 5-8) or containing 100 mM DTT (lane 4). The presence
or absence of various components is indicated above the lanes.
The bands corresponding to free GST-Uba5, GST-Uba5“**®4, GST-
UfmlAC2 (mature Ufml), GST-UfmlAC3, and GST-Uba5-GST-
Ufm1AC2 thioester product are indicated on the right.
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a reducing agent dithiothreitol (DTT) (Figure 3C, lane 4).
Furthermore, GST-tagged Uba5“**°* mutant, a presumptive
active site Cys mutant, could not form the intermediate even
at nonreducing conditions (Figure 3C, lane 6). GST-tagged
Ufm1AC3 was also incapable of forming the intermediate
in this reaction (Figure 3C, lane 8). Taken together, we
concluded that Uba5 is an Ufml-activating enzyme and has

the active site in Cys®®°.

Identification of a novel protein-conjugating enzyme,
Ufe1

The LC-MS/MS analysis revealed CGI-126 protein as another
Ubas interacting protein. CGI-126 is a protein of 167-amino-
acid residues with a predicted molecular mass of 19.4 kDa.
This protein is also conserved in multicellular organisms, like
Uba5 and Ufm1 (Figure 4A}. The C-terminal half of human
CGI-126 has a high identity across species as shown in
Figure 4A. CGI-126 has a highly conserved region, for exam-
ple, residues 113-126, with limited similarity to the region of
Ubc’s that encodes an active site Cys residue capable of
forming a thioester bond (Figure 4A). We assumed that this
protein may be an E2-like conjugating enzyme for Ufm1 and
thus named it Ufm1l-conjugating enzyme 1 (Ufc1). If Ufcl is
an authentic E2 enzyme for Ufml, it is expected to form an
intermediate complex with Ufm1 via a thioester linkage. To
test this possibility in the same way as Uba5, we mutated the
predicted active site Cys residue within Ufcl (Figure 4A,
Cys''®) to Ser. We expressed Flag-Ufcl or Flag-Ufc1®1%5 (a
presumptive active site Cys at position 116 was replaced by
Ser) in combination with Myc-Ufml or Myc-Ufm1AC3 in
HEK293 cells. Flag-Ufc1°"'® formed a stable intermediate
band when coexpressed with Myc-Ufm1 (Figure 4B, lane 8),
but not alone or with Myc-Ufm1AC3 (Figure 4B, lanes 7 and
9). To ascertain that this is the Flag-Ufc1“"%*-Myc-Ufml
intermediate, Flag-Ufc1“"'® was immunoprecipitated and
blotted with anti-Myc antibody (Figure 4C). Indeed, Myc-
Ufm1, but not Myc-Ufm1AC3, formed a complex with Flag-
Ufc1M%8 (Figure 4C, lanes 5 and 6, top and bottom panels).
Note that Flag-Ufc1°®S intermediate with a faster electro-
phoretic mobility than the Flag-Ufc1¢"%*-Myc-Ufm1 complex
is presumably the intermediate with the endogenous Ufml
(Figure 4C, lanes 4-6, upper panel). These results indicate
that Ufcl forms an intermediate with Ufml in vivo.

To confirm that Ufcl is indeed an E2-like enzyme that
conjugates with Ufm1 via a thioester linkage, we conducted
an in vitro Ufm1 conjugation assay. Recombinant GST-Ubas,
GST-Ufcl, and GST-Ufm1AC2 were mixed and incubated in
the presence of ATP. GST-Ufc1°"®* mutant and GST-
Ufm1AC3 were used as negative controls. Under nonreducing
conditions, an ~70kDa band corresponding to GST-
Ufm1AC2-GST-Ufcl intermediate was observed (Figure 4D,
lane 4). This product was not formed at reducing conditions,
or when any of the components was omitted from the
reaction (Figure 4D, lanes 1-3 and 5). GST-tagged Ufc1¢!4
mutant could not form the intermediate, suggesting that
Cys116 is indeed the active site (Figure 4D, lane 7). GST-
Ufm1AC3 was again unable to form the intermediate complex
in this reaction (Figure 4D, lane 9). Taken together, we
concluded that Ufcl functions as an Ufml-conjugating en-
zyme and has the active site in Cys'®.

The EMBO Journal VOL 23 | NO 9| 2004 1981



Ufm1, a novel ubiquitin-fold modifier
M Komatsu et a/

Myc-Ufr i,
hsufcl ~-MADEATRRVVSEIPVLKTNAGPRORELWVORLKEEYQSL IRYVENNKNADNDHFRLES | mecommscs = ~ % - =+ _ & 3
dnufc1 -~MVOSTRKTL SNIPLLQIRAGPREKDVHVQRLKEE YQALTKYVENNKQSGSDHFRLES | Fing-tca SIrIiiIcot
ceutc1 - - -MDDATKSSLKALPLCKTKASPROGDLWIERLKEE YEALTAAVQNAKDCORDHFQLES. | proggpones  _ = _ 0 % e
atufcl MEGHDPNTKSTLTRIPLLTTKAGPROGAAWTORL KEE YKSLIAYTQMNKSNONDHFRISA 02)
LA P L L B ERRARS . -8 oot AL
nsufct ~NKEGTRHFGKCHYIHDLLKYEFDIEFDIPTTYPTTAPETAVPEL DOKTAKMYRGGK 64—
dnitéel ~NKEGTKHF GKOHYMINL LKYEFDVEFDIPYTYPTTAPETAL PELDGKTAKMYRGGK 51—
califcr —KERGTKHFGKCHY FHNMVKYEFDVEFDIPTTYPVTAPET AL PELOGKTAKMYRGGK
atlfcl SNPEGTRHTGKCHYVHNLLKYEFDLQFDIPTTYPATAPELEL PETDGKTQKMYRGGK -
KRS EAERE KoL EEEME EREEARE SEER. NS SR KXRKEOIITT - [ Flag-Uic1C18s intermediate
28—
hsufci TOMFKPLRARNVPKFGLAHLMAL GLGPHLAVELPDLIQKGVIQHKEKCNQ- -~ s e orssunes
dnitel TOHFKPLHARNVPKFGLAHAMAL GLAPHLAVELPDL LEKGLITYKEK-——---- 10
celifcl SEHFKPLHARNTPKF GIAHAFAL GLGPHAYEIPDL TEXGLIQPKA--------
atlfcl TVHEKPLHAKNCORFCTAHALCLGLAPHLAAETPTLVDSGAIKHKDDAVTSAS e
Jib it et earvaee miaas
te 7 2 5 4 5576 9
Myc-Utm1 - -

- GST-Ufm1ac2 +
;ng}m:&\ﬁi - M GST-Um1AC3 —
*Da) GST-Ubas -

- Flag-Ufc1<"*-Myc-Uim1 GST-Ufet
* AT]T/FIWUYC‘““«Urm| ETSP'I'-U'M“"‘
IP: a-Flag 5 - o i o AL
1B: a-Fiag B 6L ) ]
8 o Flag-Ufcieres 97
64

Flag-Ufcie™<s—Myc-Utm1

+

[
+ 1
+ 1+
e+ +
[ R B

PO
—
S
+ 4
+

IS B T
TN
O
I I

[

Utc1-Ufm1 intermadiala
Ubal

{

51~

1P: u-Flag

[ | - e Ulct or Ufeteres
1B: or-Myc

39-] -
igG L.C.

ey e ey ¢ W) |

Lane 1 2 3 4 5 & Lane 1 2 3 4 5 6 7 8 8

Figure 4 Ufcl, a novel E2-like enzyme. (A) Sequence alignment of hsUfcl and its homologs. The sequence of Ufcl is available from
GenBanK™ under the accession number BC005187 (dm, NM_137230; ce, NM_066654; at, BT001180). The homology analysis was performed
as described in Figure 1B. The putative active site Cys residue is boxed in black. (B) Immunoblotting analysis. Each Myc-tagged Ufm1 (Myc-
Ufm1) and Myc-Ufm1AC3 was expressed alone (lanes 2 and 3, respectively), and coexpressed with Flag-Ufcl (lanes 5 and 6, respectively) or
Flag-Ufc1°"'%® (lanes 8 and 9, respectively). Each Flag-Ufcl and Flag-Ufc1°% was also expressed alone (lanes 4 and 7, respectively). The cell
lysates were subjected to SDS-PAGE and analyzed by immunoblotting with anti-Flag antibody. The bands corresponding to Flag-Ufcl, Flag-
Ufc1°%8, and Flag-Ufc1“"®® intermediates are indicated on the right. (C) Immunoblotting analysis after immunoprecipitation. Each Myc-Ufm1
and MYCwUfmlAC3 was expressed alone (lanes 2 and 3, respectively), and coexpressed with Flag-Ufc1°'®® (lanes 5 and 6, respectively). Flag-
Ufc1©M® was also expressed alone (lane 4). The cell lysates were immunoprecipitated with anti-Flag antibody. The resulting immunopre-
cipitates were subjected to SDS-PAGE and analyzed by immunoblots with anti-Flag and anti-Myc antibodies. The bands corresponding to Flag-
Ufc1°"%5, Flag-Ufc1“M'5_endogenous Ufm1, and Flag-Ufc1®M'®S-Myc-Ufm1 intermediates are indicated. (D) In vitro thicester bond formation
assay of Ufm1 by Ufcl. Purified recombinant GST-Ufm1AC2 (2 ug) (lanes 1-8) was incubated for 30 min at 25°C with the following: purified
recombinant GST-Uba5 (0.2 ug) (lanes 2-9), GST-Ufcl (2 pg) (lanes 3-6, 8, and 9), GST-Ufc1°"¢® (2 ug) (lane 7), and 5 mM ATP (lanes 1, 2, and
4-9). Lane 9 was conducted similar to lane 8, except that GST-Ufm1AC3 was used instead of GST-Ufm1AC2. Reactions were then incubated
with SDS loading buffer lacking reducing agent (lanes 1-4 and 6-9) or containing 100mM DTT (lane 5). The presence or absence of various
components is indicated above the lanes. The bands corresponding to free GST-Ufm1AC2 (mature Ufm1}, GST-Ufm1AC3, GST-Uba5, GST-Ufc1,
GST-Ufc1®M%5, and GST-Ufc1-GST-Ufm1AC2 thioester product are indicated on the right.

Conjugation of Ufm1 to cellular protein(s)} (Hodgins et al, 1992; Kamitani et al, 1997). Since C-terminal
We next examined whether Ufml conjugates to the target Gly to Ala mutation confers resistance to the Ufml proces-
protein(s) in cells. To this end, we expressed Flag- and 6xHis- sing, the conjugates with FlagHis-Ufm1°%*# mutant may be
tagged Ufml constructs in HEK293 cells, and purified them more stable than those with FlagHis-UfmlAC2 (Figure 5A,
under denaturing conditions by Ni** beads. The resulting compare lanes 4 and 5). These results suggest that the Ufml
precipitates were then analyzed by immunoblotting with conjugation is also a reversible reaction.

anti-Flag antibody. When FlagHis-Ufm1-HA (proUfm1l) or We further investigated the expression of Ufml and its
FlagHis-Ufm1AC2 (mature form) was expressed, several conjugated proteins in mouse tissues using anti-Ufm1 serum.
proteins with sizes of about 28, 38, and 47 kDa were detected, Ufml was widely expressed in all tissues examined, such as
in addition to the 10kDa corresponding to free FlagHis- brain, heart, lung, liver, and kidney (Figure 5B, left panel).
Ufm1AC2 (Figure 5A, lanes 2 and 4). These bands were not In addition, several bands with striking similarity to proteins
detected by FlagHis-Ufm1°®*~HA and FlagHis-Ufm1AC3, detected in HEK293 cells were observed. These bands
suggesting that both C-terminal cleavage and C-terminal were not detected by preimmune or preabsorbed antisera
Gly residue are required for the conjugation reaction (Figure 5B, right panel), suggesting that they are likely the
(Figure 5A, lanes 3 and 6). Moreover, these protein bands Ufm1 conjugates. Although the intensity of each band varied
were resistant 1o reducing agents, such as DTT and p-mer- among tissues and HEK293 cells, 28 and 38 kDa proteins were
captoethanol. These results indicate that Ufml is covalently commonly detected. The 70-kDa band observed in all tissues
attached to some target proteins, probably through an iso- was also detected faintly in HEK293 cells (Figure 5A, lane 5).
peptide bond between the C-terminal Gly®® of Ufm1 and a The 47-kDa band observed in HEK293 cells was not clear.
Lys residue in the cellular proteins. It is of note that FlagHis- These protein bands were resistant to reducing agents, such
Ufm1%%*4 mutant with exposed C-terminal Ala instead of Gly as DTT and B-mercaptoethanol, indicating that Ufml cova-
can conjugate to target proteins (Figure SA, lane 5), consis- lently attaches to cellular proteins like other Ubl proteins.
tent with the previous report on ubiquitin and SUMO The targets of Ufml appeared to be common in a variety
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Figure 5 Formation of a covalent protein conjugate(s) with
Ufmt in HEK293 cells and mouse tissues. (A} Ufm1 conjugates in
human HEK293 cells. HEK293 cells were transfected with FlagHis-
Ufml-HA, FlagHis-Uim1“®HA,  FlagHis-Ufm1AC2, FlagHis-
UMIAC29% ) or FlagHis-Um1AC3 expression plasmids. These
cells were lysed under denaturing conditions, and the lysates
were precipitated with Ni* * beads. The precipitates were subjected
to SDS-PAGE and analyzed by immunoblotting with anti-Flag anti-
body. The bottom panel shows the short exposure of the upper
panel. The bands corresponding o mature Ufml, proUfm, and
Ufm1 conjugates are indicated on the right. {B) Ufm1 conjugates
in various mouse tissues. Homogenates from mouse tissties as
indicated were prepared and subjected to SDS-PAGE and analyzed
by immunoblotting with anti-Ufm1 serum (left panel) or preim-
mune serum (right panel). The bands corresponding to Ufm1 and
conjugates between Ufml and target proteins are indicated on the
teft.

of tissues. These results suggest the universal roles of
Ufm1 in the regulation of cellular function in multicellular
organisms.

Subcellular localization of Ufm1 in Hela cells
We finally examined the subcellular distribution of Ufm1 in
Hela cells. Immunocytochemical analysis using anti-Ufm1
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Figure 6 Intracellular distribwtion of Ufm1 in Hela cells. {A) Hel.a
cells were seeded on coverslips 24 h before fixation for immuno-
staining. Ufm1 was detected with anti-Ufm1 serum and visualized
with Alexa 488 nm anti-rabbit antibody. (B) Immunocytochemical
analysis was conducted as for (A}, except that preimmune serum
was used. Cells were observed using a fluorescence microscope.
Magnification, = 400.

serum revealed that Ufm1 was predominantly localized in the
nucleus and diffusely in the cytoplasm (Figure 6A). These
staining patterns were not observed when anti-Ufm1 serum
had been preadsorbed with excess amounts of recombinant
Ufm1 protein or preimmune serum was used instead of anti-
Ufm1 serum (Figure 6B). Moreover, Ufm1 localization in
the cytoplasm and nucleus was similar to the localization
of exogenously expressed GFP-tagged Ufml in HelLa cells
(data not shown). In the nucleus, strong immunoreactivity to
anti-Ufm1 serum was observed as a dot-like structure.
Although such dots-like structures were detected by preim-
mune serum, those intensities were weak. Thus, some of
these dot-like structures may represent conjugates of Ufml.

Discussion
In the present study, we reported that Ufml acts as a

new post-transtational UBL modifier, based on the following
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criteria: (1) It is a small protein of 9.1 kDa with a ubiquitin-
fold structure. (2) Ufm1 is synthesized in a precursor form,
and the extra amino-acid residues at the C-terminal side need
to be processed to expose the Gly residue. (3) The C-terminal
processing and exposure of glycine residue are essential to
the formation of Ufm conjugates in the cells. (4) Ufml has
specific E1-like (Uba5) and E2-like (Ufcl) enzymes for activa-
tion and conjugation, respectively. Intriguingly, many UBL
modifiers are evolutionarily conserved from yeast to human,
except interferon-inducible UBL modifiers, such as UCRP/
ISG1S5, Fatl0, and Faul/MNSFB (Nakamura et al, 1995;
D’Cunha et al, 1996; Liu et al, 1999). Ufm1, Uba5, and Ufcl
found in the present study are conserved in various multi-
cellular organisms (Figures 1B, 2A, and 44A), but not in both
budding and fission yeasts, suggesting that they all have been
generated by coevolution.

We identified Uba5 as an El1 enzyme for Ufml. This
enzyme is relatively small compared to Ubal, that is, an El
for ubiquitin (Figure 1A). In the in vitro assay, the recombi-
nant UbaS protein formed a thioester linkage with recombi-
nant Ufm1 (Figure 3C) and transferred the activated Ufm1 to
recombinant Ufcl (an E2 enzyme) {Figure 4D), indicating
that Uba5 can activate Ufm1 as a single molecule. This is in
marked contrast to other Els such as Uba2 and Uba3, which
retain obvious similarities to the C-terminal half of Ubal but
require the formation of heterodimer complexes with respec-
tive partner molecules, AOS1 and APP-BP1, respectively, with
similarities to the N-terminal half of Ubal (Johnson et al,
1997; Liakopoulos et al, 1998; Osaka et al, 1998). Another
El-like enzyme, Uba4 that activates Urml, is of similar size to
Uba5 (Furukawa et al, 2000), but it remains unknown
whether Uba4 acts as a single molecule or needs a partner
subunit. The homology of Uba5 to Ubal is less than those of
Uba2 and Uba3, except their ThiF domain conserved in Els,
and thus it is likely that UbaS5 may uniquely activate Ufm1,
differing from other Els such as Ubal, Uba2/AOS1, and
Uba3/APP-BP1. Thus, although the structure of APP-BP1/
Uba3 heterodimer is determined and the mechanism by
which Els activate their cognate UBLs was proposed
(Walden et al, 2003a,b), the weak homology of Uba5 with
other Els hampered the computer-assisted structural analy-
sis. To clarify this issue, structural analysis of Uba5 is
required. This issue is currently under investigation in our
laboratories. So far, most El-like enzymes activate single
species of UBL protein, although Atg7 is exception, which
can activate both Atg8 and Atgl2 (Mizushima et al, 1998;
Tanida et al, 1999; Ichimura et al, 2000). A total of 10 El-like
enzymes can be identified in the human genome by computer
analysis. Considering the limited number of El-like proteins,
it is possible that some E1-like proteins can activate a distinct
set of UBL proteins. Whether or not UbaS is capable of
activating proteins other than Ufm1 remains to be clarified.

There are more than a dozen of E2 family genes in human
genomes. In the budding yeast, 13 different E2s, namely
Ubcl1-Ubcl13, have been documented and functionally char-
acterized. Functionally, most of them catalyze the conjuga-
tion of ubiquitin, except that Ubc9 and Ubcl2 are for SUMO
and NEDD8/Rubl, respectively (Johnson and Blobel, 1997;
Lammer et al, 1998; Osaka et al, 1998). In addition, in the
autophagic pathway, Atg3 and Atgl0 are both E2 enzymes for
Atg8 and Atgl2, respectively, but they do not have obvious
sequence similarities to known Ubc’s, except for a short
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region encompassing an active Cys residue (Shintani et al,
1999; Ichimura et al, 2000). Similarly, Ufc1 is a unique E2-like
enzyme with no obvious sequence homology with other E2s,
except approximately 10 amino-acid residues encompassing
the active site Cys residue.

In assessing the biological roles of the Ufml-modifying
system, characterization of the target molecule(s) is of parti-
cular importance. Regarding this issue, we identified several
putative proteins that are conjugated with Ufm1 in human
HEK293 cells and various mouse tissues. It is noteworthy that
the sizes of these bands (28, 38, 47 kDa) increase by 10kDa,
which is consistent with the size of Ufm1. Considering that
several Ubl modifiers can attach to target proteins as a
polymer, it is possible that these bands correspond to multi-
or poly-Ufm1 conjugates. In fact, Ufm1 has six Lys residues.
Whether Ufm1 is conjugated to several distinct proteins or
multiple Lys residues in a single target or polymerized in a
single Lys residue awaits future study. Unfortunately, we
could not identify the protein, and detailed analysis of the
cellular function of Ufm1 conjugation awaits future study. It
was recently reported that Uba5 is induced by certain re-
agents that induce stress in the endoplasmic reticulum (ER), a
so-called ‘unfolded protein response’ (Harding et al, 2003).
However, we could not cbserve the induction of Uba5, Ufcl,
and Ufml by treatment with various compounds known to
induce ER stress in mammalian cells (data not shown). In
addition, exposure to other stresses including high tempera-
ture or heavy metals also did not induce the appearance
of obvious new conjugation band(s) of UfmI, by immuno-
blot analysis. Further studies on the biological roles of the
Ufml conjugation pathway are under investigation in our
laboratories.

Materials and methods

DNA construction

The cDNA encoding human Uba5 was obtained by PCR from
human liver cDNA with the UbaS-s5' primer (5'-CGGAGGGATCCC
CATGGCGGAGTCTGTGGAG-3') and the Uba5-r3’ primer (5'-
CAGTCCTCGAGCTACATATTCTTCATTTT-3'}. It was then subcloned
into pcDNA3 vector (Invitrogen, San Diego, CA). A point mutation
for Cys at position 250 to Ser or Ala was generated by PCR-based
site-directed mutagenesis. The Flag tag was introduced at the
N-terminus of Uba5 or Uba5°%5%%, Similarly, cDNA encoding human
Ufm1 was amplified by PCR from human liver cDNA with the
Ufm1-s5' primer (5'-TTCCGGGATCCCCATGTCGAAGGTTTCCTTT-3')
and the Ufml-r3’ primer (5'-AGTAGCTCGAGTTAACAACTTCCAA
CACGAT-3), and subcloned into pcDNA3 vector. The Flag, FlagHis,
or Myc tags were introduced at the N-terminus of Ufm1. The HA tag
was introduced at the C-terminus of Ufm1. The C-terminal deletion
mutants of Ufml named Ufm1AC2 and Ufm1AC3, encoding amino
acids 1-83 and 1-82, respectively, were generated by PCR. A point
mutation for Gly at position 83 to Ala of Ufml and UfmlAC2
(Ufm1%%4 and Ufm1AC2583%, respectively) was generated by PCR-
based site-directed mutagenesis. The cDNA encoding human Ufcl
was obtained by PCR from human liver cDNA with the Ufcl-s5/
primer (5'-GCCCTGGATCCAGATGGCGGATGAAGCCACG-3') and the
Ufcl-r3’ primer (5'-TTCTCGAGTCATTGGTTGCATTTCTCTT-3). It
was then subcloned into pcDNA3 vector. A point mutation for
Cys at position 116 to Ser or Ala was generated by PCR-based
site-directed mutagenesis. The Flag tag was introduced at the
N-terminus of Ufcl and Ufct“"%, To express GST-fused Ufm1AC2,
Ufm1AC3, Uba5, Uba5**%4, Ufcl, and Ufc1®"®* in E. coli, these
cDNAs were subcloned into pGEX-6p vector (Amersham Bio-
sciences). All mutations mentioned above were confirmed by DNA
sequencing.

©2004 European Molecular Biology Organization



Cell culture and transfection

Media and reagents for cell culture were purchased from Life
Technologies (Grand Island, NY). HEK293 cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal
calf serum (FCS), 5U/ml penicillin, and 50 pg/ml streptomycin.
HEK293 cells at subconfluence were transfected with the indicated
plasmids using Fugene 6 reagent (Roche Molecular Biochemicals,
Mannheim, Germany). Cells were analyzed at 20-24h after
transfection.

Immunological analysis

For immunoblot analysis, cells were lysed with ice-cold TNE buffer
(10 mM Tris-HCI, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 1 mM
ethylenediaminetetraacetic acid (EDTA), and protease inhibitors)
and the lysates were separated by SDS-PAGE (12% gel or 4-12%
gradient gel) and transferred to a polyvinylidene difluoride (PVDF)
membrane. Mouse monoclonal anti-Flag antibody (M2; Sigma
Chemical Co., St Louis, MO), anti-HA antibody (F7; Santa Cruz
Biotechnology, Santa Cruz, CA), and rabbit polyclonal anti-Myc
antibody (Ni4; Santa Cruz) were used for immunodetection.
Development was performed by the Western lighting detection
methods.

For immunoprecipitation analysis, cells were lysed by 200 ul of
TNE, and the lysate was then centrifuged at 10000g for 10 min at
4°C to remove debris. In the next step, 800 pl of TNE and 30l of
M2-agarose (Sigma) were added to the lysate, and the mixture was
mixed under constant rotation for 12h at 4°C. The immunopreci-
pitates were washed five times with ice-cold TNE. The complex
was boiled for 10min in SDS sample buffer in the presence of
B-mercaptoethanol to elute proteins and centrifuged at 10000g for
10min at 4°C. The supernatant was subjected to SDS-PAGE,
transferred to PVDF membrane, and analyzed by immunoblots
with anti-Flag (M2) or anti-Myc (N14) antibody.

For purification of 6xHis-tagged proteins under denaturing
conditions, cells were lysed by 1ml of denaturing lysis buffer
(8 M urea, 0.1M NaH,PO,4, and 0.001 M Tris-HCIl, pH 8.0) in the
presence of 20mM N-ethylmaleimide as an inhibitor of isopepti-
dases, and the lysate was sonicated briefly and then centrifuged at
10000¢g for 10min at room temperature to remove debris. Then,
30l of Ni-NTA Superflow (QIAGEN) was added to the lysate, and
the mixture was shaken under constant rotation for 30 min at room
temperature. The precipitates were washed five times with
denaturing wash buffer (8 M urea, 0.1M NaH,PO4, and 0.01 M
Tris~HCI, pH 5.9). To elute proteins, elution buffer (8 M urea, 0.1 M
NaH,P0y,, and 0.01 M Tris-HCl, pH 4.5) was added to the complex,
and the mixture was centrifuged at 10000g for 10min at room
temperature. The resulting supernatant was subjected to SDS-
PAGE, transferred to PVDF membrane, and analyzed by immuno-
blots with anti-Flag (M2).

Freshly isolated tissues from mice were homogenized in lysis
buffer (50 mM Tris-HCI, pH 7.5, 1% SDS, 5mM EDTA, and 10 mM
f-mercaptoethanol) using potter-Elvehjem homogenizer. The
homogenate was centrifuged at 10000g for 10min to remove
debris. The resulting supernatant was subjected to SDS-PAGE,
transferred to PVDF membrane, and analyzed by immunoblotting
with anti-Ufm1 or preimmune serum. The anti-Ufml polyclonal
antibody was raised in rabbits using the recombinant protein
produced in E. coli as an antigen.

In vitro thioester formation assay
Recombinant GST-Ufml1AC2, GST-UfmlAC3, GST-Uba5, GST-
Uba5“%5%4, GST-Ufcl, and GST-Ufc1“'® (tagged N-terminally with
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GST) were produced in E. coli and recombinant proteins
were purified by chromatography on glutathione sepharose 4B
(Amersham Biosciences). After elution of proteins from the beads,
the preparations were dialyzed against 50 mM BisTris (pH 6.5),
100 mM NaCl, 10mM MgCl,, and 0.1 mM DTT (reaction buffer).
Most thioester formation reactions contained reaction buffer with
4 pg GST-Ufm1AC2 or GST-Ufm1AC3 and some of the following:
5mM ATP, 2 or 0.2 g GST-Uba5 or GST-Uba5“****, and 4 ng GST-
Ufel or GST-Ufc1€%*, Reactions were incubated for 30 min at 25°C
and stopped by the addition of SDS-containing loading buffer either
lacking reducing agent or containing 100 mM DTT, followed by a
10 min incubation at 37°C, SDS-PAGE (4-12% acrylamide gradient)
and Coomassie brilliant blue staining.

Protein identification by LC-MS/MS analysis

The Uba5-associated complexes were digested with Achromobacter
protease 1 and the resulting peptides were analyzed using a
nanoscale LC-MS/MS system as described previously (Natsume
et al, 2002). The peptide mixture was applied to a Mightysil-PR-18
(1pm particle, Kanto Chemical) frit-less column (45mm x
0.150 mm ID) and separated using a 0-40% gradient of acetonitrile
containing 0.1% formic acid over 30 min at a flow rate of 50 nl/min.
Eluted peptides were sprayed directly into a quadropole time-of-
flight hybrid mass spectrometer (Q-Tof Ultima, Micromass, Man-
chester, UK). MS and MS/MS spectra were obtained in a data-
dependent mode. Up to four precursor ions above an intensity
threshold of 10counts/s were selected for MS/MS analyses from
each survey scan. All MS/MS spectra were searched against protein
sequences of Swiss Prot and RefSeq (NCBI) using batch processes of
Mascot software package (Matrix Science, London, UK). The
criteria for match acceptance were the following: (1) When the
match score was 10 over each threshold, identification was accepted
without further consideration. (2) When the difference of score and
threshold was lower than 10, or when proteins were identified
based on a single matched MS/MS spectrum, we manually
confirmed the raw data prior to acceptance. (3) Peptides assigned
by less than three y series ions and peptides with + 4 charge state
were all eliminated regardless of their scores.

Immunofluorescence

HelLa cells grown on glass coverslips were fixed in 4% paraformal-
dehyde (PFA) in PBS for 15 min, and permeabilized with 0.2% (vol/
vol) Triton X-100 in PBS for 30 min. After permeabilization, the cells
were blocked for 30 min with 5% (vol/vol) normal goat serum in
PBS, incubated for 1h at 37°C with anti-Ufm1 serum or preimmune
serum, washed with PBS, and incubated for 30 min with Alexa
488 nm anti-rabbit antibodies (Molecular Probes). The coverslips
were washed and mounted on slides. Fluorescence images were
obtained using a fluorescence microscope (DMIRE2; Leica)
equipped with a cooled charge-coupled device camera (CTR MIC;
Leica). Pictures were taken using Leica Qfluoro software (Leica).
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SCFFPs1 is a ubiquitin ligase that functions in the endoplasmic reticulum (ER)-associated degradation pathway. Fhs1/Fbx2, a
member of the F-box proteins, recognizes high-mannose oligosaccharides. Efficient binding to an N-glycan requires di-N-
acetylchitobiose (chitobiose). Here we report the crystal structures of the sugar-binding domain (5BD) of Fbs1 alone and in
complex with chitobiose. The SBD is composed of a ten-stranded antiparallel B-sandwich. The structure of the SBD~chitobiose
complex includes hydrogen bonds between Fbs1 and chitobiose and insertion of the methyl group of chitobiose into a small
hydrophobic pocket of Fbs1. Moreover, NMR spectroscopy has demonstrated that the amino acid residues adjoining the
chitobiose-binding site interact with the outer branches of the carbohydrate moiety. Considering that the innermost chitobiose
moieties in N-glycans are usually involved in intramolecular interactions with the polypeptide moieties, we propose that Fbs1
interacts with the chitobiose in unfolded N-glycoprotein, pointing the protein moiety toward E2 for ubiquitination.

So far, numerous studies have emphasized the physiological importance
of the ubiquitin- and proteasome-mediated proteolytic pathway’. The
ubiquitination reaction is catalyzed by an elaborate cascade system, con-
sisting of activating (E1), conjugating (E2) and ligating (E3) enzymes!2,
Of these enzymes, E3 enzymes are considered to exist as molecules with
alarge diversity and to have a principal role in the selection of target pro-
teins for ubiquitination in a temporally and spatially regulated fashion®.

One of the best-characterized E3 enzymes is the SCF complex (com-
posed of Skpl, Cull, Rocl (also called Rbx1) and an F-box protein),
which regulates degradation of a broad range of cellular proteins?. The
F-box proteins consist of an F-box domain that binds to Skp!l, and var-
ious C-terminal substrate recognition regions, which are subclassified
into a family of proteins named Fbw and Fbl that contain WD40-repeat
and leucine-rich repeat (LRR) domains, respectively™. In addition, the
remaining groups have been provisionally classified as Fbx proteins,
which show no homology to any other known proteins®, However, we
recently discovered a third category of the F-box protein family named
Fbs {F-box sugar recognition)/FBGE, consisting of at least five struc-
turally related proteins including Fbs1 (named originally as Fbx2)” and
Fbs2/Fbx6b (ref. 8). Fow and bl proteins usually recognize the phos-
phorylation status of the substrate, and the tertiary structures of some
of these proteins, such as Fow l/BTrCP, Fbw7/Cdced and Fbl1/Skp2, have
been determined by X-ray crystallography, providing valuable infor-
mation for determining the molecular recognition mechanisms of tar-

O

set proteins” 2 However, the molecular basis underlying the ability of
8 ying )

Fbs proteins to recognize target glycoproteins remains to be clarified.

Eukaryotic cells have an abundant and diverse repertoire of
N-linked oligosaccharide structures, but the role of N-glycosylation
of the proteins remains largely unknown. N-glycans have recently
been shown to have an important role in glycoprotein transport and
sorting! 1. N-glycoproteins are also subjected to ‘quality control,’ in
which aberrant proteins are distinguished from properly folded pro-
teins and retained in the ER™. When the improperly folded or incom-
pletely assembled proteins fail to restore their functional states, they
are degraded by the ER-associated degradation (ERAD) system,
which involves retrograde transfer of proteins from the ER to the
cytosol and subsequent degradation mediated by ubiquitin and pro-
teasomes'®. Recently, we identified the SCE™™! as an E3 ubiquitin-
ligase complex that ubiquitinates N-linked glycoproteins, serving to
clear these glycoproteins in the cytosol of the cell”. Fbsl recognizes
N-linked high-mannose oligosaccharides, especially the internal
diacetylchitobiose structure®. However, the molecular mechanism of
the recognition of N-glycans by Fbsl is unknown at present. To
understand the molecular basis of the interaction between Fbs!l and
N-glycans, we conducted crystal structural analyses of the SBD of
Fbs1 and its complex with chitobiose.

RESULTS

Overall structure of the SBD in Fbs1

The structure of the SBD of Fbst, as determined at a resolution of
2.0 A (Table 1), is an ellipsoid composed of a ten-stranded antiparallel
B-sandwich with two o-helices (Fig. lab). This structure is
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completely different from the folds of substrate-binding regions of
F-box domains so far reported, including the WID40-repeat domain of

CDC4 (ref. 11) and the LRR domain of Skp2 (ref. 12). Strands B1, B4,

B6, 37 and P9 form one [-sheet, whereas the other 3-sheet consists of

strands B2, B3, 5, 38 and B10. These two sheets are named the S1 and
S2 sheets, respectively (Fig. 1a—c). Strand B7, which is located at one
edge of the S1 sheet, is composed of two segments (B7a and 37b) sepa-
rated by a bent structure. The two a-helices (] and a2) lie at one end
of the B-sandwich; the a1 helix is at the N terminus and @2 helix is in
the loop between B4 and B5. Comparisons of the SBD structure
described here with the Protein | 7
revealed that the SBD is structurally similar to certain lectins, such as
and second family 4
19), with r.m.s.

data Bank using the Dali server

the galectin-3 carbohydrate recognition domain
carbohydrate-binding modules of xylanase 10A (vef.
deviation values of 2.8 and 2.8 A, uspcclwd\ Indeed, both xylanase
and galectin-3 dumdlm are composed of 11-stranded antiparallel
B-sandwiches, consisting of 5- and 6-stranded B-sheets, respectively,
the overall structures of which resemble that of the SBD, although,
in contrast to the SBD, they lack o-helices. their
primary structures, the SBD shows considerable homology to the
carbohydrate-binding domain of xylanase 10A, exhibiting amino acid
identity of ~20%, whereas no obvious sequence homology was found
between SBD and the carbohydrate recognition of galectin-3.

Comparing

The sugar-binding site

Next, we analyzed the structure of the SBD in complex with chito-
biose. We could not obtain SBD crystals in the presence of chitobiose
that diffracted to high resolution, so we introduced a C132A mutation

Figure 1 Tertiary structure of SBD in Fbsl. (a) Overall structure of SBD of
Fbsl shown as a ribbon diagram. 3-strands belonging to S1 and S2 are blue
and red, respectively. Loops and helices are black and yellow, respectively.
(b) A topology diagram of SBD. The «-helices are yellow cylinders labeled a1l
and a2. The B-strands are arrows labeled $1-$10. The left and right forms
of B-strands correspond to S1 and S2, respectively, as ina. N and C, N and
C termini, respectively. (c) Amino acid sequences of SBD in Fbsl and
corresponding region of Fbs2. Amino acid residues are numbered in the N-
to-C direction, for example, from position 117 to position 297 (C-terminal
end) of Fbsl, and from 69 to 295 (C-terminal end) of FbsZ2. Identical
residues are boxed. Secondary structure elements are colored as a.
Substrate-binding residues are red characters.

in the SBD. The C132A SBD cocrystallized with chitobiose, and the
structure ()t the C132A SBD-chitobiose complex was determined at
2.4 A resolution (Fig. 2a and Table 1). The r.m.s. deviation values
between SBD and the C132A mutant—chitobiose complex were 0.53 A
and 0.83 A for the main chain and all atoms, respectively, indicating
that the cysteine mutation hardly perturbs the conformation of the
wild type SBD. It was also confirmed that this mutation did not alter
the interaction and ubiquitination activities of glycoproteins (see
Fig. 3b).

Chitobiose was clearly located in the difference electron density map
(Fig. 2a), with B-factors as low as those of protein atoms around the
chitobiose. The chitobiose in the SBD-chitobiose complex exhibited a
trans conformation with respect to the N-acetyl groups, similar to the
structures of a large number of N-glycan-binding proteins®, The
bound chitobiose formed an intramolecular hydrogen bond between
06 of one GleNAc(A) residue and O3 of the other GleNAc(B) residue
(Fig. 2b,c). The sugar-binding surface consists of two loops: L1 con-
nects strands B3 and P4, and 1.2 is between strands 89 and $10. The
GleNAc(A) residue stacks on the aromatic ring of Trp280, as is often
found in protein-carbohydrate interactions’'>*. The GleNAc-Trp280
stacking is stabilized by hydrogen bonds mediated by a water molecule
between the O7 of the GleNAc(A) and Ne1 of Trp280 (Fig. 2¢), as well
as a hydrogen bond between 06 of the GleNAc(A) and the carbonyl
oxygen atom of Lys281, The other GleNAc(B) residue inserts the
methyl group of its N-acetyl moiety into a small hydrophobic pocket
surrounded by side chains of Phel77, Tyr279 and Lys281 (Fig. 2a,b)
and forms a hydrogen bond between its hydroxy] and the main chain N
atom of Lys281 (Fig. 2¢). The orientation of the phenyl group of Tyr279
is stabilized by a hydrogen bond with the carboxyl group of Glul78.
Upon N-glycoprotein uptake, the SBI) swings the side chain of Lys281
(data not shown) and shields the methyl group from the molecular sur-
face. The hydroxyl groups of the chitobiose almost exactly replace two
binding site water molecules, which form a hydrogen bond to the back-
bone O and N of Lys281, respectively (Fig. 2b,c).
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Figure 2 Structure of SBD in complex with a
chitobiose. (a) Stereo view of the difference-
density map (F, - F_ with phase from the Fbs1
model) of binding chitobiose, contoured at 2.1 o,
modeled into the electron density. f-strands
belonging to S1 and S2 are blue and red,
respectively. Loops are black. The bound
chitobiose is orange, and the residues involved

in the substrate binding (FYWK, see Fig. 1c) are
green. (b) Molecular surface representation of the
chitobiose-binding region. The bound chitobiose
is shown in ball-and-stick representation. Two
GlcNAc residues are represented by A and B.
Cyan spheres are two water molecules of wild
type SBD that are fixed on the molecular surface
through hydrogen bonds with the backbore N and
O of Lys281, respectively. These water molecules
are replaced by 03 and 06 of the chitobiose upon
formation of the SBD-chitobiose complex.

(¢) Stick representation of the amino acids
involved in binding. Hydrogen bonds are dashed
lines. Oxygen and nitrogen are red and blue,
respectively. Symbois of two water molecules

are as in b.

To verify that the crystal structure accu-
rately represents the complex formed in solu-
tion, we introduced point mutations into the
residues in the pocket, and examined the in
vitro activities in binding the ribonuclease B
(RNase B) carrying a high-mannose oligosaccharide (Fig. 3a). Indeed,
F177A, Y279A and W280A mutations reduced binding to the RNase B,
whereas the K281A mutation had no effect on the binding (Fig. 3a, left
panel). We next tested the in vivo activities of these mutants in binding
the precursor of integrin B1, one of the i vivo Fbs! targets” that con-
tains high-mannose oligosaccharides. Consistent with the in vitro
results, F177A, Y279A and W280A, but not K281A, failed to bind inte-
grin B1 (Fig. 3a, right panel). These results suggest that Phel77,
Tyr279 and Trp280, located in the hydrophobic pocket at the edge of
the f-sandwich, are important for interaction with chitobiose in the
high-mannose oligosaccharides. In contrast, although comparison of
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the structure of the SBD alone and that of the SBD—chitobiose com-
plex indicated that the side chain of Lys28] underwent a conforma-
tional change upon ligand binding, the in vivo and in vitro binding
studies suggested that this conformational change was not essential for
the recognition of oligosaccharides. Moreover, we examined the
impact of these mutants on the ubiquitinating activities of the SCF
onto GleNAc-terminated fetuin (GTF) i virro (Fig. 3b). SCF (Fbsl-
W280A), which could not bind to N-glycans, failed to ubiquitinate
GTE whereas the ubiquitinating activities of the K281A mutant were
retained. Taken together, these results indicate that the hydrophobic
interactions between GlcNAc(A) residue and Trp280, and of
GleNAc(B) residue with the small hydrophobic pocket, are required
for substrate recognition. In addition, the hydrogen bonds between
the chitobiose and Fbs1 atoms (Nelof Trp280 and the carbonyl oxygen
atom of Lys281) are involved in selective binding to chitobiose.

NMR analyses of the SBD-sugar interactions

We have previously reported that Fbst shows higher affinity to
Man;_oGleNAc, glycans than to chitobiose, and the number of
mannose residues did not influence the affinity®, We conducted NMR
spectroscopic analysis 1o determine the contribution of the outer

Figure 3 Residues required for interaction of Fbsl and glycoproteins with
high-mannose oligosaccharides. (a) NeuroZ?a cells were transfected with
Flag-tagged Fbsl (AN-2) and its listed derivatives. In pufl-down assay
(RNase B-bound), each AN-2—expressing WCE was incubated with RNase
B-immobilized beads; bound proteins were eluted by 0.1 M of chitobiose
and then analyzed by immunoblotting with an antibody to Flag (anti-Flag).
In immunoprecipitation with anti-Flag (IP: anti-Flag), the Fbs1-binding
proteins in the immune complex were analyzed by immunobiotting using the
anti-Flag or anti-integrin B1 antibody. Asterisks indicate the light chain of
IgG. (b) /n vitro ubiquitination of GTF by the SCFFbs! £3-figase system. The
high-molecular-mass ubiquitinated GTF [(GST-Ub)n-GTF} was detected by
immunoblotting with an antibody to fetuin.
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