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After culturing for a further 24 h at 37°C, the gel was
used for the contraction assay (see Fig. 4Ba). The lateral
surface of the gel was carefully detached from the culture
well with a fine needle, The culture plate was then placed
on a hotplate (MP-10 Dm; Kitazato Supply, Shizuoka,
Japan) and kept at 37°C. The gel images were captured
with a digital camera (QV-800SX, Casio, Tokyo, Japan)
every 1 min throughout the experiment. Contraction of
the gel was then evaluated by measuring its surface area
with image analysis software (Adobe Photoshop, Adobe
Systems Inc., USA).

Measurement of ATP release with luciferase
hioluminescence

For the measurement of the extracellular ATP
concentration ([ATP],), BAECs and BBECs were
seeded on 96-well culture plates at densities of 5000
cells well™!, After culturing for 3 days, [ATP]; was
measured using luciferin—luciferase chemiluminescence
as previously described (Oike et al. 2000).

Western blotting of eNOS protein expression

Expression of eNOS protein in BAECs and BBECs was
assessed by chemiluminescence Western blotting. Cells
were lysed with 2% SDS and the lysate was electrophoresed
through 7.5% polyacrylamide gel. Western blot analysis
for eNOS protein was then performed using antieNQS
polyclonal antibody (StressGen Biotechnologies Co., San
Diego, CA, USA) and a chemiluminescence system
{SuperSignal West Dura, Pierce Co., Rockford, IL, USA).
Emitted chemiluminescence was detected and analysed
with a lumino image analyser (FAS-1000, Toyobo, Osaka,
Japan).

1-[*H]arginine uptake

Measurement of cellular uptake of t-[*H]arginine
(Amershan, Uppsala, Sweden) was performed as
previously reported (Nelin et al 2001) with slight
modifications. BBECs and BAECs were seeded on
6-well culture plates at a density of 25 000 cells well™!.
After culturing for 3 days, the cells were washed three
times with Hanks’ balanced salt solution (HBSS, Sigma,
St Louis, MO, USA). To determine total L-[*H]arginine
uptake, 1 m! of HBSS with 1 wCi ml~" L-[*H)arginine was
placed on each well. Non-specific uptake of L-[*H]arginine
was determined with HBSS containing 1 pCi ml™! -
[3H]arginine and 10 mm unlabelled v-arginine. After
15 min of incubation at 37°C, the cells were washed three
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times with ice-cold HBSS, and lysed with 1 mi well™! of
0.2 N NaOH. Aliquots were added to scintillation cocktail
and radioactivity was quantified with a liquid scintillation
spectrometer {(LSC3500, Aloka Co., Tokyo, Japan).

Drugs and solutions

Krebs solution used in the present study contained (mm);
NaCl 132.4, KCl 5.9, CaCl, 1.5, MgCl, 1.2, glucose 11.5,
Hepes 11.5, and pH was adjusted to 7.4 by NaOH.
Hypotonic solution (-30%) was prepared by adding
distilled water to Krebs solution at a water : Krebs ratio
of 3 : 7. We have previously shown that alterating the
ionic composition of Krebs solution by adding water does
not influence the cellular Ca®* responsiveness {(Oike et al,
2000). All drugs used in the present study were purchased
from Sigma.

Statistics

Pooled data were expressed as means + s.E.M. values.
Statistic significance was examined with Student’s
unpaired ¢ test. A probability below 0.05 {P < 0.05) was
considered to show a significant difference.

Results

Effects of ATP and A23187 on NO production
in BAECs and BBECs

We have previously reported that ATP induced Ca?*
transients both in BBECs and BAECs, but the
concentration—response relationship in BBECs was shifted
to higher concentrations than that in BAECs (Kimura
et al. 19984, 2000b). This was confirmed in this study; i.e.
ATP (1 pm) induced Ca®* oscillations in Krebs solution
in BAECs (Fig. 1Aa), and a similar Ca’* response was
obtained with 10 um ATP in BBECs (Fig. 14b and ¢).
The Ca’* ionophore A23187 (1 um) also induced [Ca?*);
elevation in both cell types (Fig. 1Ba and b). The net
incrementsin 1 M A23187-induced Ca?* transients were
not significantly different in BAECs and BBECs (Fig. 1Bc).

We then evaluated Ca?*-dependent NO production
in BAECs and BBECs using DAF-2. We have previously
demonstrated that Ca®* mobilization evoked by ATP
or A23187 induced an increase in NO production in
BAECs (Koyama et al. 2002). As shown in Fig. 24, a
solution exchange alone did not induce any apparent
change in DAF-2 fluorescence up to 20 min in both BAECs
and BBECs, even in the presence of 3 mM L-arginine.
In BAECs, ATP (1 um) induced a gradual increase in
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DAF-2 fluorescence (o, Fig. 2B), which was inhibited by
pretreatment with 0.1 mm L-NAME (Fig. 2D), suggesting
that DAF-2 fluorescence was properly linked to cellular
NO production. In contrast, BBECs did not show any
increase in DAF-2 fluorescence in response to 10 pum
ATP (e, Fig. 2B), even though this concentration of ATP
induced Ca?* transients in BBECs (Fig. 1A4). A23187 also
induced an increase in DAF-2 fluorescence in BAECs, but
not in BBECs (Fig. 2C). These results are summarized in
Fig. 2D, and indicate that ATP and A23187 do not induce
NO production in BBECs.

Effects of hypotonic stress on NO production
in BAECs and BBECs

We have previously reported that hypotonic stress
(HTS), as an example of mechanical stress, induces NO
production in a Ca’*-dependent manner due to ATP
release in BAECs (Kimura et al. 20004; Oike ef al. 2000). So
we then compared the HTS-induced, ATP-mediated NO
production in BAECs and BBECs. HTS (-30%) induced
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ATP release in BAECs as previously reported (Oike et al.
2000). [ATP], was elevated to 55.8 £ 5.9 nM after being
exposed to HTS for 10 min (n = 14), whereas it was 28.8 &
3.2 nM when the cells were kept in isotonic solution for the
same period (n = 14, Fig. 3A). In contrast, a HTS-induced
increase in [ATP], was not observed in BBECs; i.e. [ATP],
was 25.6 £ 2.5 nu in isotonic solution (n = 13) and 28.1
+ 2.3 nm in hypotonic solution (n = 13, P > 0.05 versus
isotonic). As expected, HTS induced an increase in DAF-2
fluorescence in BAECs, but not in BBECs (Fig. 3B).

Endothelium-dependent relaxation of smooth muscle
cell-embedded collagen gels

To further investigate NO production in BBECs and
BAECs, we have developed a novel method for detecting
cultured  endothelium-dependent  vasorelaxation.
Endothelial cells were overlaid onto a BASMC-embedded
collagen gel lattice as shown in the cartoon (Fig. 4Ba) so
that endothelium-derived substances could affect the gel
contraction.
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Figure 1. CaZ* transients induced by ATP and A23187 in bovine aortic (BAECs) and brain microvascular

{BBECs) endothelial cells

A, representative traces of ATP-induced Ca?* osdillations in BAECS {2) and BBECs (b). Similar levels of net [Ca?+};
elevation {A[Ca2* ;) were obtained with 1 um and 10 gm ATP in BAECs and BBECs, respectively (c). 8, A23187 (1
pM) induced CaZ* transients in both BAECs (a) and BBECs (b) to a similar degree (c}. n.s., P > 0.05.
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In this assay, we used the classical endothelial agonist
ACh (Furchgott & Zawadzki, 1980} as a Ca?* mobilizing
agent. ACh (10 M) induced Ca’* transients in BAECs
(Fig. 4Aa). The same concentration of ACh (10 pm)
induced smaller Ca* responses in BBECs (not shown),
and a similar Ca?* response was obtained with a higher
concentration of ACh (100 pm, Fig. 4Ab).

BASMC-embedded collagen gel lattices showed a rapid
contraction in response to noradrenaline (NAd, 1 pm)
both in BAEC- and BBEC-overlaid gels (Fig. 4Bb and
¢, o). Pretreatment with L-NAME did not affect the
NAd-induced contraction both in BAEC- and BBEC-
overlaid gels (Fig. 4Bb and ¢, @), thereby suggesting that
NAd does not evoke NO production in these overlaid
endothelia. Subsequent application of 10 gm ACh induced
a relaxation of the precontracted gels in BAEC-overlaid
gels (Fig. 4Bb, o). The relaxation was not observed in
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the absence of overlaid BAECs (not shown) and was
significantly inhibited when the gel was pretreated with 1-
NAME (Fig. 4Bb, ), thereby indicating that the relaxation
of the gel was due to BAEC-derived NO. In contrast,
when BBECs were overlaid on to a BASMC-embedded
collagen gel, the precontracted gel did not show relaxation
in response to 100 um ACh (Fig. 4Bc, o).

Therefore, these results indicate that [Ca2"]; elevation
leads to the release of a significant amount of NO in BAECs
but not in BBECs.

Western blotting of eNOS protein expression
in BAECs and BBECs

To explore the cellular mechanisms responsible for
lower NO production in BBECs, we then examined the
expression of eNOS protein in BAECs and BBECs with
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Figure 2. Effects of ATP and A23187 on NO production, assessed with DAF-2, in BAECs and BBECs

A, solution exchange alone did not induce an increase in DAF-2 fluorescence in both BAECs (o) and BBECs ().
Representative results are shown, DAF-2 fluorescence (Fpar) is expressed relative to its initial value (t = 0, Fo).
Circles are the actual values of DAF-2 fluorescence and continuous lines were drawn by averaging the adjusting
five points. Measurements were performed in the presence of 3 mM t-arginine. 8, ATP {1 uM) induced an increase
in DAF-2 fluorescence in BAECs {0}, whereas 10 um ATP did not show any apparent increase in DAF-2 fluorescence
in BBECs {®). Representative results are shown. C, A23187 {1 um) also increased DAF-2 fluorescence in BAECS
(o) but not in BBECs (e). Representative results are shown. D, net increment of relative DAF-2 fluorescenca at
10 min after solution exchange (control) or the appfication of ATP or A23187 in BAECS (a) and BBECs (b). Note
that I1-NAME (0.1 ma} inhibited ATP-induced DAF-2 fluorescence. **P < 0.01 vs. control. ## P < 0.01 vs, ATP

glone. n.s., P > 0.05 vs. control.
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Western blotting. Though expression of eNOS protein was
observed in BBECs, BAECs showed much a denser band
of eNOS (Fig. 5A). Densitometric analysis revealed that
the expression level of eNOS protein relative to that of the
housekeeping B-actin protein was 0.133 & 0.006 in BAECs
(n = 6) but 0.092 £ 0.006 in BBECs (n = 6, Figs 5B;
P < 0.01).

Cellular 1-[*H]arginine uptake in BBECs and BAECs

To further examine the possible cause of the reduction of
NO production in BBECs, we finally examined the cellular
L-arginine uptake in BAECs and BBECs. Asshownin Fig. 6,
uptake of L-[*H]-arginine over 15 min was significantly
lower in BBECs than in BAECs (BAECs, 930.6 + 284
d.p.m. (ug protein)~'; BBECs, 6384 & 15.7 d.p.m. (ug
protein)~!, n = 5 for both cell types, P < 0.01).

Discussion

We have previously reported that ATP induces Ca’t
oscillations in BAECs and BBECs with different
concentration—response relationships (Kimura et al.
1998a, 2000b). The present study showed that Ca™
transients induced by 1 umM ATP in BAECs were similar
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to those induced by 10 um ATP in BBECs (Fig. 14).
Furthermore, the Ca** ionophore A23187 (1 um) induced
Calt transients in both BAECs and BBECs (Fig. 1B).
In spite that the similar degree of {Ca®*]; elevation was
induced by ATP and A23187 in BAECs and BBECs, these
agents induced an increase in DAF-2 fluorescence only in
BAECs (Fig. 2), thereby suggesting that [Ca?*); elevation
does not lead to detectable NO production in BBECs. In
addition, HTS induced NO production in BAECs but not
in BBECs (Fig. 3B), so we suppose that mechanical stresses
that can be mimicked by HTS do not evoke NO production
in BBECs. We have previously shown that HTS-induced
NO production is due to endogenous ATP release (Kimura
et al. 2000a), which was also absent in BBECs (Fig. 3A).
Anion channels (Sabirov et al. 2001; Hisadome et al. 2002}
and vesicular exocytosis (Bodin & Burnstock, 2001) have
been suggested as components of the mechanical stress-
induced ATP release pathway, and tyrosine kinases and the
RhoA/Rho-kinase cascade have been reported as cellular
mechanisms for HTS-induced ATP release (Koyama et al.
2001). Therefore it can be speculated that BBECslack some
of these or any other as yet unknown mechanisms that are
involved in HTS-induced ATP release.

The absence of detectable Ca’t-dependent NO
production in BBECs may contradict previous reports
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Figure 3. Effects of hypotonic stress (HTS) on ATP release and subsequent NO production in BAECs and

BBECs

A, HTS (-30%) induced an increase in [ATP], in BAECs but notin BBECs. Luciferin chemiluminescence was measured
for 10 min, and converted into correspanding [ATP), with [ATP];~chemiluminescence standard curves obtained
in each solution. **P < 0.1 vs. BAEC isotonic. n.s., P > 0.05 vs. BBEC isotonic, 8a, gradual increase in DAF-
2 fluorescence was evoked by HTS in BAECs (O} but not in BBECs (@) in the presence of 3 mM L-arginine.
Representative results are shown. Bb, Statistical analysis of net increment of relative DAF-2 fluorescence at 10

min after starting HTS. **P < 0.01 v3. BAECs.
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showing the expression of eNOS protein in cerebral
microvessels in mouse (Ishii et al. 2002), rat (McNeill
et al. 1999; Yamakawa et al. 2003) and pig (Gobeil
et al. 2002). We have also observed that though the
expression level is significantly lower than in BAECs,
eNOS protein is certainly expressed in BBECs (Fig. 5).
However, no previous studies have directly shown the
production of NO in cerebral microvessels. Because the
amount of NO generated by eNOS is relatively smaller
than that produced by inducible NOS (Stoclet et al. 1999),
very few methods have been introduced to measure NO
production in cultured endothelium, i.e. 2 porphyrinic-
based microsensor (Malinski & Taha, 1992) and the NO-
sensitive fluorescent dye DAF-2 (Kojima et al, 1998).
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Though DAF-2 has been successfully used to measure
NO production in cultured endothelium (Kimura et al.
2001L; Koyama et al. 2002), the specificity of DAE-
2 fluorescence to NO has been questioned, because it
is influenced by micromolar concentrations of Ca?t
(Broillet ez al. 2001). Therefore, we have developed a novel
method in this study for detecting NO production in
cultured endothelium (Fig. 4Ba). Endothelium-overlaid,
BASMC-embedded gels showed relaxation in response
to ACh, when BAECs were overlaid (Fig. 4Bb). ACh-
induced relaxation was inhibited by 1-NAME and was
not observed in the absence of BAECs, thereby indicating
that the relaxation of the gel was due to NO generated
by the overlying BAECs. Thus we suppose that this

b o ACH 100:M
£ BBEC M’"\u
g 150
105 %0 &0 @o Tme (s)

Tie (min)
0 20 40 60 & 100

Figure 4. Endothelium-dependent relaxation of smooth muscle-embedded, endothelium-overlaid

collagen gels

A, ACh (10 um) induced Ca+ transients in BAECS (a). A similar degree of [Ca?+]; elevation was obtained with
a higher concentration of ACh in BBECs (100 uM, b). Representative traces of 30 (BAEC) or 28 (BBEC) cells are
shown. Ba, in vitro model vessel consisting of bovine aortic smooth muscle cells (BASMC) embedded in a collagen
gef lattice with overlaid endothelium. BASMC were embedded in type | collagen gel, and BAECs or BBECs were
overlaid after 24 h. A gel contraction assay was performed after a further 24 h (right). Noradrenaline (NAd, 1 M)
induced a rapid contraction of the gels. Subsequent application of 10 uM ACh induced relaxation of precontracted
gels when BAEC was overlaid (b, O, n = 20). Note that L-NAME {0.1 mm) inhibited ACh-induced gel relaxation
but did not affect initial gel contraction (b, #, n = 6). BEBEC-overlaid gels did not show relaxation in respansa to
100 pM ACh both in control {0, n = 22) and t-NAME-treated gels (c, ®, n = 6).
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method is applicable for detecting NO production in
cultured endothelium. Using this method, we observed
that BBECs did not induce vasorelaxation in response to
100 pm ACh (Fig. 4Bc), while this concentration of ACh
induced considerable Ca** transients in BBECs (Fig. 4Ab).
Pretreatment with L.-NAME did not affect the initial gel
contraction induced by NAd, thereby eliminating the
possibility that NAd induced NO production and therefore
subsequent ACh failed to generate further NO in BBECs.

Therefore, these results strongly suggest that BBECs
do not generate significant amounts of NO in response
to [Ca®*]; elevation. However, since we have examined
NO production only in non-stimulated BBECs, this study
does not exclude the possibility that eNOS in cerebral
microvascular endothelium may generate NO under
some pathophysiological environments, as previously
suggested (McNeill et al. 1999; Gobeil et al 2002;
Yamakawa et al 2003). For instance, McNeill et al
(1999) reported that chronic treatment of rat cerebral
microvessels with oestrogen increased the expression of
eNOS and discussed the possibility that this might be
involved in the neuroprotective effect of oestrogen and sex-
related differences in cerebrovascular events. Furthermore,
it is well known that shear stress generates NO in
a Ca*"-independent manner in endothelium (Fleming
et al. 1998), and we have only observed the absence
of ATP-mediated, Ca’*-dependent mechanosensitive NO
production in BBECs (Fig. 3). Therefore it should be noted
that the present study does not rule out the presence and
importance of shear stress-induced, Ca**-independent
eNOS activation in BBECs.

A BEC BBEC

B 0_15_| f—)

% 0.10 / &)
7

Figure 5. Expression of eNOS protein in BAECs and BBECs,
assessed by Western blotting

A, expression of eNOS and g-actin proteins in BAECS and BBECs.
Same amaount of total celiular protein {S ng) was applied to each lane.
Note that eNOS protein expression was lower in BBECs than in BAECS.
8, densitometric analysis of the eNOS protein bands. Values are
normalized to S-actin band density. **P < 0.01 vs. BAECs.
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Expression of eNOS alone is not enough to induce Ca®*-
dependent NO production but its substrate L-arginine
and cofactors such as calmodulin, tetrahydrobiopterin
and NADPH are also essential (Moncada et al. 1991),
In this study we propose two possible mechanisms for
the absence of detectable NO production in spite of
a sufficient [Ca®t]; elevation in BBECs, namely lower
expression of eNOS protein (Fig. 5) and lower cellular
L-arginine uptake (Fig. 6). Cellular uptake of L-arginine in
vascular endothelium is achieved by cationic amino acid
transport systems such as y* and y*L, and it is known
that the efficiency of endothelial amino acid transport is
markedly site specific (for a review see Mann et al. 2003).
However, we cannot conclude from the present results that
these mechanisms are solely responsible for the absence of
detectable NO production in BBECs. Another possibility
would be that eNOS protein is not coupled properly with
other cofactors in BBECs. Therefore, it remains to be
elucidated whether significant NO production could be
obtained if the expression of eNOS protein is increased in
pathological conditions.

It has been suggested that EDHF rather than NO plays
a significant role in endothelial control of vascular tone
in smaller vessels (Garland et al. 1995). The results of the
present study have further clarified that [Ca®*); elevation
in brain microvascular endothelium does not lead to
considerable NO production, and may support a recent
report showing that cerebral microcirculation is controlled
by neurone-to-astrocyte signals (Zonta et al. 2003). In
conclusion, the present study has revealed that constitutive
Ca?*-dependent and HTS-induced NO production is not
detectable in BBECs, and suggests that there may be
a marked site specificity in the generation of NO in
endothelium.

L-{Hjarginine uptake {dprjug protein)

BAEC BBEC

Figure 6. Uptake of L-{*H]arginine in BAECs and BBECs

Cells were incubated with 1-[*H]arginine for 15 min at 37°C, and the
incorporated t-13Harginine was measured as described in Methods.
Results are shown as radioactive disintegrations per minute {d.p.m.)
per g cell protein (mean £ s.eM., n=5). **P < 0.01 vs. BAECs,
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Statin and BMP

Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyusyu University

Keizo Ohnaka, Ryoichi Takayanagi

Bone morphogenetic proteins (BMP)are cytokines that promote differentiation of mesenchymal stem cells
into differentiated osteoblasts and bone formation. Recently, HMG-CoA reductase inhibitors (statins)
emerged as a candidate for the treatment of osteoporosis, because they stimulate BMP-2 expression and bone
formation. Inhibition of Rho/Rho-kinase pathway may be involved in statin effect on bone formation.
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