Fig. 1. Effect of diltiazem on plasma concentration and AUC_{0-6h} of HMG-CoA reductase inhibitor. (A) Plasma concentrations of HMG-CoA reductase inhibitor observed on the last day of 4 weeks of treatment with simvastatin (5mg/day) (open circles) or combined treatment with simvastatin (5mg/day) and diltiazem (90mg/day) (closed circles). Error bars represent S.D. *Significant difference from simvastatin monotherapy (P < 0.05). (B) Individual AUC_{0-6h} values for HMG-CoA reductase inhibitor (open circles) with (right) and without diltiazem (left) in the 11 patients. Closed circles with the bars indicate means \pm S.D. Tmax of diltiazem was not affected (3.1 \pm 0.9 h) by simvastatin. Plasma diltiazem AUC_{0-6h} values were decreased by simvastatin in 9 of the 11 patients (Fig. 2B). Pharmacodynamic interactions between simvastatin and diltiazem Following 4 weeks of simvastatin monotherapy, total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglyceride levels were 206 \pm 26 mg/dl, 129 \pm 16 mg/dl, 50 \pm 10 mg/dl, and 135 \pm 73 mg/dl, Fig. 2. Effect of simvastatin on plasma concentration and AUC_{0-6h} of diltiazem. (A) Plasma concentrations of diltiazem observed on the last day of 4 weeks of treatment with diltiazem (open circles) or combined treatment with simvastatin and diltiazem (closed circles). *Significant difference from diltiazem monotherapy (P < 0.05). (B) Individual AUC_{0-6h} values of diltiazem (open circles) with (right) and without simvastatin (left). Closed circles with the bars indicate means \pm S.D. respectively (Fig. 3A). These values were not different with those at the end of pretrial phase with simvastatin (5 mg/day) and enalapril (5 mg/day) (total cholesterol, 207 \pm 23 mg/dl; LDL-cholesterol, 129 \pm 15 mg/dl; HDL-cholesterol, 50 \pm 10 mg/dl; triglyceride, 137 \pm 68 mg/dl), suggesting that the treatment with simvastatin reached the plateau control during the pretrial phase. Co-administration of diltiazem and simvastatin further reduced the mean total and LDL-cholesterol levels to 196 \pm 32 mg/dl (P < 0.05) (Fig. 3B) and 119 \pm 17 mg/dl (P < 0.05), respectively, but did not influence HDL-cholesterol and triglyceride levels, which were 49 \pm 11 mg/dl and 140 \pm 72 mg/dl, respectively. On the other hand, after simvastatin was withdrawn during the last 4 weeks of diltiazem monotherapy, total cholesterol and LDL-cholesterol levels increased to 245 \pm 33 mg/dl and 163 \pm 21 mg/dl (P < 0.01), respectively, while HDL-cholesterol and triglyceride levels were not affected (51 \pm 12 mg/dl and 157 \pm 77 mg/dl, respectively). After 4 weeks of simvastatin monotherapy, baseline systolic and diastolic BP increased from 142 ± 22 mm Hg to 152 ± 28 mm Hg (P < 0.05) and from 84 ± 12 mm Hg to 89 ± 10 mm Hg (P < 0.05), respectively, compared to baseline BP during the pre-trial phase with simvastatin and enalapril. Simvastatin did not exert any BP-lowering effect. Diltiazem decreased systolic BP from 146 ± 26 mm Hg to 124 ± 9 mm Hg and diastolic BP from 84 ± 11 mm Hg to 75 ± 6 mm Hg at 2 hours post-dose. This effect was not influenced by the combined treatment with simvastatin (baseline systolic BP, 138 ± 18 mm Hg; baseline diastolic BP, 83 ± 13 mm Hg; systolic BP at 2 hours post-dose, 129 ± 19 ; diastolic BP at 2 hours post-dose, 76 ± 12 mm Hg) (Fig. 4). Serum aspartate aminotransferase (AST; normal range, 11–30 IU/l), alanine aminotransferase (ALT; normal range, 5-42 IU/l), lactate dehydrogenase (LDH; normal range, 115–208 IU/l) and creatine kinase (CK; normal range, 55–204 IU/l) levels appeared to increase, albeit without statistical significance, during the combined therapy period compared with those observed during the simvastatin monotherapy Fig. 3. Lipid profiles during simvastatin monotherapy, combined therapy with diltiazem and simvastatin, and diltiazem monotherapy. (A) Lipid profiles after 4 weeks of simvastatin monotherapy (5mg/day, hatched columns), combined treatment with simvastatin (5mg/day) and diltiazem (90mg/day) (closed columns) or diltiazem monotherapy (90mg/day, open columns). TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol and TG, triglyceride. * Significant difference from diltiazem monotherapy (P < 0.05). †Significant difference between simvastatin monotherapy and combined treatment with simvastatin and diltiazem (P < 0.05). (B) Total cholesterol levels in the 11 patients observed after 4 weeks of treatment with simvastatin (90mg/day) (left) or combined treatment with simvastatin (5mg/day) and diltiazem (90mg/day) (right). Closed circles with the bars indicate means \pm S.D. Fig. 4. Blood pressures during combined therapy with diltiazem and simvastatin, and diltiazem monotherapy. Systolic (A) and diastolic (B) BP before and 2, 3, 4 and 6 hours after an oral 30 mg dose of diltiazem with (closed circles) or without (open circles) simvastatin following 4 weeks of treatment with diltiazem alone (90mg/day) (open circles) or combined treatment with simvastatin (5mg/day) and diltiazem (90mg/day) (closed circles). * Significant difference from BP at 0 h (P < 0.05). Data are expressed as means \pm S.D. period: AST, 23.4 ± 4.3 IU/l vs. 21.3 ± 5.1 IU/l, ALT, 22.1 ± 5.6 IU/l vs. 18.9 ± 5.6 IU/l, LDH, 196 ± 42 IU/l vs. 187 ± 32 IU/l, and CK 142 ± 111 IU/l vs. 107 ± 45 IU/l, respectively. ### Discussion Simvastatin and diltiazem are often prescribed together for the treatment of hypercholesterolemia in patients with hypertension and/or angina pectoris (Gould et al., 1995; Gotto, 1998; Wood, 2001). In the Scandinavian Simvastatin Survival Study (4S) (1994), which demonstrated a reduction in nonfatal myocardial infarction, cardiovascular death, and total mortality by simvastatin treatment in patients with angina pectoris or previous myocardial infarction, more than 30% of the study population were treated with calcium antagonists including diltiazem. The efficacy and safety profiles of simvastatin and diltiazem are widely accepted (Chaffman and Brogden, 1985; The Scandinavian Simvastatin Survival Study, 1994; Hansson et al., 2000). The effect of diltiazem on the pharmacokinetics of simvastatin has been previously described, such that the Cmax and AUC of simvastatin after a single 20 mg oral dose of simvastatin increased by 3.6-fold and 5-fold, respectively, after 2 weeks of treatment with 120 mg diltiazem twice a day (Mousa et al., 2000). However, bi-directional pharmacokinetic interactions and the potential pharmacodynamic impact have not been prospectively studied. Our prospective study demonstrates that long-term and low-dose co-administration of diltiazem and simvastatin results in two-fold increase of Cmax and AUC of HMG-CoA reductase inhibitor, which is accompanied by enhanced cholesterol-lowering effect of simvastatin in patients with hypercholesterolemia and hypertension. Interestingly, in contrast to the effect on the pharmacokinetics of simvastatin, the co-administration of simvastatin with diltiazem decreased the Cmax and AUC of diltiazem without affecting its BP-lowering effects. These results are consistent with a retrospective study demonstrating that simvastatin caused a 33.3% cholesterol reduction in patients using diltiazem compared with 24.7% in those not using diltiazem (Yeo et al., 1999). It has also been reported that doubling the dose of simvastatin further reduces serum cholesterol by an average of 5% (Roberts, 1997). This is compatible with our finding that a two-fold increase in the Cmax and AUC of HMG-CoA reductase inhibitor by co-administration of diltiazem with simvastatin was accompanied by a further 5% reduction in total cholesterol level. The results of our study suggest that patients who require both simvastatin and diltiazem may need a lower dose of simvastatin than when simvastatin is prescribed alone to achieve the desired reduction in total and LDL-cholesterol levels. The mechanism underlying the decrease in the AUC of diltiazem by the combined therapy with simvastatin remains unknown. Diltiazem is extensively metabolized in the liver into its host metabolites, primarily by deacetylation and demethylation by CYP3A4 in vitro and in vivo (Chaffman and Brogden, 1985; Pichard et al., 1990; Sutton et al., 1997; Jones et al., 1999; Nakagawa and Ishizaki, 2000; Yeo and Yeo, 2001; Kosuge et al., 2001), and probably in part by CYP2C8/9 (Sutton et al., 1997). In addition, diltiazem has been shown to increase the metabolic ratio of debrisoquine (Sakai et al., 1991), suggesting a possible interference with CYP2D6 (Molden et al., 2002). It is possible that the relevant enzyme activity to metabolize diltiazem or its metabolite(s) might be induced by themselves. Alternatively, simvastatin and/or its metabolite(s) might enhance the activity of enzyme(s) involved in the metabolism of diltiazem after the long term coadministration. Although the Cmax and AUC of diltiazem were decreased by simvastatin, blood pressure-lowering effect of diltiazem was not influenced by simvastatin. Heart rate of the patients during combined treatment with simvastatin did not differ from that during the diltiazem monotherapy period: 70 ± 10 beats/min vs. 68 ± 7 beats/min, respectively. It is likely that the pharmacokinetic interaction such as the 21% reduction in both the Cmax and AUC of diltiazem was not sufficient to alter pharmacodynamic response. However, we cannot exclude the possibility that the power was not enough to detect the pharmacodynamic differences. Further investigation is required to clarify the pharmacodynamic impact on blood pressure and the mechanism responsible for the changes in the pharmacokinetic behavior of diltiazem by the combined treatment with simvastatin. The combined therapy increased the AUC of HMG-CoA reductase inhibitor by as much as 422% in one patient and as
little as 7% in another, suggesting a considerable inter-individual variability in the effect of diltiazem on the levels of HMG-CoA reductase inhibitor (Fig. 1B). However, this pharmacokinetic variation did not account for the differences in the pharmacodynamic responses to simvastatin (correlation coefficient: r = 0.106, not significant) (Fig. 5A). On the other hand, there was a significant correlation between the AUC of diltiazem and the AUC of HMG-CoA reductase inhibitor (r = 0.73, P < 0.05) (Fig. 5B). For example, one patient showing the lowest value of the AUC of diltiazem showed the lowest value for the AUC of HMG-CoA reductase inhibitor, suggesting that this patient might be an individual with a high CYP3A4 activity. These findings taken together strongly suggest that simvastatin and diltiazem could be metabolized, at least in part, through a common or shared pathway. Simvastatin is generally well tolerated and causes few subjective side-effects during chronic treatment, however, rhabdomyolysis is a rare side effect of this HMG-CoA reductase inhibitor that appears to be dose-related. The doses of simvastatin (5 mg/day) and diltiazem (90 mg/day) used in this study are lower than those recommended in Western countries, because these doses are common and approved in the Japanese formulary and have been shown to be sufficient to treat Japanese patients at the clinical practice (Matsuzaki et al., 2002). It is noteworthy that the pharmacokinetic and pharmacodynamic interactions take place even at the lower doses. Furthermore, the levels of AST, ALT, LDH and CK appeared to increase during the combined therapy with simvastatin and diltiazem compared to the Fig. 5. (A) Percent changes in plasma concentration of HMG-CoA reductase inhibitor versus plasma total cholesterol (TC) concentration after the combined treatment with simvastatin and diltiazem in the 11 patients. Correlation coefficient was 0.106 (not significant). (B) Relationship between the AUCs of HMG-CoA reductase inhibitor and diltiazem in the 11 patients during monotherapy (r = 0.73, P < 0.05). simvastatin mono-therapy. The findings strongly suggest that careful monitoring should be carried out for patients under combined treatment with simvastatin and diltiazem at higher doses to avoid any increase in risk of serious adverse effects. ### Conclusion This study is the first to show the bi-directional pharmacokinetic and pharmacodynamic interactions between diltiazem and simvastatin after long-term treatment with both drugs. Combined treatment with diltiazem and simvastatin increases the Cmax and AUC of HMG-CoA reductase inhibitor and further reduces total and LDL-cholesterol levels. On the other hand, the combination decreases the Cmax and AUC of diltiazem without affecting its blood pressure-lowering effect. These interactions should therefore be taken into consideration, and pharmacokinetic and pharmacodynamic monitoring may be necessary when these drugs are used concomitantly. ### Acknowledgments The authors are grateful to Dr. Quang-Kim Tran (University of Missouri-Kansas City) for his helpful insights and to H. Kobayashi for technical assistance. #### References Abernethy, D.R., Schwartz, J.B., Todd, E.L., 1985. Diltiazem and desacetyldiltiazem analysis in human plasma using high-performance liquid chromatography: Improved sensitivity without derivation. Journal of Chromatography 342, 216-220. Arnadottir, M., Eriksson, L.O., Thysell, H., Karkas, J.D., 1993. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 65, 410-413. - Azie, N.E., Brater, D.C., Becker, P.A., Jones, D.R., Hall, S.D., 1998. The interaction of diltiazem with lovastatin and pravastatin. Clinical Pharmacology and Therapeutics 64, 369-377. - Chaffman, M., Brogden, R.N., 1985. Diltiazem. A review of its pharmacological properties and therapeutic efficacy. Drugs 29, 387-454. - Goldstein, J.L., Brown, M.S., 1990. Regulation of the mevalonate pathway. Nature 343, 425-430. - Gotto Jr., A.M., 1998. Risk factor modification: rationale for management of dyslipidemia. American Journal of Medicine 104, 6S-8S. - Gould, K.L., Casscells, S.W., Buja, L.M., Goff, D.C., 1995. Non-invasive management of coronary artery disease. Report of a meeting at the University of Texas Medical School at Houston. Lancet 346, 750-753. - Hansson, L., Hedner, T., Lund-Johansen, P., Kjeldsen, S.E., Lindholm, L.H., Syvertsen, J.O., Lanke, J., de Faire, U., Dahlof, B., Karlberg, B.E., 2000. Randomised trial of effects of calcium antagonists compared with diuretics and beta-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 356, 359-365. - Jones, D.R., Gorski, J.C., Hamman, M.A., Mayhew, B.S., Rider, S., Hall, S.D., 1999. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. Journal of Pharmacology and Experimental Therapeutics 290, 1116-1125. - Kivistö, K.T., Lamberg, T.S., Kantola, T., Neuvonen, P.J., 1997. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clinical Pharmacology and Therapeutics 62, 348-354. - Kosuge, K., Jun, Y., Watanabe, H., Kimura, M., Nishimoto, M., Ishizaki, T., Ohashi, K., 2001. Effects of CYP3A4 inhibition by diltiazem on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status. Drug Metabolism and Disposition 29, 1284-1289. - Matsuzaki, M., Kita, T., Mabuchi, H., Matsuzawa, Y., Nakaya, N., Oikawa, S., Saito, Y., Sasaki, J., Shimamoto, K., Itakura, H., 2002. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circulation Journal 66, 1087–1095. - Molden, E., Johansen, P.W., Bøe, G.H., Bergan, S., Christensen, H., Rugstad, H.E., Rootwelt, H., Reubsaet, L., Lehne, G., 2002. Pharmacokinetics of diltiazem and its metabolites in relation to CYP2D6 genotype. Clinical Pharmacology and Therapeutics 72, 333-342. - Mousa, O., Brater, D.C., Sunblad, K.J., Hall, S.D., 2000. The interaction of diltiazem with simvastatin. Clinical Pharmacology and Therapeutics 67, 267-274. - Nakagawa, K., Ishizaki, T., 2000. Therapeutic relevance of pharmacogenetic factors in cardiovascular medicine. Pharmacology and Therapeutics 86, 1-28. - Neuvonen, P.J., Kantola, T., Kivisto, K.T., 1998. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clinical Pharmacology and Therapeutics 63, 332-341. - Pichard, L., Gillet, G., Fabre, I., Dalet-Beluche, I., Bonfils, C., Thenot, J.P., Maurel, P., 1990. Identification of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metabolism and Disposition 18, 711-719. - Prueksaritanont, T., Gorham, L.M., Ma, B., Liu, L., Yu, X., Zhao, J.J., Slaughter, D.E., Arison, B.H., Vyas, K.P., 1997. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metabolism and Disposition 25, 1191-1199. - Roberts, W.C., 1997. The rule of 5 and the rule of 7 in lipidlowering by statin drugs. American Journal of Cardiology 80, 106-107 - Sakai, H., Kobayashi, S., Hamada, K., Iida, S., Akita, H., Tanaka, E., Uchida, E., Yasuhara, H., 1991. The effects of diltiazem on hepatic drug metabolizing enzymes in man using antipyrine, trimethadione and debrisoquine as model substrates. British Journal of Clinical Pharmacology 31, 353-355. - Shepherd, J., 1998. Preventing coronary artery disease in the West of Scotland: implications for primary prevention. American Journal of Cardiology 82, 57T-59T. - Sutton, D., Butler, A.M., Nadin, L., Murray, M., 1997. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. Journal of Pharmacology and Experimental Therapeutics 282, 294-300. - The Scandinavian Simvastatin Survival Study (4S), 1994. Randomised trial of cholesterol lowering in 4444 patients with coronary artery disease. Lancet 344, 1383-1389. - Tonkin, A.M., 1995. Management of the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) study after the Scandinavian Simvastatin Survival Study (4S). American Journal of Cardiology 76, 107C-112C. - Vickers, S., Duncan, C.A., Chen, I.W., Rosegay, A., Duggan, D.E., 1990. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metabolism and Disposition 18, 138-145. - Vickers, S., Duncan, C.A., Vyas, K.P., Kari, P.H., Arison, B., Prakash, S.R., Ramjit, H.G., Pitzenberger, S.M., Stokker, G., Duggan, D.E., 1990. In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metabolism and Disposition 18, 476-483. - Wang, J.S., Wen, X., Backman, J.T., Taavitsainen, P., Neuvonen, P.J., Kivisto, K.T., 1999. Midazolam alpha-hydroxylation by human liver microsomes in vitro: inhibition by calcium channel blockers, itraconazole and ketoconazole. Pharmacology and Toxicology 85, 157-161. - Wood, D., 2001. Asymptomatic individuals-risk stratification in the prevention of coronary heart disease. British Medical Bulletin 59, 3-16. - Yeo, K.R., Yeo, W.W., Wallis, E.J., Ramsay, L.E., 1999. Enhanced cholesterol reduction by simvastatin in diltiazem-treated patients. British Journal of Clinical Pharmacology 48, 610-615. - Yeo, K.R., Yeo, W.W., 2001. Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes. British Journal of Clinical Pharmacology 51, 461-470. ## Original Article # Interaction between Amlodipine and Simvastatin in Patients with Hypercholesterolemia and Hypertension Shinichiro NISHIO, Hiroshi WATANABE, Kazuhiro KOSUGE, Shinya UCHIDA, Hideharu HAYASHI*, and Kyoichi OHASHI
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are often prescribed in association with antihypertensive agents, including calcium antagonists. Simvastatin is an HMG-CoA reductase inhibitor that is metabolized by the cytochrome P450 (CYP) 3A4. The calcium antagonist amlodipine is also metabolized by CYP3A4. The purpose of this study was to investigate drug interactions between amlodipine and simvastatin. Eight patients with hypercholesterolemia and hypertension were enrolled. They were given 4 weeks of oral simvastatin (5 mg/day), followed by 4 weeks of oral amlodipine (5 mg/day) co-administered with simvastatin (5 mg/day). Combined treatment with simvastatin and amlodipine increased the peak concentration (C_{max}) of HMG-CoA reductase inhibitors from 9.6 ± 3.7 ng/ml to 13.7 ± 4.7 ng/ml (p<0.05) and the area under the concentration-time curve (AUC) from 34.3 ± 16.5 ng h/ml to 43.9 ± 16.6 ng h/ml (p<0.05) without affecting the cholesterol-lowering effect of simvastatin. This study is the first to determine prospectively the pharmacokinetic and pharmacodynamic interaction between amlodipine and simvastatin. (Hypertens Res 2005; 28: 223–227) Key Words: drug interaction, simvastatin, amlodipine, hypercholesterolemia ### Introduction Control of hypercholesterolemia is important for the prevention of coronary artery disease (CAD) (1-5). Currently, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are the first-choice therapeutic agents for patients with hypercholesterolemia (6-8). The HMG-CoA reductase inhibitor simvastatin is widely used and has been shown to reduce morbidity and mortality from CAD (9). Simvastatin is an inactive lactone pro-drug that is hydrolyzed by esterases to simvastatin acid, the active competitive inhibitor of HMG-CoA reductase (10-12). Simvastatin and simvastatin acid are mainly metabolized by the cytochrome P450 (CYP) 3A4 to 3',5'-dihydrodiol, 3'-hydroxy and 6'-exometh- ylene (10-12). The pharmacokinetics of simvastatin has been reported to be affected by potent CYP3A4 inhibitors such as itraconazole (13), erythromycin (14), verapamil (14) and nelfinavir (15). Moreover, we have previously reported that diltiazem, which is a selective inhibitor of CYP3A4 (16, 17), caused a 2-fold increase of the area under the concentration-time curve (AUC) of HMG-CoA reductase inhibitors (18). Hypercholesterolemia is often accompanied by hypertension, an associated risk factor for CAD (19-21). Calcium antagonists have been widely used in the treatment of hypertension and/or angina pectoris (22-26), and are often prescribed in association with a lipid-lowering agent such as simvastatin. Amlodipine is one of the 1,4-dihydropyridine calcium antagonists with a long elimination half-life (27-29). Amlodipine undergoes the oxidative metabolism of dihydro- From the Department of Clinical Pharmacology and Therapeutics and *Department of Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Japan. This study was supported by a Grant for Comprehensive Research on Aging and Health (H16-choju-001) from the Ministry of Health, Labor and Welfare of Japan. Address for Reprints: Shinichiro Nishio, M.D., Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan. E-mail: shinn@hama-med.ac.jp Recieved October 25, 2004; Accepted in revised form December 21, 2004. Table 1. Patient Demographics and Basic Medical Data | TADIC 1. TAUCHT POLITICAL I | | |--|----------| | Age (years old) | 64.1±6.0 | | Sex (male/female) | 5/3 | | | 61.5±5.9 | | Body weight (kg) Total cholesterol (mg/dl) | 253±31 | | | 164±26 | | LDL-cholesterol (mg/dl) | 54±9 | | HDL-cholesterol (mg/dl) | 179±95 | | Triglyceride (mg/dl) | | Values are mean±SD. LDL, low-density lipoprotein; HDL, high-density lipoprotein. pyridine to a pyridine analogue by CYP3A4 (30). In an *invitro* study, amlodipine was shown to have strong inhibitory effects on CYP1A1, CYP2B6 and CYP2C9, and a weak inhibitory effect on CYP3A4 when using microsomes from human B-lymphoblast cells expressing CYP (31). Although amlodipine is one of the most frequently used calcium antagonists, the drug interaction between amlodipine and substrate drugs for CYP3A4 has not been clinically investigated. In this study we prospectively studied the pharmacokinetic and pharmacodynamic drug interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. ### Methods ### **Subjects** Eight patients with mild hypertension and hypercholesterolemia who had been treated with simvastatin (5 mg/day) and the angiotensin-converting enzyme inhibitor enalapril (5 mg/ day) for more than 3 months were enrolled. Before the start of any antihypertensive therapy, the mean systolic and diastolic blood pressure levels (SBP/DBP) were 151±29 mmHg and 88±11 mmHg, respectively. The patient demographics and basic medical data are shown in Table 1. Patients had no history of hepatic or renal disease. The study protocol was approved by the Ethical Committee of Hamamatsu University School of Medicine. All subjects gave written informed consent before participating in the study. ### Study Design This was a two-phase fixed-order design study. In the first period, patients were administered oral simvastatin (5 mg/day) alone for 4 weeks. In the second period, patients were co-administered amlodipine (5 mg/day) and simvastatin (5 mg/day) for 4 weeks. No drug other than simvastatin and amlodipine was taken during the study period. ### **Blood Sampling** Blood samples were obtained on the last day of each of the Fig. 1. Time profiles of the mean plasma concentrations of HMG-CoA reductase inhibitors on the last day of 4 weeks of treatment with simvastatin (5 mg/day) or combined treatment with simvastatin (5 mg/day) and amlodipine (5 mg/day). Each point represents the mean ±SD. trial periods. After an overnight fast, a pre-dosing venous blood sample was taken, which was used to measure serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) enzymatically, and the low-density lipoprotein cholesterol (LDL-C) concentration was calculated according to the Friedewald formula method (32). All patients drank a glass of water after swallowing the tablets. Blood samples were then taken 2, 3, 4 and 6 h after simvastatin administration. A standardized breakfast and lunch were served 2 and 4 h after drug intake. Plasma was separated within 30 min and stored at -70°C until analysis. # Determination of Simvastatin HMG-CoA Reductase Inhibitor Concentrations Plasma concentrations of HMG-CoA reductase inhibitors were determined as previously described (33). An equal volume of methanol was added to the plasma samples and the mixtures were vortexed thoroughly, kept on ice for 10 min, and centrifuged. Fifty microliters of the supernatants were dried in an evaporator (SpeedVac; Savant Instruments, Farmingdale, USA). The reaction mixture (96 µl) was added directly to the dried residues to make a final volume of 100 µl containing 0.1 mol/l KPO4 (pH 7.4), 10 mmol/l 1,4-dithiothreitol (DTT), 0.2 mmol/l NADH+ (made fresh daily), 5 mmol/l glucose-6-phosphate, 1.4 U/ml glucose-6-phosphate dehydrogenase and 1 mg/ml bovine serum albumin. The reaction mixture was incubated for 5 min at 37°C, and soluble rat liver HMG-CoA reductase was added to 2 µl buffer A: 0.04 mol/l KPO4 (pH 7.4), 0.05 mol/l KCl, 0.1 mol/l sucrose, 0.03 mol/l ethylenediaminetetraacetic acid (EDTA) and 0.01 mol/ I DTT (added immediately before use). The mixture was incubated at 37°C for 5 min in the presence of the inhibitor-con- Table 2. Pharmacokinetic Parameters of Simvastatin HMG-CoA Reductase Inhibitor Concentrations | Table 2. Pharmacokinetic Paramete | C _{max} (ng/ml) | t _{1/2} (h) | AUC(0-∞) (ng h/ml) | |-----------------------------------|--------------------------|--------------------------|-------------------------| | Simvastatin | 9.6±3.7
13.7±4.7* | 2.08±0.59
1.97±0.61 | 34.3±16.5
43.9±16.6* | | Simvastatin+amlodipine | | inter holf life: AIIC()- | | Values are mean \pm SD. C_{max} , maximal measured concentration; $t_{1/2}$, the elimination half-life; AUC(0- ∞), area under the concentration-time curve. *p<0.05 vs. simvastatin monotherapy. taining plasma sample. The reaction was started with $2\,\mu l$ of 1.25 mg/ml HMG-CoA containing 17.5 μ Ci/ml glutaryl-3-[14C]HMG-CoA. After an additional 6-min incubation at 37°C , $20~\mu\text{l}$ of 5 mol/l HCl was added to lactonize the mevalonic acid formed. After 15 min, 3.5 ml of a 1:1 suspension of BioRad AG 1×8 resin (200-400 mesh) was added and the tubes (13 × 100) were thoroughly vortexed. [14C]Mevalonolactone was filtered from the resin suspension through polystyrene filters (pore size 70 µm; EverGreen, Los Angeles, USA) into scintillation vials containing 15 ml of Aquasol-2 (New England Nuclear, Newton, USA) and counted on a scintillation counter. The percentage of inhibition was converted to the inhibitor concentration using a standard curve constructed by extracting from the control plasma containing known amounts of L-654, 969, the free acid form of simvastatin. The results were expressed as nanograms of inhibitor per milliliter of plasma. The intra- and inter-day coefficients of variation for the HMG-CoA reductase activity assay were less than 6%. ## Data Analysis The pharmacokinetics of simvastatin was characterized by the peak concentration (C_{\max}) , the time to C_{\max} (T_{\max}), the elimination half-life $(t_{1/2})$ and the area under the plasma concentration-time curve from 0 to infinity [AUC(0- ∞)]. The C_{\max} and T_{\max} were obtained directly from the original data. The terminal rate constant (k_e) used for the extrapolation was determined by regression analysis of the
log-linear part of the concentration-time curve for each subject. The $t_{1/2}$ was determined by $0.693/k_e$. The AUC(0- ∞) was calculated by the trapezoidal rule for the observed values and subsequent extrapolation to infinity. Data are represented as the mean±SD. Data were analyzed by a paired t-test or Wilcoxon signed-rank test where appropriate. Differences with p values <0.05 were considered statistically significant. ### Results No subjects reported a serious clinical, laboratory or other adverse effect, and no subjects were discontinued. # Pharmacokinetics of Simvastatin HMG-CoA Reductase Inhibitor Concentrations Plasma concentrations of HMG-CoA reductase inhibitors after oral simvastatin dosing with or without amlodipine are shown in Fig. 1, and pharmacokinetic parameters of simvastatin are shown in Table 2. Co-administration of amlodipine with simvastatin significantly increased the C_{\max} and AUC(0- ∞) of HMG-CoA reductase inhibitors to 1.4- and 1.3-fold, respectively, in simvastatin monotherapy, but did not affect the $t_{1/2}$ and T_{\max} of HMG-CoA reductase inhibitors. ### **Pharmacodynamics** Lipid profile, including TC, LDL-C, HDL-C, and TG during simvastatin monotherapy and combined treatment with simvastatin and amlodipine, are shown in Fig. 2. There were no significant differences in lipid profiles between the two periods. The SBP and DBP values are shown in Table 3. Both measures were significantly higher during simvastatin monotherapy than during the pretrial control period with enalapril. After administration of amlodipine, both SBP and DBP tended to decline (p=0.06 and p=0.08, respectively). The blood pressure values during combined treatment with simvastatin and amlodipine did not differ from those during the pretrial control period with enalapril. ### Discussion Calcium antagonists and HMG-CoA reductase inhibitors are often prescribed together for the treatment of hypertension and/or angina pectoris in patients with hypercholesterolemia (1, 6, 7). Amlodipine is used with many drugs, such as oral hypoglycemic drugs, β -blockers, angiotensin-converting enzyme inhibitors, and so on. However, there have been no reports on the interaction between amlodipine and any other drug, with the exception that the interaction of amlodipine with grapefruit juice was shown to increase the AUC of amlodipine (34). This study is the first to report that amlodipine affected the plasma concentrations of HMG-CoA reductase inhibitors. Simvastatin is hydrolyzed by esterases to simvastatin acid, which is an active inhibitor of HMG-CoA reductase (10–12). Simvastatin is extensively metabolized to several oxidative products by CYP3A4 (10–12). Some of the hydroxyl acid forms of these products also inhibit HMG-CoA reductase (10, 11). In this study, we measured the total HMG-CoA reductase inhibitory activity resulting from simvastatin acid and all other active acid metabolites of simvastatin, since this level is Fig. 2. Mean levels of serum lipid parameters on the last day of 4 weeks of treatment with simvastatin (5 mg/day) or combined treatment with simvastatin (5 mg/day) and amlodipine (5 mg/day). TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. Each column represents the mean ±SD. believed to be relevant to the systemic adverse effects for this class of agents (35). The pharmacokinetics of simvastatin has been shown to be affected by potent CYP3A4 inhibitors (13-15, 18). Amlodipine, which is metabolized by CYP3A4, has been reported to show inhibitory effects on CYP3A4 in vitro (31). However, the influence of amlodipine on the substrate drugs of CYP3A4 has not been clarified yet. In this study, amlodipine significantly increases the AUC of HMG-CoA reductase inhibitors after co-administration of simvastatin by 30%. It has been reported that the AUC of HMG-CoA reductase inhibitors was increased 4-fold with itraconazole (13), which is known to be a potent inhibitor of CYP3A4. Some studies have show adverse effects, including rhabdomyolysis, in patients treated with simvastatin and CYP3A4 inhibitors such as itraconazole and ketoconazole (8). These reports suggested that the co-administration of simvastatin with these inhibitors enhanced the risk of adverse effects, because of the dosedependent toxicity of HMG-CoA reductase inhibitors. In our previous study, diltiazem increased the AUC of HMG-CoA reductase inhibitors 2-fold (18). On the other hand, amiodipine increased the AUC of HMG-CoA reductase inhibitors by only 30% in this study. In addition, it has been reported that the CYP3A4 inhibitory effect of diltiazem was higher than that of amlodipine after therapeutic doses (36). Therefore, the difference of the impact on the plasma concentrations of HMG-CoA reductase inhibitors may depend on the difference of the CYP3A4 inhibitory potency between amlodipine and diltiazem. It has been reported that an increase in the plasma concentrations of HMG-CoA reductase inhibitors following co- Table 3. Systolic BP and Diastolic BP during Pretrial Control Period with Enalapril, Simvastatin Monotherapy and Combined Treatment with Simvastatin and Amlodipine | | Systolic BP
(mmHg) | Diastolic BP
(mmHg) | |---|-----------------------------|--------------------------| | Simvastatin+enalapril
(pretrial control period)
Simvastatin
Simvastatin+amlodipine | 135±19
152±22*
140±17 | 78±13
89±13*
81±11 | Values are mean±SD. BP, blood pressure. *p<0.05 vs. simva-statin+enalapril. administration of simvastatin and diltiazem resulted in a reduction of TC and LDL-C levels (18). However, we did not observe such a reduction of TC and LDL-C levels, despite the fact that amlodipine increased the plasma concentrations of HMG-CoA reductase inhibitors. The pharmacokinetic interactions observed in the present study, such as the 30% increase in the AUC of HMG-CoA reductase inhibitors, may not have been sufficient to alter the pharmacodynamic response. Moreover, we cannot exclude the possibility that the number of patients was not sufficient to detect the pharmacodynamic differences. Further investigations will be needed to clarify the pharmacodynamic impact of simvastatin with amlodipine on TC and LDL-C. In conclusion, this study is the first report of the drug interaction between simvastatin and amlodipine after a long-term treatment. Although amlodipine increases the plasma concentrations of HMG-CoA reductase inhibitors, the impact of amlodipine on simvastatin is smaller than that of diltiazem. Since these drugs are often used concomitantly for patients with hypertension and hypercholesterolemia, amlodipine could be used more safely with simvastatin than diltiazem. ### Acknowledgements The authors are grateful to Dr. Takashi Ishizaki (Teikyo-Heisei University) for his helpful insights and to H. Kobayashi for technical assistance. ### References - Gould KL, Casscells SW, Buja LM, Goff DC: Non-invasive management of coronary artery disease. Report of a meeting at the University of Texas Medical School at Houston. Lancet 1995; 346: 750-753. - Shepherd J: Preventing coronary artery disease in the West of Scotland: implications for primary prevention. Am J Cardiol 1998; 82: 57T-59T. - Tonkin AM: Management of the long-term intervention with pravastatin in ischaemic disease (LIPID) study after the scandinavian simvastatin survival study (4S). Am J Cardiol 1995; 76: 107C-112C. - 4. Matsubara K, Yamamoto Y, Sonoyama K, et al: Current status of lipid management of hypertensive patients. Hypertens - Res 2003; 26: 699-704. - 5. Minami M, Atarashi K, Ishiyama A, Hirata Y, Goto A, Omata M: Effects of cholesterol-lowering therapy on pressor hyperreactivity to stress in hypercholesterolemic patients. Hypertens Res 2003; 26: 273-280. - 6. Wood D: Asymptomatic individuals-risk stratification in the prevention of coronary heart disease. Br Med Bull 2001; 59: 3-16. - 7. Gotto AM Jr. Risk factor modification: rationale for management of dyslipidemia. Am J Med 1998; 104 (Suppl 1): 6S-8S. - 8. Williams D. Feely J: Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41: 343-370. - 9. Scandinavian Simvastatin Survival Study Group: Randomised trial of cholesterol lowering in 4444 patients with coronary artery disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383-1389. - 10. Vickers S, Duncan CA, Chen IW, Rosegay A, Duggan DE: Metabolic disposition studies on simvastatin, a cholesterollowering prodrug. Drug Metab Dispos 1990; 18: 138-145. - 11. Vickers S, Duncan CA, Vyas KP, et al: In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metab Dispos 1990; 18: 476-483. - 12. Prueksaritanont T, Gorham LM, Ma B, et al: In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191-1199. - 13. Neuvonen PJ, Kantola T, Kivisto KT: Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332-341. - 14. Kantola T, Kivisto KT, Neuvonen PJ: Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177-182. - 15. Hsyu PH, Schultz-Smith MD, Lillibridge JH, Lewis RH, Kerr BM: Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001; 45: 3445-3450. - 16. Sutton D, Butler AM, Nadin L, Murray M: Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 1997; 282: 294-300. - 17. Jones DR, Gorski JC,
Hamman MA, Mayhew BS, Rider S, Hall SD: Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290: 1116-1125. - 18. Watanabe H, Kosuge K, Nishio S, et al: Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci 2004; 76: 281-292. - 19. Kato J, Aihara A, Kikuya M, et al: Risk factors and predictors of coronary arterial lesions in Japanese hypertensive patients. Hypertens Res 2001; 24: 3-11. - 20. Ogihara T, Hiwada K, Morimoto S, et al: Guidelines for treatment of hypertension in the elderly-2002 revised version-.. Hypertens Res 2003; 26: 1-36. - 21. Fukui T, Rahman M, Hayashi K, et al: Candesartan antihypertensive survival evaluation in Japan (CASE-J) trial of cardiovascular events in high-risk hypertensive patients: rationale, design, and methods. Hypertens Res 2003; 26: 979-990. - 22. Abernethy D R: Pharmacokinetics and pharmacodynamics of amlodipine. Cardiology 1992; 80 (Suppl 1): S31-S36. - 23. Kinnard DR, Harris M, Hossack KF: Amlodipine in angina pectoris: effect on maximal and submaximal exercise performance. J Cardiovasc Pharmacol 1988; 12 (Suppl 7): S110-S113 - 24. Hansson L, Hedner T, Lund-Johansen P, et al: Randomised trial of effects of calcium antagonists compared with diuretics and β -blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 2000; 356: 359-365. - 25. Yamamoto Y, Sonoyama K, Matsubara K, et al: The status of hypertension management in Japan in 2000. Hypertens Res 2002; 25: 717-725. - 26. Eguchi K, Kario K, Shimada K: Differential effects of a long-acting angiotensin converting enzyme inhibitor (temocapril) and a long-acting calcium antagonist (amlodipine) on ventricular ectopic beats in older hypertensive patients. Hypertens Res 2002; 25: 329-333. - 27. Meredith PA, Elliott HL: Clinical pharmacokinetics of amlodipine. Clin Pharmacokinet 1992; 22: 22-31. - 28. Abernethy DR: The pharmacokinetics profile of amlodipine. Am Heart J 1989; 118: 1100-1103. - 29. Kuramoto K, Ichikawa S, Hirai A, Kanada S, Nakachi T, Ogihara T: Azelnidipine and amlodipine: a comparison of their pharmacokinetics and effects on ambulatory blood pressure. Hypertens Res 2003; 26: 201-208. - 30. Guengerich FP, Brian WR, Iwasaki M, Sari MA, Baarnhielm C, Berntsson P: Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34: 1838-1844. - 31. Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drugdrug interactions. Eur J Clin Pharmacol 2000; 55: 843-852. - 32. Friedeward WT, Levy RI, Fredrickson DS: Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502. - 33. Arnadottir M, Eriksson LO, Thysell H, Karkas JD: Plasma concentration profiles of simvastatin 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410-413. - 34. Josefsson M, Zackrisson AL, Ahlner J: Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers. Eur J Clin Pharmacol 1996; 51: 189-193. - 35. Prueksaritanont T, Vega JM, Zhao J, et al: Interactions between simvastatin and troglitazone or pioglitazone in healthy subjects. J Clin Pharmacol 2001; 41: 573-581. - 36. Ma B, Prueksaritanont T, Lin JH: Drug interactions with calcium channel blockers: possible involvement of metaboliteintermediate complexation with CYP3A. Drug Metab Dispos 2000; 28: 125-130. # HMG-CoA 還元酵素阻害薬 Pravastatin 服用患者におけるリスクファクターと血清脂質値に関する調査 内 田 信 也*1 渡 邉 裕 司*1 後 藤 真寿美*2 前 田 利 男*2 橋 本 久 邦*3 中 野 眞 汎*2 大 橋 京 一*1 Risk Factors and Serum Cholesterol Concentrations in the Patients Given HMG-CoA Reductase Inhibitor, Pravastatin Shinya UCHIDA*¹ Hiroshi WATANABE*¹ Masumi GOTO*² Toshio MAEDA*² Hisakuni HASHIMOTO*³ Masahiro NAKANO*² and Kyoichi OHASHI*¹ - Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan - •2 Department of Clinical Pharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan - •3 Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan Purpose: HMG-CoA reductase inhibitors (statins) have been widely used in the treatment of hyper-cholesteremia in Japan as well as in Western countries. Although statins have been shown to be effective in the prevention of coronary heart disease (CHD) in high-risk patients, the potential benefit of statins on the overall mortality has not been proven in subjects at lower risk for CHD. In this study, we investigated the risk factors and serum cholesterol concentrations in patients given pravastatin. Methods: Patients who were given pravastatin during the period from June 2002 until May 2003 in the Hamamatsu University Hospital were studied. Data for height, body weight, age, gender, smoking and history of diabetes mellitus, hypertension and CHD in the patients were collected from their case records. Serum cholesterol concentrations were determined before and after the treatment with pravastatin. The ethics committee in the Hamamatsu University approved this study. Results: There were 213 male (37.4%) and 356 female (62.6%) patients given pravastatin. The mean age of the patients was 63.9 yrs, and % of the patients aged under 50 yrs was 10.7%. Seventy-seven % of the patients had no history of CHD. Female patients without smoking, diabetes mellitus, hypertension and CHD constituted 17% of all patients. Total and LDL cholesterol levels in all groups were significantly decreased by 17.6% and 25.5%, respectively, after the administration of pravastatin. Treatment with pravastatin was started at the lower total cholesterol levels in male patients or patients with CHD than in female patients or patients without CHD. Conclusion: Our results suggest that significant numbers of patients with a low risk for CHD were prescribed the statins, and that placebo-controlled large-scale trials should be conducted to demonstrate the benefit and safety of statin treatment on overall mortality in Japan. Key words: HMG-CoA reductase inhibitors, statins, pravastatin, hypercholesteremia, risk factor 緒 論 近年、わが国においてもライフスタイルの欧米化な どにより動脈硬化性疾患が増加し,死因統計で癌と並 ぶ大きな位置を占めるようになった。国内外の多くの 研究から血清コレステロール値が上昇するに従い,男 ^{•1} 浜松医科大学医学部臨床薬理学講座 •2 静岡県立大学大学院薬学研究科臨床薬剤学講座 •3 浜松医科大学医学部附属病院薬剤部 別刷請求先:渡邊裕司 浜松医科大学医学部臨床薬理学講座 〒 431-3192 浜松市半田山 1-20-1 (投稿受付 2004 年 8 月 13 日,第 2 稿受付 2004 年 12 月 2 日,第 3 稿受付 2004 年 12 月 28 日,掲載決定 2004 年 12 月 28 日) Table 1 Demographic characteristics of the patients treated with pravastatin at the point of the survey | | Male | Female | Total | |--|-----------------|-----------------|-----------------| | Number of patients | 213 (37.4%) | 356 (62.6%) | 569 (100%) | | Age [years] | 63.2±11.6 | 64.2 ± 12.2 | 63.9 ± 12.0 | | Height [cm] | 164.3±6.2 | 151.8 ± 6.1 | 156.5 ± 6.1 | | Weight [kg] | 63.2 ± 10.0 | 52.0 ± 8.9 | 56.2 ± 9.3 | | Periods for the treatment with pravastatin [month] | 48.9±40.4 | 59.5±46.5 | 55.5±44.6 | | Smoking | 63 (11.1%) | 31 (5.4%) | 94 (16.5%) | | Risk factors Coronary heart disease | 80 (14.1%) | 52 (9.1%) | 132 (23.2%) | | Diabetes mellitus | 73 (12.8%) | 126 (22.1%) | 199 (34.9%) | | Hypertension | 141 (24.8%) | 206 (36.2%) | 347 (61.0%) | Values are numbers of patients (% of all patients (n=569)), or mean \pm SD. 女を問わず虚血性心疾患発症リスクは増加することが示され¹⁻³⁾,高コレステロール血症治療の重要性がますます高まっている。高コレステロール血症に対する薬物療法の選択肢はいくつかあるが、なかでも3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 還元酵素阻害薬 (スタチン) は強力な LDL コレステロール (LDL-C) 低下作用を有することから、現在第一選択薬として用いられている。欧米諸国を中心に行われた多くの大規模臨床試験では、虚血性心疾患患者を対象とした二次予防試験だけでなく、虚血性心疾患既往歴のない一次予防の場合においても、スタチンによる LDL-C の低下が心血管イベントの発生率や虚血性心疾患死亡率、さらに総死亡率を低下させることが示されている⁴⁻⁶⁾. 一方,わが国では虚血性心疾患の発生率が欧米諸国の1/4から1/10と低いことが知られているⁿ. さらに遺伝的素因やライフスタイルも欧米諸国のそれらと異なることから、欧米諸国における大規模試験の結果を日本人にそのまま適応できるかどうか疑問視する意見もある⁸. わが国においては 1989 年に pravastatin が発売されて以来,数種のスタチンが臨床適用され,多くの患者に投与されている。しかしわが国においてスタチンがどのような背景を持つ患者に使用されているかを実態調査した報告はほとんどない。スタチンの適正使用を推進するためにも,スタチン使用の実態を把握することは重要である。本研究では,浜松医科大学附属病院において pravastatin を投与されている患者を対象とし,リスクファクター(年齢,性,喫煙習慣,糖尿病,高血圧,虚血性心疾患の既往)および pravastatin 服用前後の血清脂質値を調査した。 Fig. 1 Periods treated with pravastatin ### 方 法 浜松医科大学附属病院において2002年6月から 2003年5月の間に pravastatin (メバロチン®) を投 与された全患者(581例)中、カルテおよび病院オーダ リングシステムを調査しえた569例を対象とした。調 査期間 (2003年6月~2003年8月) 中の pravastatin 最終投与日における対象患者の身長、体重、年齢と喫 煙歴ならびに虚血性心疾患、糖尿病および高血圧の既 往の有無について調査した。 さらに pravastatin 服用 前と調査時における血清脂質値が調査可能であった 478 例において総コレステロール (TC), HDLコレ ステロール (HDL-C), LDL コレステロール (LDL-C) およびトリグリセリド (TG) を調査した。Pravastatin 服用前かつ調査時の臨床検査値をカルテないし オーダリングシステム上から調査することが可能で あった症例においては、アスパラギンアミノトランス フェラーゼ (AST), アラニンアミノトランスフェ ラーゼ (ALT), クレアチンキナーゼ (CK), 血清ク レアチニン (s-Cre),血液尿素窒素 (BUN),随時血 Fig. 2 Number of male (A) and female (B) patients with coronary heart disease (CHD, ■) or without CHD (□) Fig. 3 Number of risk factors (smoking, diabetes mellitus and hypertension) in the patients with (A) and without (B) coronary heart disease (CHD) Data are % of all patients (n=569). □: Male, ■: Female 糖 (BS) およびヘモグロビン A_{1c} (HbA_{1c}) についても調査した。データは平均値±標準偏差で表示した。統計学的解析は Student's t-test を用い、危険率5%未満を有意差ありと判定した。本研究は浜松医科大学倫理委員会の承認の下に施行した。 ### 成 績 調査した患者のうち男性は213例(37.4%),女性は356例(62.6%)であり、女性患者が男性患者の1.7倍を占めた。対象患者の年齢は63.9±12.0歳であり男女間に有意な差異は認められなかった(Table 1). 対象患者におけるpravastatin服用期間は1年以内の頻度が最も高く経時的に減少する傾向が認められた(Fig.1)。また平均服用期間は55.5±44.6月であった。対象患者の既往歴では高血圧が最も多く全体の61.0%であった。次いで糖尿病が 34.9%, 虚血性心疾患が23.2%, 喫煙が16.5%であった (Table 1). 対象患者の年齢分布では男女ともに65歳から69歳にピークが認められ,49歳以下の患者は全体の10.7%であった. 虚血性心疾患の既往のある患者は男性では40歳から認められたのに対し,女性では55歳からであった (Fig. 2). 虚血性心疾患の既往の有無について調べたところ,
男性患者の37.6%(全体の14.1%)と女性患者の 14.6%(全体の9.1%)では虚血性心疾患の既往を有 していた。すなわち全対象患者の23.2%が二次予防 目的のスタチン使用であった(Table 1). 一方,全 対象患者のうち22%においては,虚血性心疾患の既 往がなく,かつ喫煙歴,糖尿病,高血圧のいずれも有 していなかった。その中で女性患者は97例(17.1%) を占めた(Fig. 3). Pravastatin 服用開始前後における血清脂質値の調 Fig. 4 Lipid profiles in the patients before (\square) and after (\blacksquare) the treatment with pravastatin TC: Total cholesterol, LDL-C: LDL cholesterol, HDL-C: HDL cholesterol, TG: triglyceride, ***p < 0.001 査によると、対象患者のTCは255±41 mg/dLから210±34 mg/dLへと17.6%有意に低下した。同様にLDL-CおよびTGはそれぞれ25.5%および18.7%有意に減少した。一方 HDL-Cは8.7%有意に増加した(Fig. 4)。さらに対象患者を性別および虚血性心疾患の既往によって層別化したところ、TC、LDL-CおよびTGは性別および虚血性心疾患の既往にかかわらずいずれの群においても有意に低下した(Fig. 5)。またHDL-Cは女性で心血管疾患の既往がある群を除き有意に増加した。さらに男女ともに虚血性心疾患の既往がある群では既往なし群に比べ、また虚血性心疾患の既往がある群では既往なし群に比べ、また虚血性心疾患の既往にかかわらず、女性に比べ男性においてより低いTCレベルから pravastatin の投与が開始されていた(Fig. 5 A)。 Table 2に pravastatin 服用患者における服用開始 前および服用後の臨床検査値を、糖尿病既往あり群と なし群に分けて示した。糖尿病既往なし群では、いず れの検査値においても服用前後で有意な差は認められ なかった。一方、糖尿病既往あり群では pravastatin 服用後では、BUN および s-Cre は有意に高値を、 HbA1cは有意に低値を示した。 ### 考 察 本研究では、わが国においてスタチンがどのような 背景を持つ患者に使用されているかを推測する目的 で、浜松医科大学附属病院において pravastatin を投 与されている患者の背景を調査し、さらに本薬剤が血 清脂質値に及ぼす影響について検討した。 今回は pravastatin 服用患者の 569 症例の背景について調査した。この症例数は浜松医科大学附属病院における pravastatin 処方数の 98%にあたる。今回の 対象患者において虚血性心疾患既往歴のある患者は全 体の23%のみであった。現在までに行われている大 規模臨床試験から、虚血性心疾患の二次予防における スタチン投与の有用性は明確に示されているが、一次 予防の場合には二次予防の場合に比べその有用性が低 くなることが知られている"。今回の調査から,わが 国におけるスタチン投与患者の多くが,比較的有用性 の低いと考えられる一次予防であると推察された。ま た女性で虚血性心疾患、糖尿病、高血圧の既往および 喫煙歴のない患者が全体の17%占めていた。虚血性 心疾患に対するスタチン投与の有用性は、患者のベー スラインリスクに依存することが明らかにされてお p⁹, 虚血性心疾患の絶対リスクが欧米諸国に比べ低 いわが国において一次予防、とくに高コレステロール 血症のみを有する女性患者など、低リスク群に対する スタチンの有用性は十分に証明されているとは言えな い。今後 EBM の観点からも医療経済的な視点から も、日本人におけるスタチン投与の有用性の検証が必 要であると思われる. 今回の対象患者のうち 478 症例(全症例の 84%)において、pravastatin 開始および調査時の血清脂質値が調査可能であった。Pravastatin 開始時の TC および LDL-C はそれぞれ 255 mg/dL および 162 mg/dL であった。この値は欧米および日本で行われた大規模臨床試験でのスタチン開始時での値とほぼ同値かやや低い値である $4^{-6,10-12}$ 。今回、pravastatin の投与によって TC は 18%,LDL-C は 26%有意に低下した。Pravastatin を用いた大規模臨床試験における TC および LDL-C の低下率はそれぞれ 20%および 25%程度であることから5.6.11.12,それらの試験同様,本研究結果は pravastatin の良好なコレステロール低 Fig. 5 Lipid profiles before () and after () the treatment with pravastatin in male and female patients with or without coronary heart disease (CHD) TC: Total cholesterol, LDL-C: LDL cholesterol, HDL-C: HDL cholesterol, TG: triglyceride, *p < 0.05, **p < 0.01, ***p < 0.001 Table 2 Laboratory data before and after the treatment with pravastatin in the patients with or without diabetes mellitus | Laboratory data | Diabetes mellitus | Number of patients | Before pravastatin | After pravastatir | |-------------------|-------------------|--------------------|--------------------|-------------------| | AST | | 220 | 24.3±12.7 | 23.0±10.0 | | 1101 | + | 132 | 22.8±9.2 | 22.8±13.9 | | ALT | <u>-</u> | 221 | 23.0±10.0 | 21.7 ± 16.8 | | 1121 | + | 129 | 22.8 ± 12.4 | 22.2 ± 20.6 | | СРК | <u>-</u> | 192 | 106±83 | 108 ± 58 | | CIII | + | 116 | 99.8±93.3 | 115 ± 106 | | BUN | <u>-</u> | 208 | 16.4±5.2 | 16.9 ± 6.2 | | 2011 | + | 130 | 16.8±7.0 | 18.4±9.1** | | s-Cre | <u>-</u> | 199 | 0.819 ± 0.300 | 0.838 ± 0.336 | | 5 010 | + . | 131 | 0.770 ± 0.367 | 0.909±0.615*** | | BS | <u>-</u> | 107 | 104 ± 19 | 105 ± 23 | | 20 | + | 118 | 163±74 | 153 ± 84 | | HbA _{1c} | <u>.</u> | 53 | 5.57 ± 0.49 | 5.59 ± 0.54 | | *1011C | + | 104 | 7.64 ± 1.74 | 7.37±1.61* | Values are mean \pm SD, *p<0.05, **p<0.01, ***p<0.001 AST: L-asparate aminotransferase, ALT: L-alanine aminotransferase, CK: creatine kinase, s-Cre : serum creatinine, BUN : blood urea nitrogen, BS : blood glucose, HbA $_{\rm ic}$: hemoglobin A $_{\rm ic}$ Table 3 Demographic characteristics of the patients in the quartile treatment periods with pravastatin | | Periods with pravastatin [month] | | | | |---|----------------------------------|-----------|-----------|------------| | | 0.9-22.1 | 22.1-50.8 | 50.9-87.2 | 87.5—174.5 | | Number of patinets Male Age* [years] Smoking* | 118 | 119 | 119 | 118 | | | 56 (48%) | 40 (34%) | 49 (41%) | 33 (28%) | | | 59.4±13.2 | 64.2±11.7 | 64.6±11.9 | 65.4±11.0 | | | 23 (19%) | 21 (18%) | 18 (15%) | 16 (14%) | | Risk factors Coronary heart disease Diabetes mellitus Hypertension | 36 (31%) | 30 (25%) | 23 (19%) | 21 (18%) | | | 39 (33%) | 34 (29%) | 41 (34%) | 48 (41%) | | | 63 (53%) | 79 (66%) | 72 (61%) | 76 (64%) | Values are number of patients or mean ±SD. 下作用を示すものである. 今回興味深いことに,男女ともに虚血性心疾患の既 往がある群では既往なし群に比べ、pravastatin はよ り低値の TC レベルから処方が開始されていること が明らかとなった。また虚血性心疾患の既往にかかわ らず,女性に比べ男性でより低い TC から pravastatin の処方が開始されていた。このことは,処方者 が虚血性心疾患発症リスクを考慮し、男性や虚血性心 疾患の既往のある患者に対して, より低い TC から 投与を開始したものと考えられる. スタチン投与による臨床検査値の変動は、糖尿病の 既往なし群では認められなかった。糖尿病を有する患 者で pravastatin 服用後において HbA1cが有意に低 下していた。本研究では糖尿病の治療開始時期などの 調査は行っていないため,HbA_{1c}が低下した理由は 明らかではないが,pravastatin 服用期間中に糖尿病 の治療が開始されたのではないかと思われる。さらに 糖尿病を有する患者において腎機能検査値(s-Cre, BUN) の有意な上昇を認めた。このメカニズムは明 らかではないが、糖尿病の合併症として腎機能障害の 頻度は高く,非糖尿病患者群では pravastatin 投与に よっても s-Cre と BUN の有意な変化は認められない ことから、糖尿病の自然経過を反映するものかもしれ ない. 今回の調査は浜松医科大学附属病院の pravastatin 服用患者を対象とした。本研究結果は大学病院のよう な特定機能病院のものであり, 直接わが国全体の処方 動向と一致するものではないかもしれない。一般病院 や診療所などにおける同様な調査の結果と併せて考慮 する必要があるだろう。 さらに本研究では 2002 年 6 月から 1 年間の期間に pravastatin を投与されているほぼ全患者について調 査し, 2002年6月からさかのほって平均4.5年間の 投与期間について調査した。したがって調査対象に は、長期間投与されている患者と比較的最近投与が開 始されている患者が混在している (Fig. 1)。このう ちとくに長期間にわたって投与されている患者につい てのデータの解釈には慎重でなければならない。すな わち数年前に投与が開始され、2002年の6月から1 年間の期間のいずれかの時点でも引き続き, pravastatin が投与されている患者は,数年前に投与開始と なった患者の一部分と考えられ、死亡例、当該医療機 関への来院を中止したもの、来院は続けているとして も副作用や十分な効果がみられないために投与を中止 または変更したもの、または逆に血清脂質の正常化な どの理由で治療を中止したものなどは、本研究の調査 対象には含まれていない。これらの理由で調査対象に 含まれていない患者の背景と、調査対象に含まれてい る長期にわたって投与が続けられている患者の背景が 相違する可能性は否定できない。 Pravastatin 服用期 間に対して対象患者の背景因子を検討したところ, 年 齢および虚血性心疾患の既往率以外の因子に関しては 明らかな傾向は認められなかった(Table 3)。平均 年齢は服用期間が長くなるほど高い傾向が認められ た。さらに虚血性心疾患の既往患者の割合は服用期間 が短いほど増加する傾向が認められた。この理由とし て長期投与患者では虚血性心疾患発症にともなう他剤 への変更または患者の死亡や転院が潜在する可能性が 考えられる。したがって、今回の調査結果では pravastatin 服用患者の虚血性心疾患既往率を低く見 積もっている可能性は否定できない。 一方でこの結果 は,最近になって pravastatin は一次予防に比べ二次 ^{(): %} of numbers in the quartile treatment periods with pravastatin. ^{*}Data at the point of the survey are presented. 予防に対し積極的に用いられるようになったことを示 しているのかもしれない。 ### 結 論 本研究の対象患者において pravastatin は血清コレステロール値を有意に低下しており、本剤の高脂血症治療における臨床的有用性が確認された。さらに処方者は心血管疾患発症リスクを考慮し、男性や虚血性心疾患の既往のある患者に対して、より低い TC 値から投与を開始していることが明らかとなった。 一方、本研究では比較的虚血性心疾患発症リスクが低いと考えられる患者に対して pravastatin 処方頻度が高いことが明らかとなった。虚血性心疾患の既往がない女性など低リスク患者に対するスタチン使用の有用性についてはいまだ十分に証明されているとは言えず、今後このような患者群に対するスタチン投与のエビデンス構築が必要と考えられる。 #### 謝辞 本研究の一部は、厚生労働科学研究費補助金(医薬品等医療技術リスク評価研究事業:H15-リスク-045;長寿科学総合研究事業:H16-長寿-001;循環器疾患等総合研究事業:16120201) および文部科学省(テーラーメイド医療基盤整備プロジェクト)の補助により行われた。 ### 文 献 - Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. *JAMA* 1986; 256: 2835-8. - 2) Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986: 256: 2823-8. - 3) 清原裕地。日本動脈硬化学会・日本糖尿病学会合同委員会。地域 住民中の糖尿病者における循環器疾患発症とその危険因子の関 連一久山町研究一。糖尿病合併症 2000;14:80-4。 - 4) Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995: 333: 1301-7. - 5) Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996: 335:1001-9. - 6) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998: 339: 1349-57. - 7) Saito I, Folsom AR, Aono H, Ozawa H, Ikebe T, Yamashita T. Comparison of fatal coronary heart disease occurrence based on population surveys in Japan and the USA. Int J Epidemiol 2000; 29:837-44. - 8) 渡邊裕司. Evidence Based Medicine (EBM) と臨床薬理. エ ビデンスを使う. 循環器領域一臨床決断とエビデンス. 臨床 薬理 2003; **34**: 223-7. - 9) 日本クリニカル・エビデンス編集委員会 (監修)。クリニカル・ エビデンス ISSUE9 日本語版、日経 BP 社、2004:166-8。 - 10) Pravastatin use and risk of coronary events and cerebral infarction in Japanese men with moderate hypercholesterolemia: the Kyushu Lipid Intervention Study. J Atheroscler Thromb 2000; 7:110-21. - 11) Ito H, Ouchi Y, Ohashi Y, Saito Y, Ishikawa T, Nakamura H, Orimo H. A comparison of low versus standard dose pravastatin therapy for the prevention of cardiovascular events in the elderly: the pravastatin anti-atherosclerosis trial in the elderly (PATE). J Atheroscler Thromb 2001; 8:33-44. - 12) Matsuzaki M, Kita T, Mabuchi H, Matsuzawa Y, Nakaya N, Oikawa S, Saito Y, Sasaki J, Shimamoto K, Itakura H, J-LIT Study Group. Japan Lipid Intervention Trial. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circ J 2002; 66: 1087-95. # 29-0957 ピルジカイニドの血漿中濃度と臨床検査値および心電図変化 〇山本 知広¹, 内田 信也², 鈴木 吉成¹, 寺田 肇³, 渡邉 裕司², 林 秀晴³, 大 橋 京一², 橋本 久邦¹ (¹浜松医大病院薬,²浜松医大臨床薬理,³浜松医大 3 内) 【目的】クラス I 抗不整脈薬は血漿中薬物濃度の有効域が狭く副作用濃度と近接しているため、血漿中薬物濃度を測定しながら投与することが望ましい薬剤とされているが、現在のところ薬物治療モニタリング(TDM)は充分に行われていない。本研究ではピルジカイニド(Pi1)投与中の患者における血漿中薬物濃度と臨床検査値および投与前後における心電図変化の関係を明らかにすることを目的としたさらに、Pi1 の血漿中濃度が著しく高値であり副作用が認められた症例について報告する。 【方法】Pil 服用中の患者 21 例を対象とし、血漿中薬物濃度を HPLC 法を用いて測定した。また臨床検査値および Pil 投与開始前後における QRS 幅と QTc 値の調査を行った。 【結果・考察】対象患者における血漿中 Pil 濃度は 6.2-120.0 μg/ mL であり、そのうち 4 例 (19%)が治療域よりも低値を、4 例 (19%)が高値を示した。また、投与量で補正した血漿中 Pil 濃度とクレアチニンクリアランスの間には相関を示す傾向が認められた (p=0.09)。さらに、Pil 投与開始前後において QRS 幅と QTc には有意な変化は認められなかった。一方、血漿中
Pil 濃度が 2.65 μg/ mL であった症例において、頭痛と口渇が認められ、QRS 幅および QTc が投与前に比べ延長していた。なお本症例において Pil の投与量減量に伴い血漿中薬物濃度は低下し、これらの症状は消失した。以上より、今回検討した Pil の血漿中薬物濃度の範囲においては、Pil の投与により有意な QRS 幅および QTc の延長は認められないものの、血漿中薬物濃度が高値の症例で明らかな副作用が発現したことから、Pil の投与時に TDM を行うことが有用であると示唆された。