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PHARMACOGENETICS AND
GENOMICS

Polymorphisms of OATP-C (SLC21A6) and
OAT3 (SLC22A8) genes: Consequences for
pravastatin pharmacokinetics

Objective; Our objective was to quantitate the contribution of the genetic polymorphisms of the genes for 2
human organic anion transporters—organic anion transporting polypeptide C (OATP-C) and organic anion
transporter 3 (OAT3)—to the pharmacokinetics of pravastatin.

Methods: Genetic polymorphisms were screened by polymerase chain reaction-single-strand conformation
polymorphism analysis, after sequencing with deoxyribonucleic acid obtained from 120 healthy volunteers.
To examine whether polymorphisms in these 2 genes of interest alter transport activity, we conducted a
clinical study (n = 23) with pravastatin as a selective probe drug,

Results: Among 120 healthy individuals, 5 nonsynonymous variants and 1 nonsynonymous variant were
observed in the OATP-Cand OAT3 genes, respectively. The polymorphisms in the OAT3 gene did not appear
to be associated with changes in renal and tubular secretory clearance. In contrast, the OATP-Cvariants were
associated with differences in the disposition kinetics of pravastatin. Subjects with the QATP-C*15 allele
(Asp130Al1a174) had a reduced total and nonrenal clearance, as compared with those with the OATP-C*16
allele {Asp130Vall74); nonrenal clearance values in *15/*16 (n = 4), *15/*15(n = 9),and *15/*15(n=1)
subjects were 2.01 £ 0.42L - kg™ -h™,1.11 £ 0.34L-kg™*-h™", and 0.29 L . kg~ . h~Y, respectively,
and the difference between *15/*1band *15/*15 subjects was significant (P < .05).

Conclusion: Certain commonly occurring single-nucleotide polymorphisms in OATP-C, such as T521C
(Vall74Ala), are likely to be associated with altered pharmacokinetics of pravastatin, Large clinical studies are
needed to confirm these observations. (Clin Pharmacol Ther 2003;73:554-65.)
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Recent clinical studies indicate that the large interindi-
vidual variability in drug responses occurs as a result of
molecular alterations to various proteins such as drug-
metabolizing enzymes, drug targets and receptors, and
drug transporters. Most of the studies on molecular
alterations performed to date have focused on the im-~
pact of genetic variation on the expression and function
of these proteins.>? Although genetic polymorphisms
of hepatic metabolizing enzymes involved in phase I
(eg, oxidative and hydrolytic) and phase II (eg, glucu-
ronidation, sulfate conjugation, and acetylation) reac-
tions have been intensively investigated,®* little is
known about the role of genetic variations in the trans-
porters that act in the liver and kidney,

Pravastatin, one of the 3-hydroxy-3-methylglutaryl-
coenzyme A reductase inhibitors (statins), is widely
used in the treatment of hypercholesterolemia. Cumu-
lative in vivo and in vitro studies have revealed that
various active transport mechanisms are involved in the
disposition kinetics of pravastatin.® Pravastatin is rap-
idly absorbed from the upper region of the small intes-
tine, probably via a proton-gradient—dependent carrier-
mediated mechanism,®® and then taken up efllciently
from the circulation by the liver through organic anjon
transporting polypeptide C (OATP-C), a sodium-
independent bile acid transporter.>'® Human OATP-C
(gene SLC21A6), also known as liver-spcciﬂc trans-
porter 1 (LST-1) or OATP2, is expressed at the baso-
lateral membrane of human hepatocytes responsible for
the hepatocellular uptake of a variety of endogenous
and foreign chemicals.""* Recently, a number of
single-nucleotide polymorphisms (SNPs) have been
identifled in the human GATP-C gene."'7 Some of
these SNPs have been found to be associated with an
altered in vitro transport capability.!>"7 Tirona et al'*
performed experiments with human OATP-C-trans-
fected HeLa cells and indicated that T217C_{UATP-
C*2), T521C (OATP-C*5), T1058C (OATP-C*6),
G1463C (OATP-C*9), and A1964G (OATP-C*10)
variants were associated with signincantly reduced es-
trone sulfate or estradiol-17B-p-glucuronide -transport
activities in comparison with activities of the GATP-
C*la allele (originally deposited CATP-C complemen-
tary deoxyribonucleic acid [cDNA] sequences); trans-
port activities ranged from 7% to 53% of the value for
the reference allele. In contrast, Nozawa et al,16 using
expression systems with human embryonic kidney

(HEK293) cells, found that the T521C (OATP-C*5)°

allele did not alter the uptake of tritium-abeled estrone-
3-sulfate. Although the cell type used in each study was
different, the contribution of polymorphisms of the
human OATP-C gene to the transport activities has
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remained questionable. To date, no study has addressed
the genotype-phenotype relationship in light of
OATP-C in humans.

The isomer RMS-416 (3'a-isopravastatin), which
was found in the largest quantities in plasma, urine, and
feces,' is produced by chemical degradation in the
stomach rather than by cytochrome P450-dependent
metabolism in the liver because pravastatin is chemi-
cally unstable under acidic conditions.”*® Although
other metabolites have been identiﬂed, none accounts
for more than 1% of the dose.'® The chemical degra-
dation of pravastatin is thought to contribute to its low
bioavailability (ie, 18%).%° Pravastatin and RMS-416
are cleared through both hepatic and renal routes, and
tubular secretion is a predominant mechanism of renal
excretion.2’ Human organic anion transporter 3 (OAT3,
gene SLC22A8), a member of the SLC22 superfamily,
is predominantly expressed in the kidney and localized
on the basolateral membrane of the proximal tu-
bules.?"*? Recently, Hasegawa et al® indicated that
pravastatin appeared to be a relatively specillc substrate
of OAT3 with the use of rat Qat3—expressing LLC-
PK1 cells. Because uptake from blood through the
basolateral membrane of the epithelial cells in the prox-
imal tubules is the [rst step in tubular secretion, OAT3
may also contribute to the urinary excretion of prava-
statin in humans.

In view of the pharmacokinetic properties, at least 2
genes (ie, OATP-C and OAT3) are of interest as candi-
dates that may lead to large interindividual variability
in the pharmacokinetics and clinical outcome of prav-
astatin therapy. This study was designed to evaluate the
functional signiflcance of genetic polymorphisms of the
human OATP-C and OAT3 genes with regard to the
disposition kinetics of pravastatin. In addition, interra-
cial differences in the frequency of polymorphisms in
drug metabolic enzymes and transporters are reported
to be associated with ethnic differences in pharmaco-
kinetics and pharmacodynamics of certain drugs.*26
Therefore, before functional characterization, we in-
tended to assess the genetic structure of the 2 genes by
using 120 genome deoxyribonucleic acid (DNA) sam-
ples obtained from Japanese subjects and to compare
the allelic frequency between Japanese and other racial
pepulations.

METHODS

Hdentillcation of variants in OATP-C and OAT3
genes. Genomic DNA was isolated from blood sam-
ples with use of the Toyobo blood kit on a Toyobo
HMX-2000 robot (Toyobo, Osaka, Japan). Blood sam-~
ples were obtained from 120 unrelated healthy Japanese



556 Nishizato et al

volunteers residing in Fukuoka who were judged to be
healthy on the basis of medical history, physical exam-
ination, and laboratory test results. The subjects were
carefully interviewed and considered to be of identical
ethnicity by lineage and birth. The protocol was ap-
proved by the Tottori University Ethics Committee, and
informed consent was obtained. The primer design was
based on published sequences (GenBank/European
Molecular Biclogy Laboratory [EMBL] accession Nos.
AB026257 and AJ132573'2%7 for the OATP-C gene
and No. AB042505 for the QAT3 gene), and some
primer sets for the OATP-C gene were obtained from a
work by Tirona et al.'® These primers created appro-
priately sized fragments (approximately 350 base pairs)
for the screening of polymorphisms by subsequent
single-strand conformation polymorphism (SSCP)
analysis. After polymerase chain reaction (PCR), SSCP
analysis was performed with the GenePhor system
(Amersham Pharmacia Biotech AB, Uppsala, Sweden)
as recommended by the manufacturer. The PCR prod-
uct (6 pl) was mixed with 3 pL of 20-mmol/L ethyl-
enediaminetetraacetic acid, 95% formamide, and
0.05% bromphenol blue, and this mixture was heated at
95°C for 5 minutes and then quick-chilled in an ice-
water bath. The resulting single-stranded DNA (5 pL)
was then loaded on a 12.5% polyacrylamide gel (Ge-
neGel excel 12.5/24 kit, Amersham Pharmacia Biotech
AB). Electrophoresis was carried out at 450 V of con-
stant power at 15°C for 2 to 5 hours, depending on the
fragment size. After electrophoresis, gels were stained
by an automnated gel stainer with PlusOne (Amersham
Pharmacia Biotech AB).

DNA sequence. PCR products were sequenced ei-
ther directly or after subcloning on an ABI 3100 auto-
matic sequencer (Applied Biosystems, Foster City,
Calif) by a BigDye Terminator Cycle Sequencing
Ready Reaction Kit (Applied Biosystems). If the direct
sequencing was incomplete, each amplilled PCR prod-
uct was subcloned into the pGEM vector (Promega,
Madison, Wis) and transformed into competent JM109
cells (Promega). Before sequencing, reaction mixtures
were puril]ed with a DyeEx Spin kit (QIAGEN GmbH,
Hilden, Germany). The sequencing primers were those
used in the PCR ampliucaticms. The sequences of both
strands were analyzed for products from at least 2
independent PCR amplillcations to ensure that the iden-
tiled polymorphisms were not PCR-based artifacts.

Haplotype analysis and nomenclature. In addition
to the unphased SNP analysis, we performed haplotype
analysis for the 3 major polymorphisms, Asnl30Asp,
Asnl51Ser, and Vall74Ala, by 2 approaches: (1) Hap-
lotypes in individuals who were homozygous at all SNP
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sites or heterozygous at no more than one of the vari-
able sites were assigned directly from the results of
unphased SNP analysis; (2) haplotypes in the remaining
subjects (eg, multiply heterozygous) were determined
by a combination of long PCR and subcloning. First,
the association between 2 polymorphisms at positions
130 and 174 was determined from the long PCR-
restriction fragment length polymorphism according to
the method of Nozawa et al.'® Second, PCR products of
exon 4 were subcloned into the pGEM vector to deter-
mine the association between Asnl30Asp and
Asnl518er. After transformation, a single colony rep-
resenting the sequence from 1 chromosome was chosen
for sequencing. The difference between the unphased
genotypic result and the cloned sequence thus provided
for the phased genotype for both chromosomes. How-
ever, haplotypes in individuals who had either a
Pro336Arg (n = 3) or Cys485Phe (n = 1) polymor-
phism could not be determined because of the long
genomic distance from other SNP sites (eg,
Vall74Ala).

On the basis of the proposed nomenclature for poly-
morphisms®*® and previous (ndings,’>® in this study
we used the following nomenclature: OATP-C*la for
no polymorphisms at all SNP positions (GenBank/
EMBL accession Nos. AB026257 and
AJ132573'227)15 OATP-C*1b for Aspl130 (accession
No. AF205071'),"* OATP-C*S for Alal74,'® and
OATP-C*15 for Aspi30Alal74.!¢

Pravastatin pharmacokinetics in healthy subjects.
After approval by the Ethics Review Board of Kyushu
Pharmacology Research Clinic, 23 healthy male volun-
teers (age, 21-40 years; weight, 52.4-97.8 kg) gave
written informed consent to participate in the study.
These 23 participants were recruited from a population
of 120 Japanese volunteers. None had taken any drugs
for at least 1 week before the study. Each subject was
physically normal and had no antecedent history of
signillcant medical illness or hypersensitivity to any
drugs, and each had a body mass index of between 18
and 30 kg/m® The subjects’ health status was again
judged to be normal on the basis of a physical exami-
nation with blood chemical screening, a complete blood
cell count, and urinalysis before the study.

The participants came to the clinic after an overnight
fast. After urination, each volunteer received a single
oral dose of 10 mg of pravastatin (Mevalotin; Sankyo
Co Ltd, Tokyo, Japan) with 150 mL of water. The
participants were required to remain in a supine posi-
tion until 4 hours after dosing, when a standardized
light lunch was served. Serial blood samples were
collected from an indwelling venous catheter immedi-



CLINICAL PHARMACOLOGY & THERAPEUTICS
VOLUME 73, NUMBER 6

ately before and at 0.25, 0.5, 0.75, 1, 2, 4, 5, 6, 8, 12,
and 24 hours after pravastatin administration. Urine
samples were collected for 24 hours, and the amount
and pH of urine were measured. Serum was separated
by centrifugation and stored, as urine, at —80°C until
quantitative analysis. For each volunteer, creatinine
clearance (CL,,) was determined by standard methods,
with the ratio of the creatinine concentration in urine to
the serum creatinine concentration multiplied by the
24-hour urine volume.

Assay of pravastatin and RMS~16. Pravastatin and
its degradation product, RMS-416, were measured in
serum and urine by HPLC—triple-quadrupole mass
spectrometry. One milliliter of distilled water and 100
KL of internal standard (R-122798, 800 ng/mL in wa-
ter; synthesized by Sankyo Co Ltd) were added to 1 mL
of serum or 0.5 mL of urine, and this mixture was
adjusted to pH 6.0 with 0.1-moV/L phosphate buffer (pH
4.0). The mixture was applied to a Bond Elut cartridge
{Varian, Inc, Harbor City, Calif) and then washed 2
times with 3.0 mL of distilled water. After removal of
the water from the column under vacuum conditions,
the analytes and standards were eluted with 2.0 mL of
acetonitrile, and the eluate was evaporated to dryness
under nitrogen gas at 40°C. The residue was reconsti-
tuted with acetonitrile (120 wL) and ultrasonicated for
3 minutes. After 10-mmol/L. ammonium acetate (180
nL) was added to the solution, 20-LL aliquots were
injected into the liquid chromatography-mass spec-
trometry system. Separation by HPLC was conducted
by use of a Waters 2690 Separations Module (Waters
Chromatography, Milford, Mass) with an Inertsil octa-
decylsilane C18 column (150 X 4.6 mm; 5 pm) (GL
Sciences Inc, Tokyo, Japan). Acetonitrile/water/ammo-
nium acetate/formic acid/tetracthylammonium acetate
(400/600/0.77/0.2/0.6 [vol/vol/wt/vol/vol]) was used as
the mobile phase. The (ow rate was 1.0 mL/min, and
the autosampler chamber was kept at 6°C. Mass spectra
were determined with a TSQ API-I tandem mass spec-
trometer (Thermo Finnigan, San Jose, Calif) system in
the negative ion-detecting mode at the atmospheric
pressure-chemical ionization interface. The vaporizer
was operated at a temperature of 520°C, with the heated
capillary temperature set at 240°C. The samples were
ionized by reacting with solvent-reactant ions produced
by the corona discharge (5 pA) in the chemical ioniza-
tion mode. The pressure for the nitrogen sheath gas was
80 psi, and the auxiltary gas was not used. The precur-
sor ions of pravastatin ([M-H]™) at a mass-to-charge
ratio (m/z) 423.1, RMS416 {M-H]™ at m/z 423.1, and
R-122798 [M-H]™ at m/z 409.1 were admitted to the
Orst quadrupole (Q1). After the collision-induced frag-
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mentation in the second quadrupole (Q2), the product
ions of pravastatin at m/z 321.2, RMS-416 at m/; 321.2,
and R-122798 at m/z 321.2 were monitored in the third
quadrupole (Q3). The collision-offset energy was opti-
mized at 20 eV for pravastatin and RMS-416 and at 25
eV for R-122798. The daughter scan width was set at
1.0 amu, and the total scan time was 0.6 second. The
peak area ratio of each compound to the corresponding
internal standard was computed with LCquan software
(Thermo Finnigan). The calibration curve was con-
structed with the use of weighted (1/x%) linear regres-
sion plotting the spiked plasma concentrations against
the measured peak area ratios. The calibration curves
were linear over the standard concentration range of
0.05 ng/mL to 100 ng/mL for serum and 10 ng/mL to 4
pg/mL for urine standards.

Pharmacokinetic analysis and statistical analysis.
The following parameters were estimated for pravasta-
tin and its degradation product, RMS-416: area under
the concentrationtime curve from 0 to 24 hours
[AUC(0-24)] and terminal rate constant for elimination
(k). AUC(0-24) was calculated by standard noncom-
partmental methods, and k, was determined by log-
linear regression. Presystemic conversion of pravastatin
to RMS-416 occurs in the stomach, before the com-
pound reaches the upper region of the small intestine,
the major absorption site. As the conversion rate has
been shown to depend on the individual intragastric pH
value, apparent bioavailability (F) was calculated as
follows: F = AUC024) ayasacin/ [AUCO024), o aseain
+ AUC{0-24)gy5.416]. We, therefore, calculated the
apparent oral clearance (CL,) of pravastatin as follows:
CL, = [Dose X F/AUC(0-24)]. The renal clearance
(CL,) was calculated as CL, = Ae(0-24)/AUC(0-24), in
which Ae(0-24) represents the amount of pravastatin
excreted in urine from O to 24 hours. The apparent
tubular secretory clearance (CL,..) was estimated as
CL;. = CL, — CL,,. The nonrenal clearance (CL,)
was calculated as CL,, = CL — CL,.  All pharma-
cokinetic data are given as mean & SD. The statistical
differences between various group parameters were
determined with either the Mann-Whitney U test or
ANOVA (with the Tukey-Kramer multiple compari-
sons test), as appropriate. P << .05 was taken to be the
minimum level of statistical signillcance.

RESULTS

Identillcation aﬁ' variants in OATP-C and OAT3
genes. For identillcation of polymorphisms, $SCP
analysis of all 14 exons of OATP-C and of all 10 exons
of OAT3 except exon 1 was performed with DNA
obtained from 120 unrelated subjects. In the OATP-C
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Table 1. Polymorphisms of OATP-C and OAT3 genes in a Japanese population (N = 120)
Gene and Nucleotide Aming acid Allele
location Position Allele sequence substitution Jrequency Genotype Frequency
OATP-C
Exon 4 388 A* tatcAatte Asnl30 0.371 AJA 0.125
G tatcGattc Aspl30 0.629 A/G 0.492
G/G 0.383
Exon 4 452 A* ctcaAtaga Asnl5I 0.963 A/A 0.933
G ctcaGtaga Serl51 - 0.037 A/G 0.058
G/G 0.008
Exon 5 521 T* tatgTgtte Vall74 0.842 /T 0.692
' c tatgCgttc Alal74 0.158 T/C 0.300
c/C 0.008
Exon 5 571 T* accaTtggg Synonymous  0.642 T/T 0.408
C accaCtggg 0.358 T/C 0.467
c/C 0.125
Exon 5 597 Cc* atttCgcta Synonymous  0.570 c/C 0.342
T atitTgeta 0.430 CT 0.458
T . 0.200
Exon 8 1007 Cc* aatcCectg Pro336 0.988 c/|C 0.975
G aatcGeetg Arg3i36 0.012 /G 0.025
G/G 0.000
Intron 9 =507 TTT tTTTtcitc —_ 0.992 TTT/TTT 0.992
Deletion  t—tcttc — 0.008 TTT/- 0.008
—/- 0.000
Exon 10 1454 G* cectGicta Cys485 0.992 G/G 0.992
T ccctTteta Phed85 0.008 G/T 0.008
T/T 0.000
Intron 10 -12% Ax atacAcaac — 0.592 AJA 0.992
G atacGceaac — 0.008 A/G 0.008
G/G 0.000
Intron 13 +508 T taatTecta — 0.992 T/T 0.992
G taatGecta — 0.008 T/G 0.008
G/G 6.000
Intron 13 +78]|t A* tataAtaat — 0.992 A/A 0.992
C tataCtaat — 0.008 A/C 0.008
c/c 0.000
Exon 14 2040 Cc* -ttgtCectt Synonymous  0.992 C/C 0.992
A ttgtAcett 0.008 C/A 0.008
A/A 0.000
QAT3 -
Exon 2 153 G* geeeGeeee Synonymous  0.925 G/G 0.858
A geecAccee 0.075 G/A 0.133
AA 0.008
Intron 3 +791 G* acccGeaaa — 0.683 G/G 0475
C acccCeaaa — 0.317 G/C 0417
C/C 0.108
Exon § 723 T* taacTgtgt Synonymous  0.725 /T 0.517
‘ A taacAgtgt 0.275 T/A 0417
A/A 0.017
Exon 8 1166 C* getgCecetg Ala3g9 0.992 c/C 0.983
T getgTectg Val389 0.008 T 0.017
T 0.000
Intron 9 +814# G* cecaGggga — 0.892 G/G 0.808
A cccaAggga — 0.108 G/A 0.167
AJA 0.025

OATP-C, Organic anion transporting polypeptide C gene; OAT3, organic anion transporter 3 gene.
*Reference allele; GenBank/EMBL accession No. AB026257 and No. AJ132573'%%7 for the OATP-C gene and No. AB042505 for the OAT3 gene.
1A (t—tcttc) deletion 50 bases upstream from the 5 boundary of exon 10,
$An adenine-to-guanine transition 12 bases upstream from the 5' boundary of exon 11.
$A thymine-to-guanine transition 50 bases downstream from the 3’ boundary of exon 13,
|iAn adenine-to-cytosine transition 78 bases downstream from the 3' boundary of exon 13,
YA guanine-o-cytosine transition 79 bases downstream from the 3’ boundary of exon 3.
#A guanine-to-adenine transition 81 bases downstream from the 3' boundary of exon 9.
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Table I. Haplotypes of OATP-C gene in 120 Japanese subjects

Frequency (%)

Frequency (No.)

Allele {n = 240) Genotype {n=120)
CATP-C*la 325 OATP-C*la/*la 13 (10.8%)
OATP-C*1b 45.8 OATP-C*la/*1b 37 (30.8%)
OATP-C*5 0.0 OATP-C*la/*15 14(11.7%)
OATP-C*15 15.0 QATP-C*las*16 1(0.8%)
CATP-C*16T 3.8 OATP-C*1b/*1b 26 (21.7%)
Unidentiled allelest 33 OATP-C*Ib/*15 17 (14.2%)
OATP-C*1b/*16 4(3.3%)
CATP-C*15/%15 1(0.8%)
CATP-C*15/%16 2(1.7%)
OATP-C*l6/*16 1(0.8%)
Unidentilled 4(3.3%)

tA novel haplotype.

tHaplotypes in individuals who had either Pro336Arg (n = 3) or‘Cys485Phe (n = 1) polymorphism could not be determined in this study.

Table II1. Allelic frequencies of OATP-C variants among different ethnic populations

Japanese subjects*

Japanese subjectst

European American African American

Variant and location (m = 120) h = 267) subjectst (n = 49) subjectst (n = 44)
Phe73—Leu (exon 2)§ 0.00 — 0.02 (0.01-0.03) 0.00
Val82—Ala (exon 3)§ 0.00 — . 0.02(0.01-0.03) 0.00
Asnl30—>Asp (exon 4)8 0.63 (0.60-0.66) 0.60 (0.59-0.63) 0.30 (0.25-0.35) 0.74 (0.67-0.81)
Asnl51—8er (exon 4)| 0.04 (0.03-0.05) — 0.00 0.00 .
Prol55—Thr (exon 4)§ 0.00 — 0.16 (0.13-0.20) 0.02 (0-0.04)
Glul56—Gly (exon 4)§ 0.00 — 0.02 (0.01-0.03) 0.00
Vall74->Ala (exon 5)§ 0.16 (0.13-0.18) 0.11 (0.10-0.12) 0.14 (0.10-0.18) 0.02 (0-0.04)
Pro336—>Arg (exon 8)) 0.01 (0.01-0.02) — 0.00 0.00
Ile353—Thr {(exon 8)§ 0.00 — 0.02 (0.01-0.03) 0.00
Asn—»432Asp (exon 9)§ 0.00 -— 0.01 (0-0.02) 0.00
Asp462—Gly (exon 10)§ 0.00 _ 0.01 (0-0.02) 0.00
Cys485—Phe (exon 10} 0.01 (0.01-0.02) _— 0.00 0.00
Gly488—Ala (exon 10)§ 0.00 — 0.00 0.09 (0.05-0.13)
Asp655-Gly (exon 14§ 0.00 —_ 0.02 (0.01-0.03) 0.00
Glu667—Gly (exon 14)§ 0.00 —_ 0.02 (0.01-0.03) 0.34 (0.27-0.41)

Values in parentheses indicate 95% conlldence intesvals which we calculated on the basis of values from the original studies.’®!'® Dashes indicate data were not

reparted.
*Data from this study.
tData from Nozawa et al.'®
$Data from Tirona et al.'®
§These variants were (rst identilled by Tirona et al.1
[These variants were newly identilled in this study.

gene, 12 polymorphisms were detected by SSCP anal-
ysis and identilled by subsequent sequencing (Table I).
Of these, 5 polymorphisms resulted in the following
amino acid substitutions: A388G (Asn130Asp), A452G
(Asnl518er), T521C (Vall74Ala), Cl1007G
(Pro336Arg), and G1454T (Cys485Phe). In the OAT3
gene, 5 SNPs were idcriﬁﬂed, and a cytosine+to-
thymine transversion at position 1166 (C1166T) in
exon 8 was associated with an amino acid substitution
from Ala to Val at codon 389 with an allelic frequency
of 0.008 (Table I).

On the basis of haplotype analysis, at least 4 haplo-
types were observed (Table II). In this study we found
a novel allele-possessing polymorphism of Asnl151Ser
on one allele. The allele was designated as QATP-
C*16. The allelic frequencies of QATP-C*la, OATP-
C*1b, OATP-C*5, OATP-C*15, and OATP-C*16 were
32.5%, 45.8%, 0%, 15.0%, and 3.8%, respectively, in
120 healthy Japanese subjects.

Comparisons of genotypic frequencies among dif-
Jferent racial populations. Unfortunately, the genetic
polymorphism of OAT3 has not been well documented.
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Table 1V. Genetic background of healthy volunteers
OATP-C OAT3
Subject No. Asnl304sp Asnl518er Vall74Ala Pro336Arg Genotype T7234 Ala389Val
1 Asn/Asp Asn/Ser Val/Val Pro/Pro OATP-C*1b/*16 T/A c/iC
2 AsplAsp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 A/A c/C
3 Asn/Asp Asn/Asn Val/Val . Pro/Pro OATP-C*1b/*16 T/T c/C
4 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*ib/*15 A/A C/C
5 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 T/A c/C
6 Asp/Asp Asn/Asn Val/Val Pro/Pro OATP-C*1b6/*1b T/A c/iC
7 Asn/Asn Asn/Asn Val/Val Pro/Pro OATP-C*la/*la T c/ic
8 Asp/Asp Asn/Asn Val/Val Pro/Pro OATP-C*1b/*1b T/T cic
9 Asp/Asp Asn/Asn Ala/Ala Pro/Pro OATP-C*15/*15 T/T c/IC
10 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 TT c/iC
13 Asp/Asp Asn/Asn Val/Ala Pro/Arg Unidentilled T/A c/C
12 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 T/A c/C
13 Asn/Asp Asn/Asn Val/Val Pro/Pro OATP-C*la/*1b T/A C/C
14 Asn/Asp Asn/Asn Val/Val Pro/Pro OATP-C*1a/*1b T/T c/C
15 Asn/Asp Asn/Asn Val/Val Pro/Pro OATP-C*la/*1b T/A c/C
16 Asp/Asp Asn/Asn Val/Ala Pro/Pro OCATP-C*1b/*15 T c/c
17 Asp/Asp Asn/Asn Val/Val Pro/Pro OATP-C*1b/*Ib A/A c/C
18 Asp/Asp Asn/Asn Val/Val Pro/Pro OATP-C*1b/*1b TT cT
19 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 T/A c/C
20 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 T/A c/C
21 Asn/Asn Asn/Asn Val/Val Pro/Pro OATP-C*la/*la TT Cc/C
22 Asp/Asp Asn/Asn Val/Ala Pro/Pro OATP-C*1b/*15 T/T c/C
23 Asn/Asp Asn/Asn Val/Val Pro/Pro OATP-C*la/*Ib T/T c/C

Table V. Genotype in OAT3 gene and phenotypic indexes

Genotype pattern No. CL, (L kg™ - K CL,.. (L kg™ k7))
No mutation 10 044 +0.14 0.32 £0.10
T723A 12 045 + 0.10 0.33 *0.11
Ala389Val 1 0.40 0.26

CL,, Renal clearance; CL,, ., tubular secretory clearance,

The allelic frequency of OATP-C variants in different
ethnic groups is summarized in Table ITI. Asnl30Asp
(63%), Vall74Ala (16%), and Asnl51Ser (4%) vari-
ants were found at a relatively high incidence in this
study. Current and previous [ndings reported by Tirona
et al'? indicate that the Asn130Asp variant was more
common in Japanese and African American subjects
than in European American subjects (P < .05); how-
ever, Japanese and European American subjects had a
signillcantly higher frequency of the Vall74Ala poly-
morphism than was found in African American subjects
(P < .05). An Asnl51Ser variant was observed only in
Japanese subjects; however, Prol55Thr (16% in Euro-
pean American subjects) and Glu667Gly (34% in Af-
rican American subjects) were not observed in Japanese
subjects. These results indicate that genotypic frequen-
cies of OATP-C variants appeared 1o be dependent on
race, as has been previously reported.’

Pharmacokinetics of pravastatin and polymor-
phisms of the OATP-C and OAT3 genes. Inthe OAT3
gene, 2 polymorphisms, the synonymous T723A (n =
12) and the nonsynonymous Ala389Val (n = 1), were
observed in our 23 healthy volunteers (Table IV). As
shown in Table V, there were no remarkable differ-
ences in the mean CL, and CL,,, of pravastatin among
the 3 genotypic groups.

In the OATP-C gene, 7 genotypes (ie, allelic pat-
terns) were observed in our 23 healthy volunteers (Ta-
ble VI). The mean (£SD) CL, rates of pravastatin in
OATP-C*la/*1a, *1a/*1b, and *1b/*1b subjects were
266 L -kg™!'-h7L 195+ 072L k™' -h7!, and
239 £ 044 L - kg™' - h™, respectively (Table VI).
Similar to the CL,, mean CL,, did not differ among the
3 genotypic groups. In contrast, the AUC of pravastatin
was increased in subjects with the OATP-C*15 allele
(Table VI). The CL, and CL,_ values were signillcantly
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Fig 1. Mean serum concentration over time after a single oral pravastatin dose of 10 mg in 3 organic
anion transporting polypeptide C (OATP-C) genotypic groups. Solid circles, OATP-C*1b/*b sub-
jects (n = 4)Y; triangles, *1b/*15 subjects (n = 9); open circles, *15/*15 subject (n = 1).

lower (P << .05) in heterozygotes for the *15 allele
(*1b/*15) compared with homozygotes for the *1b
allele (*Ib/*1b). The subject with the *15/*15 geno-
type (ie, homozygote for the *15 allele) had the highest
AUC value and the lowest CL, and CL,, values among

all study volunteers. Mean serum concentration—time

curves of pravastatin in the 3 genotypic groups with
regard to the *I5 allele are shown in Fig 1.

Close examination of the data in Table VI reveals
that CL, and apparent CL . values in subjects with the
*15 allele were opposite those observed for CL, and
CL,,. Although the difference did not reach the level of
signiﬂcance, both CL, and CL,, tended to be greater in
subjects with the *15 allele. These results suggest that
extrarenal (hepatic) clearance is the major determinant
for overall clearance of pravastatin. In addition to those
with the *15 allele, the subject with the Pro336Arg
polymorphism had a relatively high AUC (1103 ng -
h/mL) and low CL, (1.22L -kg™'-h™") and CL,, (0.81
L - kg~! - h™") clearance values.

DISCUSSION

Recently, various organic anion transporters such as
OATPs and OATs have been identilled. Cumulative in
vitro and in vivo studies indicate that OATP-C and
OATS3 are responsible for the hepatic and renal uptake
of organic anions, respectively.®'®**3! Thus the hepa-
toselective distribution and subsequent disposition ki-
netics of pravastatin found in animal studies are, at least
partially, believed to result from transporter-mediated
active transport. However, there are no data from hu-

man studies on the impact of these polymorphisms on
the pharmacokinetics of pravastatin.

Before the functional characterization of the 2 genes
of interest, we analyzed genetic polymorphisms in a
Japanese population and compared allelic frequencies
among different ethnic groups. In our systematic
screening for genetic polymorphisms in the human
OATP-C gene, 3 nonsynonymous variants (Asnl51Ser,
Pro336Arg, and Cys485Phe) were newly observed.
Thus at least 17 nonsynonymous variants have been
found to date in the human OATP-C gene. Among the
nonsynonymous polymorphisms, Asnl30Asp and
Vall74Ala appeared commonly in Japanese subjects,
and allelic frequencies of these polymorphisms in this
study were in keeping with those of a previous report,'$
These 2 polymorphisms are widespread not only in
Japanese subjects but also in white subjects,’* with total
frequencies of between 30% and 60% and between
14% and 16%, respectively (Table III).

It is interesting that, on the basis of haplotype anal-
ysis, the OATP-C*5 allele, which was observed in 14%
of European American subjects,'® was not observed in
this study, despite the fact that a Vall74Ala polymor-
phism was present at comparable frequency in the 2
racial populations. In addition, by contrast to the initial
haplotype analysis by Tirona et al,'® in which the
OATP-C*15 allele was absent in European American
subjects, the QATP-C*15 allele was common in Japa-
nese subjects. A Vall74Ala polymerphism existed in
both *5 and *15 alleles. These results indicate that the
frequency of the OATP-C*I5 allele is dependent on



