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Appendix Similarity f{(T,S)
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(2) The similarity f{T, S) satisfies the following inequality:

-1 f(T,8)<1
Proof.

Since f(T,$)<1 is obvious, we only need to prove —1< f(T,S). We begin by showing that
12
g= 2 2xy; 2 -1
i=]

where 12

D ryh=1

i

We consider the Lagrangian function

12 12
L=3 2xy +A {3 (x" +y)-1)
i=1 i

21

where 1 is a Lagrange undetermined multiplier. By taking the derivative, we convert the constrained

optimization problem into an unconstrained problem as follows:

AL o2y +24%=0 (i=1..12)
Ox,

g.y’;: 2 +24y,=0  (i=1..12)

12
oY x4 -1=0
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The solutions of this problem are

D x=y (=12,.,12), A1=-1 ===> g has the maximum value 1
or

(i) x,=-y, (i=12,...,12), A=1 ===> g has the minimum value -1

Therefore,
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Table 1. Transcription factors linked to ischemia

transcription #of
factgr UniGenes thresholds
VSAHRARNT 01 540 0.92
VEAHRARNT 02 4 0.91
V$HIF1_Q3 955 0.55
V$HIF1_Q5 507 0.87
V$EGR1_01 143 0.87
V$EGR2_01 92 0.89
V$EGR3_01 26 0.93
VENGFIC_01 143 0.88

In CODM, changes in the composition of the cluster sets and changes in the expression patterns between
different conditions were associated with 8 types of transcription factors (HIF, ARNT and EGR
families), which are all known to mediate response to ischemia. We extracted UniGenes which contain
putative binding sites for the transcription factors, and correspond to probes on RG-U34A (Affymetrix,
Santa Clara, CA). This table shows the names of the transcription factors, the number of UniGenes and

the thresholds for matching.
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Table 2. Information about 3 overlap blocks

Overlap I#of UniGenes in # of UniGenes in UniG#e(;lfe:cEar:l?J relm'on similarity [ Binding-sites of lransa:iplion factors ;
block | cluster of TOL [cluster of SHAM value) fT.8) # of genes (evaluation value)
A 156 147 54 (E=46.9) 0.42 VIAHRARNT_01: 14 (E=2.10)
B 190 132 60(E=53.3) -0.28 VSEGR1_01: 6 (E =201}
c 99 207 43 (E=34.8) -0.23 VSHIF1_Q3:11(E=233)

Exploration with CODM allowed us to pick up 3 potentially important overlap blocks. This table shows
the information for these 3 overlap blocks. The “# of UniGenes in cluster of TOL({(/SHAM)” is the
number of UniGenes which correspond to probes included in a cluster of TOL(/SHAM). The “# of
common UniGenes (evaluation value)” is the number of common genes shared between the clusters of
TOL and SHAM and its statistical evaluation value. The “similarity f (T, S)" is the similarity of the
expression patterns between the clusters of TOL and SHAM. The range of similarity f (T » S) is
—1(dissimilar) to 1(similar). The “Binding-sites of transcription factors’ shows the name of putative
binding-sites of transcription factors, the number of common genes that share the same binding-sites,
and the statistical evaluation value of the number of common genes with the same binding-sites, if the

evaluation value is 2.0 or higher.
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Figures and Figure Legends

@y ML

Figure 1. Hierarchical clustering of TOL and SHAM

We obtained time series ({Oh, 1h, 3h, 12h, 24h, 48h} x 2) microarray data from rats with induced
ischemic tolerance (tolerant rats: TOL) and rats with sham operation (sham rats: SHAM). In the
analysis, we used these datasets as 12 time-points ({0a, Ob, 1a, 1b, 3a, 3b, ...., 48a, 48b} = (T3} (i =
1,2,...,12)) datasets on TOL and SHAM, respectively. After preprocessing and normalization,

hierarchical clustering analysis based on Euclidian distances was then performed for each dataset

independently,
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Figure 2. Overlap Block of Two Clusters

The dendrogram of TOL is mapped to the X-axis and that of SHAM is mapped to the Y-axis. Then, for
the area (R;) determined by a cluster on the X-axis (X;) and a cluster on the Y-axis (¥;), a block whose
height represents E(g, ny, ny;, ky) (statistical evaluation values of the overlaps between X; and a };,) is
displayed, where (g) is the total number of genes, (n,,) is the number of genes in (X)), (n,) is the number

of genes in (¥}), and (k) is the number of overlap genes between (X;) and (¥p).
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Figure 3. Relationships of Two Blocks

In CODM, all of the clusters are dealt with equally, regardless of their difference levels (i.e. their
homogeneity). Even if they are included in other clusters, all of the statistical significance of the number
of common genes between clusters is simultaneously visualized. Figure 3 shows that there is a risk that a
small overlap blocks may be hidden in a large block. Assume that the clusters X; and ¥, are included in
X; and Y, respectively. Then, if the evaluation value Ej, is less than E;,, the small block By, will be

hidden within the large block B, (Figure 3a).
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Figure 4. Visualizations for Comparisen of Clustering Results of TOL and SHAM

28
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This figure shows visualization results of the comparisons between TOL and SHAM in the mode of

redundant visualization (Figures 4a and 4b), similarity of the expression patterns (Figures 4¢ and 4d),
and the relationships with transcription factors (Figures de and 4f). In these figures, the cuz level of the
distance for hierarchical clustering was 0.74, and all of the overlap blocks with 2.0 or higher evaluation
values are displayed as 3D histograms. As the figures show, the CODM provides not only a 3D mode
(Figures 4b, 4d, and 4f) but also a 2D mode (Figures 4a, 4c, and 4e) where users can see a projected
overhead view of the 3D mode. |

In the mode showing the relationships with the transcription factors (Figures 4e and 4f), we considered
the relationships with 8 types of transcription factors (HIF, ARNT and EGR families), which are known
to mediate response to ischemia. In these figures, only overlap blocks with 2.0 or higher evaluation
values of the number of genes with putative transcription factor binding sites were color-coded. Where
an overlap block represents statistical significance for multiple transcription factors’ putative binding
sites, only the transcription factor with the highest evaluation value was visualized.

Exploration through changing the color-mode and the 2D&3D mode allowed us to pick up 3 potentially
important overlap blocks which represented high evaluation values of the number of genes with the

binding-sites (£ > 2.0).
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Brpregsion Pattern of A-TOL Expression Pattern of A-SHAM
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Figure 5. Expression Patterns of genes in the 3 overlap blocks
These figures show the expression patterns of common genes for the 3 overlap blocks which were
picked up through exploration with CODM (Figure 4). The “Expression Patterns of Cluster T; (/S)” (i =

a,b,c) are the expression patterns of the common genes of the overlap block i in TOL(/SHAM).
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Figure 6. Interactive Changes of Cut-levels

In CODM, there is a risk that a small overlap block may be hidden in a large block. To avoid this
problem, CODM allows the user to change the cut level interactively. If the user decreases the cur level,
some small blocks that are hidden in larger blocks will emerge. By considering the homogeneity of

clusters and the relationships with other gene information, the user can find important genes displayed as

blocks in the CODM,
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ABSTRACT

Motivation: Since DNA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with statistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis {PCA) are used lo
roughly visualize the distribution of high dimensicnal gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize classinformation
whenchoosing axes. Thus clearly separable data inthe originat
space may not be so in the reduced space used in PCA.
Results: For visualization and class prediction of gene
expression data, we have developed a new SVM-based
method called muitidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space to exhibit properties of the data
clearly and to visuzlize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in cur msethod: sclutions of mathematica! programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our method to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algorithm is
efficient and useful for visualization and class prediction.
Contact: komura@hal.reast.u-tokyo.ac jp

1 INTRODUCTION

DNA microarray has been the key technology in modemn
biology and helped us to decipher the biological system

*To whom correspondence should be addressed.

Komura et al. (2004) Multidimensional Support Vector Machines for Visua-
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Proceedings of the 2004 ACM symposium on Applied computing, 175-179;
htip//doi.acm.org/10.1145/967900.967936
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because of its ability to monitor the expression levels of
thousands of genes simultaneously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyzed with statistical methods to
extract the meanings of experimental results.

A great number of supervised learning algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani et al., 2002; Khan et al.,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bicinformatics
including classification of gene expression data (Furey et al.,
2000). However, SVMs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function. As a resuit, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimnensional space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data. Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlinear PCA (Diamantaras and
Kung, 1996) and Kernel PCA (Schélkopf ef al., 1998), are
most widely used for this purpose (Huang et al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be so in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class vartance. However, itisreported that SVMs
often outperform discriminant analysis (Brown ef af., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data. To this end, we have developed multidimensional
SVMs (MD-SVMs), anew SVM-based method that generates
multiple orthogonal axes based on margin between two

Pubiished by Oxford University Prass
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the diseriminability
of two classes. This method fulfills the requirement of both
visualization and class prediction. The basic properties of
SVMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear ¢lassification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of SVMs. In Section 3, we describe
the algorithm of MD-8VMs. In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction.

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R',J = 1,...,m will be denoted by x;,j =
1,...,n. Theinner product of two vectorsx € R"and y € R*
will be denoted by x - y. For a vector x € R" and a scalar
a€Raxxisdefinedasqg < x; foralli = 1,...,n. For
an arbitrary variable x, x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly introduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to separate two classes of
data based on m training samples x; € R*,i = 1,...,m with
corresponding class values y; € {£1},i = 1,...,m. 8VMs
map a data x € R" into a higher, probably infinite, dimen-
sional space RY than the original space with an appropriate
nonlinear mapping ¢ : R* — R¥ n < N. They generate
the linear decision function of the form f(x)} = sign(w .
@{(x} + b) in the high dimensional space, where w € RY
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while b € R is
a bias which moves the hyperplane parallel to itself, The
optimal decision function given by SVMs is a solution of an
optimization problem

1 =
min -||w]|2+CE &,
wi 2 i=1

S.t.yi(u"¢(x1')+b)21"§i’ i=1s---sms§209 (1)

with C > 0. Here, £ € R™ is a vector whose elements
are slack variables and C € R is a regularization parameter
for penalizing training errors. When C -+ ¢0, no training
errors are allowed, and thus this is called hard margin
classification, When ¢ < C < oo, this is called soft margin

classification because it allows some training errors. Note that
a geomnetric margin y between two classes is defined as '["+"g
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors. The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier & € E™ and replacing
¢ (x:) - ¢(x;) by kernel function K (x;,x;) = ¢(x;) - ¢(x;)
to be solved in an elegant way of dealing with a high
dimensional vector space. The dual problem is

1 m m m
max - z; Z;azujyayjK(xf,x;) +)
i=1 j=

i=1

m
st0<@<CYy ay=0. )

i=1

By virtue of the kernel function, the value of the inner
product ¢(x;} - ¢(x;)} can be obtained without explicit
caleulation of ¢(x;) and ¢(x;). Finally, the decision func-
tion becomes f(x) =sign(3 "7, &y K (xi,x)+b). by using
kernel functions between training samples x;,i = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In orderto overcome the drawback that SVMs cannot generate
more than one decision function, we propose 2 SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensional SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set (w,b,£) which corresponds to
a decision function, while our MD-SVMs give the multiple
sets (w¥,b%,£%),k = 1,2,...,I with I < n, so that all the
directions wy. are orthogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensiona! space by means
of projection. Here the first set (w!,5',£') is equivalent to
that obtained by conventional SVMs. Now we only refer to
the steps of obtaining (w*, b%, .E"),k =2,3,...,1. Inpractice,
the k-th set (w*, b",g")k = 2,3,...,] are found with jierative
computations of the optimization problem

m
iy St +c >t
st.yi(w* - g+ = 1 -k i=1,...,m,
0wt w=0,j=1, .. k-1 3)
This problem differs from that of conventional SVMs in the

last constraint w* . w/ = 0, The weight vector w/,j =
1,...,& — 1 should be computed in advance by solving
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other optimization problems (3). The ophmlz.anon pmblem
is modified by introducing lagrange multipliers af, * € R™,
A* € R*~! and kernel functions. The primal Lagrangian is

1 2 i
Lewh ot 85 =t + € ) gk

i=1

+ Yo (1= g — ywh - pixi) + 54))

i=1
k=1 . m
+3 Bt w) =Yyt (4)
J=1 i=1
Consequently, the optimization problem is

m m
s -1 St
+1iﬁ"ﬁ"(w‘-wi)+ia*,
2l'=|. t i=l1 l

m
st.0<e*<C,) afy=0,
i=1

Y atnle)-wh=0,j=1,..

i=1

k=1 (5)

Here ¢(xp) - w? and w? - w” are calculated recursively as
follows:
g-1

$lxp)-wt =) ol yiK(xp,x) =) Bl ($(xp)- wh,

i=1 i=1
®

w? . wF—ZZa R y,y,K(x,,x,)

i=1 j=1
-1

> ol b} (#(xi) w’)+Zﬂ"’ﬂ"(w -w')

h-]
1
—

|
_ME

-
I
~
1]

—

-1
of yiBf ($(xi) - w)), M

’u

Ma

1Jj=1

[

,

where ¢(x,) - ' = Y0, alyiK(x,,x) and wlw! =
S alyil@(x;), w'). As can be seen, there is no need to
calculate nonlinear map of data ¢(x) in problem (5) because
all ponlinear mappings can be replaced with kernel functions,
Note that this optimization problem is a nonconvex quad-
ratic problem when & is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2
or 3. We note the experimental results are still encouraging.

The corresponding Karush-Kubn-Tucker conditions are
af(1-gf —yiwt - pxy +5) =0, ()
e -Cy=0,i=1,...,m. 9

These are exactly the same as conventional SVMs. We

highlight the other properties conserved from conventional
SVMs:

o Projecting data into high dimensional space is implicit,
using kernel functions to replace inner products.

+ The solutions e of the optimization problem is sparse.
Then the corresponding decision function depends only
on few *Support Vectors’,

Since each decision function is normalized independently to
hold w - ¢ (x;) + b* = y; fori = 1,...,m, data scales of the
axes should bealigned with first axis (k = 1) for visualization.
The margin y*, the L2-distance between support vectors of
each class of k-th axis, is

-4
m m k=1
(ZZafufy.-y,-K(x.-,x,-) ~ ) BB w")) :
i=1 j=1 i=1

(10)

So a scaling factor s* = 1 /9F is

m m
YY) olalyyiKxi,x))
i=1 j=1
— . an

z ;o ylyJ'K(xth) - Zﬂ,"ﬂf(w' . wi)

||Ma

The decnsxon function of k-th step has the form f*(x) =
sign(3_7, ¥ yiK (xi,x) + b¥). Since the right hand side of
the equation has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R™ in three dimensional space is

(s gh (x), s g (x), 5" g% (x)), 12)

where g*(x) Y akyiK(xi,x) + b*. The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS

4.1 Method

In order to confirm the effectiveness of our algorithm, we have
performed numerical experiments. MD-SVMSs can generate
multiple axes, up to the number of features. Here we choose
three axes, k = 1,2, 3, to simplify the experiments. When k is
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2or 3, weuse local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are nommalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than 0.35. Then we calculate a score F(x(j)) =
[t ()= (1)) F ()40 (), fortheremaining genes.
Here ut ()(~(j)) and ot (j}{o~ (j}) denote the mean and
standard deviation of the j-th gene of the samples labeled
+1(-1), respectively. This score becomes the highest when
the comresponding expression levels of the gene differ most
in the two classes and have small deviations in each class.
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments.

The regularization parameter C in problem (5)is setto 1000.
This value is rather large but finite becanse we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kernel K (x;,x;) = x; - x; and RBF ker-
nel K(x;,x;) = exp—yl|lx; — x; |? with ¥ = 0.001 in the
experiments of MD-SVMs, )

4.2 Maierials

Leukemia dataset (Golub et al., 1999) This gene expression
dataset consists of 72 levkemia samples, including 25 acute

" myeloid leukemia (AML) samples and 47 acute lymphoblastic
lenkemia (ALL) samples. They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are labeled +1 and ALL samples are
labeled —1.

Lung tissue dataset (Bhattacharjee et al., 2001)  This dataset
consists 0f203 samples from lung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip containing probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 samples from
cancerous tissue. Test set includes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal tissue are labeled +1 and samples from cancerous
tissue are labeled —1.

5 RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables 1 and 2. The distributions obtained by MD-SVMs
on the lenkemia dataset and the lung tissues dataset are given
in Figure 1-(1) and 1-(3), respectively. Those obtained by PCA
are given ta Figure 1-(2) and 1-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2. In these tables, the class of the samples is
predicted based on decision functions f*(x),k = 1,2,3,
comresponding to each of the three axes.

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions.
However, as shown in Figure 1-(2) and 1-(4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis. These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them. Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by arrows in
Figure 1-(3)). Though this sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significantly deviates in MD-8VMs, This may arise
from the fact that MD-SVMs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-SVMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f¥(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables 1 and 2. In such cases, the simplest method
for prediction is to use only the 1st axis, which corresponds to
the decision function generated by conventional SVMs. The
ideais supported by the fact that the 1st decision function clas-
sifies the samples most correctly in almost all cases in Tables 1
and 2. The more advanced method is weighted voting. Scaling
factor or normalized objective values in problem (5) are the
candidate of the weight.

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column ‘3 axes’
of test sample of the lung tissues dataset with RBF kemel in
Table 2. This sample is misclassified by all decision functions,
so we can say that this data contains some experimental error.
The hierarchical chistering method also supports our result.
These results indicate that MD-SVMSs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visunalization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMs perform bet-
ter than the other classification algorithms, but they generate
only one axis for class prediction. {2) PCA chooses multiple
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Fig. 1. (Top row) Distribution obtained by MD-SVMs for the leukemia dataset with linear kernel. (Second row) Distribution obtained by
PCA on the leukemia dataset. (Third row) Distribution obtained by MD-SVMs for the lung tissues dataset with linear kernel. The sample
indicated by arrows appears to be an outlier. (Fourth row} Distribution obtained by PCA for the lung tissues dataset. The sample indicated by
arrows is the same as in the third row but with less deviates, (a) Cross shot, (b) 1st axis (x axis) and 2nd axis (y axis), (c) 2o0d axis (x axis) and
3rd axis (y axis), (d) 3rd axis (x axisy and 1st axis (y axis). Black objects and white objects indicate AML samples (or normal tissues) ALL
samples (or cancreous tissues), respectively. Training data and test data are expressed as a sphere and a cube, respectively.

Table 1. Number of classification errors in the MD-SVMs for the leukemia dataset. The columns ‘n-th axis’, n = 1,2, 3, indicates the oumber of samples

misclassified by n-th decision function. The columns ‘n axes’, n = 1,2,3, indicates the number of samples misclassified by » decision Functions

Kernel Sample # of samples Ist axis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 62 0 1 2 1 1 0
RBF Training 62 0 2 7 5 2 4]
Linear Test 10 1 1 2 2 1 0
RBF Test 10 0 2 0 2 0 0
Table 2. Number of ¢lassification ervors in the MD-SVMs on the lung dataset. See the caption of Table 1 for other explanation

Kernel Sample # of samples Istaxis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training im0 0 1 1 0 1 0
RBF Training 170 0 3 5 2 3 0
Linear Test 33 1 0 0 1 0 0
RBF Test 33 1 1 1 0 0 1
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orthogonal axes, but it camnot predict classes of samples
without other classification algorithms. We have tried to
cover the shortcomings of both methods. MD-SVMs choose
multiple orthogonal axes, which correspond to decision
functions, from high dimensional space based on a margin
between two classes. These multiple axes can be used for
both visualization and class prediction.

Numerical experiments on real gene expression data indic-
ate the effectiveness of MD-SVMs. All axes generated by
MD-5VMs are taken into account for separating class of
samples, while the 2nd and the 3rd axes by PCA are
not. The samples in the distributions by MD-SVMs gather
into appropriate clusters more vividly than those by PCA.
MD-8VMs can predict the classes of the samples with
multiple decision finctions. We also indicate that MD-
SVMs are useful for outlier detection with multiple decision
functions.

There are several future works to be done on MD-SVMs:
(1) application of our method to wider variety of gene expres-
siondatasets, (2) investigation of gene selection for preprocess
of analysis and (3) investigation on class prediction method
with multiple decision functions. Firstly, the use of more
suitable samples may show that the axes chosen by MD-
SVMs separate samples more cleatly than those by PCA.
Secondly, since the conventional SVMs show good general-
ization performance especially with large number of features,
1t is expected that MD-SVMSs show much better performance
than PCA with increasing the number of genes used in the
numerical experiments. Since the element of weight vector
generated by SVMs is one of the measures of discrimina-
tion power of the corresponding genes (Guyon et al,, 2002),
that generated by MD-SVMs can be used for gene selec-
tion. Thirdly, the classification with probability as well as
the weighted voting mentioned in Section 4 may be achieved
in our scheme since the conventional SVMs have been already
expanded for the purpose with sigmoid functions (Platt, 1999).
We hope that our method sheds some lights on the future study
of gene expression experiments,
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Colon cancers develop after accumulation of multiple
genetic and epigenetic alterations in colon epithelial cells,
To shed light on global changes in gene expression of colon
cancers and to gain further insight into the molecular
mechanisms underlying colon carcinogenesis, we have con-
ducted a comprehensive microarray analysis of mRNA
using a rat colon cancer model with the food-borne carci-
nogen, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP). Of 8749 genes or ESTs on a high density oligo-
nucleotide microarray, 27 and 46 were over- and under-
expressed, respectively, by >3-fold in colon cancers in
common in two rat strains with distinct susceptibility to
PhIP carcinogenesis. For example, genes involved in
inflammation and matrix proteases and a cell cycle regu-
lator gene, cyclin D2, were highly expressed in colon
cancers. In contrast, genes encoding structural proteins,
muscle-related proteins, matrix-composing and mucin-
like proteins were underexpressed. Interestingly, a subset
of genes whose expression is characteristic of Paneth cells,
Le. the defensins and matrilysin, were highly overexpressed
in colon cancers. The presence of defensin 3 and defensin 5
transeripts in cancer cells could also be confirmed by in situ
mRNA hybridization. Furthermore, Alcian blue/periodic
acid Schiff base (AB-PAS) staining and immunohistochem-
ical analysis with an anti-lysozyme antibody demonstrated
Paneth cells in the cancer tissues, AB-PAS-positive cells
were also observed in high grade dysplastic aberrant
crypt foci, which are considered to be preneoplastic lesions
of the colon. Our resulis suggest that Paneth cell differen-
tiation in colon epithelial cells could be an early morpho-
logical change in cryptic cells during colon carcinogenesis,

Introduction

The development of colon cancers comprises multiple steps
requiring the accumulation of genetic and epigenetic altera-
tions in colon epithelial cells, and these changes further affect

Abbreviations: AB-PAS, Alcian bluefperiodic acid Schiff base; ACF,
aberrant erypt foci; DIG, digoxigenin; APC, adenomatous polyposis coli;
EST, expressed sequence tagged; H&E, hematoxylin and eosin; PhIP,
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.

Carcinogenesis vol.25 no.8 © Oxford University Press 2004; all rights reserved.

expression of a variety of downstream genes and may cause
considerable changes in gene expression profiles in cancer
cells as a consequence. Inactivation of the adenomatous poly-
posis coli (APC) gene, B-catenin, K-RAS, SMADZ, SMAD4,
P53 and mismatch repair genes by genetic alterations, for
example, play key roles (1,2). Furthermore, alterations of
gene expression profiles by perturbation of CpG island methyl-
ation in promoter regions andfor the histone acetylation/
deacetylation status of chromatin also have a substantial
impact on colon carcinogenesis (2).

Oral administration of 2-amino-1-methyl-6-phenylimi-
dazo[4,5-blpyridine (PhIP), one of the most abundant hetero-
cyclic amines produced while cocking meat and fish (34),
induces aberrant crypt foci (ACF) (5,6), putative preneoplastic
lesions of the colon (7,8), in experimental animals within &
short period and colon adenomas and adenocarcinomas after 1
or 2 years in rats, preferentially in males (9). A number of
studies have revealed that PhIP-induced rat colon cancers
resemble human neoplasms with regard to observed histologi-
cal features and genetic alierations (10-14). There are several
advantages with the use of animal cancer models to dissect the
molecular basis of colon carcinogenesis, For example, inbred
experimental animals share a common genetic background
within the strain and, farthermore, carcinogenesis experiments
using these animals ¢an be carried ont under well-controlled
conditions. Genetic and/or epigenetic alterations in colon can-
cers induced in experimental animals are therefore expected to
be more uniform compared with those in humans with diverse
genetic backgrounds, Colon cancers induced by PhIP indeed
demonstrate B-catenin accumulation in both cytoplasm and
nucleus (13) and B-catenin mutations are observed at codons
32, 34, 36 or 38 in exon 2, the majority being G — T transver-
sions (12,13). In the Apc gene, 5'-GGGA-3 sites in exons 14
and 15 and a 5'-agGGGGG-3’ site at the junction of intron 10
and exon 11 are mutation hot-spots (10,13). Using & model
system, we have recently revealed sequential progression from
dysplastic ACF to colon cancer (14,15). Although the PhIP-
induced rat colon cancer model has provided cancer research-
ers with a powerful tool for dissecting molecular events
involved in the formation of colon cancers with relevance to
human colon carcinogenesis, extensive studies aimed at the
elucidation of early genetic events in colon cancer develop-
ment have hitherto not been conducted.

In the present study we therefore performed a global gene
expression analysis of rat colon cancers induced by PhIP using
high density oligonucleotide microarrays (GeneChip; Affyme-
trix, Santa Clara, CA). To eliminate detection of strain-specific
changes, but rather to detect specific gene expression profiles
essential for colon cancer development, two rat strains, F344
and ACI, were subjected to analysis, the former being the more
susceptible to PhIP-induced colon carcinogenesis. A consider-
able number of genes were found to be differentially expressed
in colon cancers compared with normal counterpart epithe-
lium, including examples characteristic of Paneth cells. Global
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changes in gene expression profiles are also discussed in
comparison with those reported in human colon cancers.
Another focus is on the appearance of Paneth cells in ACF,
especially in dysplastic ones, and its biological significance.

Materials and methods

Animals and diets

PhIP was purchased from the Nard Institute (Osaka, Japan) in the form of
PhIP-HCI and added to AIN-93G basal diet (7% wiw soybean oil; Dyets,
Bethichem, PA) at a concentration of 400 p.p.m. A high fat diet (AIN-93G
basal diet supplemented with 23% w/w hydrogenated vegetable oil) was also
purchased from Dyets. Five-week-old male F344 and ACT strain rats were
purchased frem CLEA Japan (Tokyo, Japan) and housed 3 per cage in an air-
conditioned animal room with a 12 h light/dark eycle. Prior to the experiment,
all the animals were acclimatized to the hovsing environment and the AIN-93G
basal diet for 1 week.

Experimental protocol and tissue samples

Starting at the age of 6 weeks, rats were fed a diet containing PhIP
following an intermittent PhIP feeding protocol {13). At experimental
week 60 all animals were Killed and colons were removed. When colon
cancers with polypoid growth were detected by the naked eye, cancerous
parts were resected with a razor blade, bisected and one ha!f was embedded
in O.C.T. compound (Tissue-Tek; Sakura Finetechnical Co., Tokyo, Japan),
frozen and stored at —80°C until use for Gozen section preparation and
RNA extraction. The remaining halves were fixed in neutral 10% formalin
ovemnight at 4°C and embedded in paraffin blocks according to standard
procedures. Normal counterparts were collected from the surrounding nor-
mal parts of the colon and separately embedded in O.C.T. compound and
samples were snap-frozen in liquid nitrogen and stored at —80°C until use
for RNA extraction. In scparate experiments using the infermittent PhIP
feeding protocol, ACF were assayed at experimental weeks 18 and 25, after
fixation of tissue in formalin and embedding in paratfin blocks as described
above.

High density oligonucieotide microarray analysis

Twelve colon cancer lissues, six sach from F344 and ACI rats, and 12 normal
counterparts were collected by digging them out of frozen O.C.T. blocks using
18 gauge needles. Total RNA was extracted from ~1 mg of tissve with
TRIZOL reagent (Invitrogen, Cartsbad, CA). Two of six colon cancer issues
from F344 rats, however, did not provide sufficient amounts of good guality
RNA. The temaining four samples from F344 and six from ACI rats were
subjected to the following experiments. cRNA was synthesized, labeled with
biotin and hybridized 10 high density oligomucleotide micrgarrays, Rat
Genome U34A (RG U3MA; Affymetrix), as described previously, The average
hybridization intensity for each array was scaled to 1000 to reliably compare
multiple arrays. Prior to statistical analysis, genes were filtered according to
the following eriteria. For genes overexpressed in cancers, for example, they
should have 'present (PY or ‘marginal (M)’ calls in at least half of the colon
cancer samples of the respective mat strains. Por genes underexpressed in
cancers, in contrast, they should have P or M calls at least in half of the normal
countcrpart samples, To assess statistical differences in gene expression
between colon cancers and normal tissues, average signal intensity and
standard varistion were calculated for each group and GeneSpring 4.3

{Silicon Genetics, Redwood City, CA) was employed for the Mann-Whitney

“test. The significant P value was set at 6.05. Then, genes which were
differentially expressed between cancer and normal fissue at
23-fold were selected and subjected to Further analysis, including Venn dia-
grams, hierarchical clustering analysis, functional classification and com-
parison with expression profiles of human colon cancers. Permutation analysis
was also carried out to assess the statistical significance of genes differentially
expressed between the two rat strains.

Histological analysis

For hematoxylin and eosin (H&E) staining, paraffin sections were prepared at
3.5 pm thickness following standard procedures. Histological evaluation of
colonic lesions was performed as described previously (13). For Alcian blue
(pH 2.5)/periodic acid Schiff base (AB-PAS) staining to evaluate the presence
of Paneth cells, both frozen (10 yun thickness) and paraffin (3.5 pm thickness)
sections were used, The staining was carried out according to conventipnal
methods,

In sity mRNA hybridiztion for defensin genes

In situ mRNA, hybridization was camried out as described previousty (16,17)
under contract by Genostaff (Tokyo, Japan} using frozen sections prepared at
10 pn thickness. A 253 bp cDNA fragment of the rat neutrophil defensin 3
gene was amplified by PCR with primers §'-CTCCCTGCATACGCCAAAG-
3 (forward) and 5'-AACAGAGTCGGTAGATGCG-3 (reverse) and a 335 bp
cDNA fragment of the defersin § gene with primers 5'-AACTTGTCCTCCIT
TCTGCC-3 (forward) and 5™-AACATCAGCATOGGTGGCC-Y (reverse).
Amplificd fragments were cloned inte pCRII {Invitrogen) and digoxigenin
(DIG}-labeled RNA probes were generated by an in vitro transcription method
using DIG-labeling mix (Roche Molecular Biochemicals, Tokyo, Japan).
Hybridized probes were detected by an IgG antibody against the DIG label
and visualized with NBT/BCIP solution (Roche Molecular Biochemicals).
Nuclear counterstaining was performed with Kemnechtrot Stain Sol (Muto
Chemical, Tokyo, Japan).

Semi-quantitative RT-PCR

Extracted RNA was transcribed to cDNA using an oligo(dT)z.1s primer
and SuperScript™ II reverse transcriptase (Invitrogen) and the eDNAs
produced were divided into aliquots in tubes and stored at —20°C until
analyzed. Each aliquot of cDNA was subjected to semi-quantitative reverse
imnscription (RT)-PCR with the primer sequences Listed in Table . A set
of semi-quantitative RT-PCR reactions for representative genes was carried
out within 1 day to avoid the effects of degradation of cDNA templates.
For eference, expression of the B-actin and glyceraldekyde 3-phosphate
dehydrogenase (GIPDH) genes was also quantified for each sample. PCR
amplification was carried out at $4°C for 30 s, 60°C for 30 5 and 72°C for
1 min using Advantage Taq (Clontech, Palo Alto, CA) under the conditions
recommended by the manufacturer. PCR cycles were set at 25 for B-actin
and G3PDH, 35 for a-defensin NP4 and B-defensin 2 and 30 cycles for the
other genes. PCR products were alse analyzed by gel electrophoresis on a
2% agarose gel in 0.5% TBE (89 mM Tris, 89 mM boric acid, 1.9 mM
EDTA). The amounts of PCR products were quantified by analysis per-
formed on a Macintosh iBook G3 computer using the public domain NIH
Image program (developed at the US National Institutes of Health and
available on the Intemnet by ancnymous fip from zippy.nimh.nih.gov. or on
floppy disk from the National Technical Information Service, Springfield,
VA, pant no, PB95-500195GEI), PCR reactions for individual genes were

Table L List of primers used for RT-PCR

Reverse primer

Gene name Forward primer

Matrilysin 5-TTCGCAAGGGGAGATCACG-3
Mash2 S-TTACOCATGCTGTCTAGTGC-3
OctlA S-CCTTCATCATCCTGGTCAC-3Y
Carbonic anhydrase [V 5.GGTAAACGAGGGCTTCCAG-3
AATIIRI2 5 -GCGATCATGCCTTGCTTAAC-Y
Defersin NP1 like §-TGCTGTTCAAGATTTACGCG-3'
Defensin NP3 5 -CTCCCTGCATACGCCAAAG-Y
Defensin a5 F-AACTTGTCCTCCTTTCTGCC-3'
Defensin NP4 F-GACACTCACTCTGCTCATCA-3
Defensin 1 5-CTTGGACGCAGAACAGATCA-Y
B-Actin 5'-GACTTCGAGCAAGAGATGGC-3
G3PDH 5-TCATGACCACAGTCCATGOC-F

5'-AACAGAAGAGTGACCCAGAC-3
5-AGTCCTCCAGCAGTTCAAGT-¥
¥-ATGAAGGGGGTGAAGATCC-3'
5“TGAGACCTGAACACCTGGC-¥

5 TTCCAGCGGCAGATGAAGG-Y
5'-ACCTTGATAGCCGAATGCAGC-3'
5'-AACAGAGTCGGTAGATGCG-¥

5" -AACATCAGCATCGGTGGCC-3'
5-ATGACAAATGGCTTCITCTC-Y
5" -AAACCACTGTCAACTCCTGC-¥
5'-AGGAAGGAAGGCTGGAAGAG-3'
5'-CTCAGTGTAGCCCAGGATGC-3
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