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Table 1. Fold changes of mRNA levels by fatty acid treatment in HepG2 cells.

Average Fold change
Gene Accession difference® Function
0A AA EPA DHA

Interferon-gamma receptor alpha chain U19247 226 -11 =23 -23 —2.2 antiviral activity
Mitochondrial NADH dehydrogenase U65579 407 1.8 2.0 3.1 2.7  aspiratory chain
Heparan sulfate proteoglycan (HSPG2) M85289 146 -1.5 1.3 5.3 1.3 celladhesion
cdc25Hs M34(365 -26 27* 19+ 14 21* celldifferentiation
Interleukin 1 alpha (IL 1) M28983 —-51 26 20* 2.7* 18* celldifferentiation
MAC30 L19183 1,769 1.0 -2.8 -21 -1.8 celldifferentiation
Protein tyrosine phosphatase (PTP-PEST) M93425 73 20" 1.9* -1.0* 3.1* celldifferentiation
Small proline-rich protein 2 (SPRR2B) L05188 -110 29% 28 30" 18" celldifferentiation
SWI/SNF complex 155 kDa subunit U66615 197 1.4 1.5 2.3 2.2*  cell differentiation

(BAF155)
Drosophila female sterile homeotic (FSH)  X62083 4 1.5 1.2 13.3*  2.9* cell proliferation
Glial growth factor 2 394 —5.5* -3.0 -5.3* —5.6* cellproliferation
Membrane-associated protein (HEM-1} M58285 193 1.8 2.5 29 2.4* cell proliferation
Sec23A isoform X97064 51 3.3 1.1* 21*  2.6* cell proliferation
Sec23B tsoform X97065 230 2.3 1.8 24 2.1  cell proliferation
S-lac lectin L-14-1I (LGALS2) M87860 -3 1.5 2.0 3.2* 4.5* cellproliferation
Microsomal glutathione S-transferase 077604 2,836 1.0 -1.1 1.2 —-2.0 detoxification

{GST-II)
FDXR gene (adrenodoxin reductase) M58509 287 1.2 1.5 1.6 2.2 electron transport

system

Uncoupling protein homolog (UCPH) 094592 169 28 =27 2.2 —2.0 energy consumption
Fatty acid synthase §80437 4,358 -1.0 -2.1 =21 ~—2.3 fattyacidsynthesis
Stearoyl-CoA desaturase 1,416 1.1 -29 =29 -31 (fattyacid synthesis
Liver fatty acid binding protein (FABP) M10050 6,859 1,1 -20 -1.6 -1.5 fattyacidtransport
Ceruloplasmin (ferroxidase) M13699 309 1.2 -19 -29 -~-3.1 Feoxidation
Galactokinase (GALK1) L76927 120 2.5 2.8 —-19* 3.1 glycogenesis/glycolysis
RASF-APLA2 M22430 122 2.0 2.2 1,5 2.7 inflamation
$-lac lectin L-14-II (LGALS2) M87860 -3 1.5* 2.0¢ 3.2 4.5% lectin
Deleted in split hand/split foot 1 (DSS1) U41515 102 14 3.7 44 4.8  limbdevelopment
Urokinase-type plasminogen activator u09937 -19 1.6 1* 4.9* 2.4* platelet coagulation

receptor
Metallothionein-1G (MT1G) JO3910 195 1.8 3.6 2.3 5.6  protection against

heavy metal toxicity

Inter-alpha-trypsin inhibitor subunit 3 X16260 238 ~1.1 —4.8* —4.2* —2.8 proteinase inhibitor
Vacuolar proton pump, 116-kDa subunit  U45285 41 2.0 44* 43* 7.1* protonpump
Prostasin L[41351 749 -12 -26 =83 -—3.8 serineproteinase
Extracellular-superoxide dismutase (SOD3) J02947 124 1.7 1.3 3.6 2.2 superoxiside scavenger
Manganese superoxide dismutase (SOD2) X65965 611 -1.2 -12 =20 -11 superoxiside scavenger
2-Oxoglutarate dehydrogenase P10523 143 14 -1.0 2.0 1.4 TCAcycle
[socitrate dehydrogenase 268129 202 1.5 1.9 2.5 2.0 TCAcycle
Succinate dehydrogenase (SDH) L21936 496 1.9 1.4 2.1 2.5 - TCAcycle
Succinyl-CoA synthetase 268204 6 2.1* 1.2 2.1* 21f TCAcyce
LXR-alpha U22662 67 1.4* —-1.3* 2.1* 1.3* - transeription factor
NF-kappa-B p65 subunit L19067 2m 2.3 1.7 1.4 1.8 transcription factor
Nuclear factor I-X L31881 94 14 -1.2 4.4 1.4  transcription factor
PPAR alpha 102932 4 -14* 1.2¢ 1.5 1.1* transcription factor
PPAR gamma L40904 99 20 -16 =11 1.0 transcription factor
Rad2 40 2.6 2, 1* 3,5* 2.6* transcription factor
SREBP-1 U00968 1,105 1.0 -1.7 -1.2 -1.8 transcription factor
SREEP-2 U02031 559 1.1 -15 -19 -1.7 transcription factor
KIAADQ030 D21063 45 2.5 2.2 8.1* 1.9* unknown
KIAAQQ92 D42054 325 -1.1 -13 -1.7 -3.8 unknown
KIAAQ219 D86973 96 42 1.9 2.7 3.2  unknown
Inducible protein 147738 —55 3.9* 3.5* 4.5* 3.5* unknown

HepG2 cells were treated with 0.25 mw of oleic acid (OA), arachidonic acid {AA), eicosapentaenoic acid (EPA), or docosa-
hexaenoic acid (DHA) for 24 h.

2 Average differences were expressed the intensities of the mRNA levels in control HepG2 cells.

* The value of fold change was calculated using the noise, since the noise of either array was greater than the average differ-
ece of the transcript in both the control and the FA-treated groups.
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Table 2. Changes of mRNA levels in genes related to cholesterol and lipoprotein metabolism by FA-treatment.
- Average Fold change
Gene Accession difference?
OA AA EPA DHA
Repressed
HMG-CoA reductase M11058 614 -1.5 -2.9 -2.2 -3.1
HMG-CoA synthase 125798 226 -1.5 =29 -2.4" =20
Mevalonate kinase M88468 276 -1.2 -1.2 -2.7 -1.1
Mevalonate pyrophosphate decarboxylase U49260 1,638 -1.3 -34 -1.9 —-9.5
Squalene epoxidase D78129 1,782 -1.0 -2.0 -1.2 =22
2,3-Oxidosqualene-lanosterol cyclase U22526 200 -1.0 -2.5 -2.8* —4.8*
LDL receptor L00352 1,358 -11 -2.6 -2.1 -2.3
Lysosomal acid lipase 04285 957 -1.1 -1.6 -2.2 -1.6
Induced
Hepatic triglyceride lipase M29194 -1 1.7* 1.2* 1.8* 2.6*
Apolipoprotein(a) X06290 89 2.2 1.3 2.4 -13*
ICAM-2 M32334 5 2.0* 1.3* 3.1 -1.3*
No change
Apolipoprotein Al regulatory protein (ARP-1) M64497 40 1.2* 1.1* -1.7* 1.1*
Ear-3 75 1.0 1.1* -1.1* —-1.5*
Lectin-like oxidized LDL receptor D89050 -21 1.1* —2.0* ~1.1* 1.1*
Lipoprotein lipase M15856 52 —1.4* —~1.0* -1.3* —1.3*
Scavenger receptor type [ D13264 -13 -1.2* -1.3" 1.0* 1.2*
CLA-1 {SR-BI) 222555 0 0.0* 0.0* 0.0* 0.0
CDh36 732765 731 1.1 -1.3 1.3 1.5
HDL binding protein M64098 942 1.2 1.2 1.2 1.4
CD6 ligand (ALCAM/HB2) L38608 87 1.0 -1.8* —1.5* 1.2
Cdc42 GTPase-activating protein 002570 310 1.3 1.2 1.2 1.4
LCAT M12625 741 1.0 1.1 -1.2 1.2
ACAT L21934 =12 1.4* 1.1* 1.2* 1.2*
CETP M30185 —-140 —-2.9* —-1.2* 1.3* —-1.9¢*
Phospholipid transfer protein 245 14 -1.2 1.4 -1.0
MTP X91148 0 0.0* 0.0* 0.0* 0.0*
HepG2 cells were treated with 0.25 mu of oleic acid (OA), arachidonic acid {AA), eicosapentaenoic acid (EPA), or docosa-

hexaencic acid (DHA) for 24 h.

? Average differences were expressed the intensities of the mRNA levels in control HepG2 cells.

* The value of fold change was calculated using the noise, since the noise of either array was greater than the average differ-
ece of the transcript in both the control or the FA-treated groups.

may be mediated through SREBPs. PUFA reduce the
mRNA expression of SREBPs (4, 19-22), which regu-
late lipogenic gene transcription (SREBP-1) and control
cholesterol metabolism (SREBP-2) (12-14). Sakakura
et al. reported that SREBP regulates the gene expression
of all of the enzymes involved in cholesterol synthesis
including MPD (23). These results indicate that PUFA
down-regulates the entire cholesterol synthetic path-
way.

Yoshikawa et al. reported that the PUFA suppression
of SREBP-1¢ expression is mediated through competi-
tion with liver X factor receptor (LXR) ligand during ac-
tivation of the lipand-binding domain of LXR {24). On
the other hand, Tobin et al. (6) reported that fatty acids
induced the LXR alpha expressions that regulate the
fatty acid and cholesterol metabolism. LXR alpha was
not changed in our gene chip data. Although we need
to analyze LXR further, Cyp7Al was up-regulated by
PUFA using RT-PCR (data not shown).

The PUFA response region is located in the promoter
of the stearoyl-CoA desaturase 1 (SCD1) gene (25).

SREBP may play an important role to regulate the
SCD1 because its rate of down-regulation was similar to
those of the genes related to cholesterol metabolism.
However, Kim et al. {26) recently demonstrated that
cholesterol overrides the PUFA-mediated repression of
the SCD1 gene and regulates SCD1 gene expression
through a mechanism independent of SRERP-1 matu-
ration in vivo. The detailed mechanism of the down-
regulation of SCD1 caused by PUFA has not been re-
solved. Furthermore, Matsuzaka et al. (27) reported
that A6-desaturase and AS-desaturase expression is du-
ally regulated by SREBP-1c and PPAR-¢. At least, PUFA
are thought to also autoregulate their biosynthesis
through SREBP. In addition, CETP might interact with
SREBP-1 (28) and is down-regulated by PUFA (16). As
the expression level of CETP in HepG2 cells is very low,
we could not evaluate the effect of PUFA on its expres-
sion using the oligonuclectide chip system (Table 1).

On the other hand, the gene expression of enzymes
that catabolize FA (29-32), namely carnitine: palmi-
toyl-CoA acyltransferase 1 (CPT1), acyl-CoA oxidase
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Fig. 1. Effect of PUFA on sterol regulatory element-
binding protein (SREBP) mRNA expression in HepG2
cells. HepG2 cells were incubated with PUFA (0.25
mM} for 24 h. Total RNA was extracted, then mRNA
expression levels of SREBPs were measured using real
time RT-PCR as described in Materials and Methods.
Relative mRNA levels were normalized to those of
GAPDH. Values are means*SD {n=3). Mean values
with different superscript letters in SREBP-1 expres-
sions are significantly different (p<<0.05). Different
symbols (* and *) show significant differences in the
SREBP-2 expressions (p<<0.05).
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Fig. 2. Effect of PUFA on mevalonate pyrophosphate

decarboxylase (MPD) expression in HepG2 cells. HepG2
cells were incubated with FA (0.25 mu) for 24 h. Total
RNA was extracted, then mRNA expression of MPD
were measured using real time RT-PCR as described in
Materials and Methods. Relative mRNA levels were
normalized to those of GAPDH. Values are means+ 8D
(n=13). Mean values with different letters show signifi-
cant differences in PUFA treatments (p<<0.05).

{AOX) and acyl-CoA synthetase {ACS), which are in-
duced by PUFA, did not change in our study. These en-
zymes are related to {atty acid oxidation and are gener-
ally believed to be regulated by PPAR (5, 33, 34). PPAR-
o and -y are located in the liver and adipocytes, respec-
tively (5). The expression level of PPAR-¢ in human
liver (35, 36) is much lower than that in mouse liver,
and over-expression of PPAR-a in HepG2 cells shows
the induction of mitochondrial HMG-CoA synthase,
CPT. and ACS mRNA (37). The present study detected
only weak expression of PPAR-& and PPAR-y in HepG2
cells (Table 2). Therefore, the effects might be obvious
without regulation mediated by PPAR-a. We also
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Fig. 3. Effect of PUFA on prostasin expression in
HepG2 cells. HepG2 cells were incubated with FA
{0.25mm) for 24 h. Total RNA was extracted, then
mRNA expression of prostasin were measured using
real time RT-PCR as described in Materials and
Methods. Relative mRNA levels were normalized to
those of GAPDH. Values are means*SD (n=3). Mean
values with different letters show significant differ-
ences in PUFA treatments (p<<0.05).
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Fig. 4. Effect of PUFA on HTGL expression in HepG2

cells. HepG2 cells were incubated with FA {0.25 mm}
for 24 h. Total RNA was extracted, then mRNA expres-
sion of HTGL were measured using real time RT-PCR
as described in Materials and Methods. Relative mRNA
levels were normalized to those of GAPDH. Values are
means*SD (n=3 for control, OA, EPA and DHA, r=2
for AA). Mean values with different letters show signif-
icant differences in PUFA treatments (p<<0.05).

showed that enzymes involved in the TCA cycle were
up-regulated. Therefore, PUFA suppressed the synthesis
of cholesterol and lipogenesis, but induced ATP genera-
tion by activation of the TCA cycle in HepG2 cells.
Takahashi et al. (38) have recently examined the ef-
fect of dietary fish oil on the gene expression profile in
mouse liver using high-density oligonucleotide arrays.
Although our findings were similar to theirs, they
showed that immune reacticn-related genes, antioxi-
dant genes (several glutathione transferase, uncoupling
protein 2 and Mn-superoxide dismutase) and genes in-
volved in lipid catabolism were significantly up-regu-
lated, indicating that dietary fish oil down-regulated the
endogenous PPAR-a-activation system and increased
the antioxidant gene expression that protects against
excess ROS. Our data also suggested that PUFA induce
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antioxidant genes, such as metallothionein-IG and ex-
tracellular-superoxide dismutase (SOD3). However, the
overall response to oxidation was much less and the ex-
pression of microsomal glutathione S-transferase and
manganese superoxide dismutase (SOD2) were not sig-
nificantly changed (Table 2). We believe that little ox-
idative stress was induced by adding PUFA to HepG2
cells even though the PUFA were extremely pure (99%).
The induction of immunological and antioxidant genes
in their study might have been caused by adaptation to
excess ROS production, since they fed the diet contain-
ing a very high concentration of fish oil {(60% of total
energy intake) for 6 mo.

Prostasin is a new serine protease that was purified
from seminal fluid, and its cDNA has been sequenced
(39). Prostasin is expressed in the human prostate, kid-
ney, and lung, as well as in body fluids, including semi-
nal fluid and urine (40). The relationship between
prostasin and prostate cancer has been investigated
{41—44). Prostasin might act as an extracellular regula-
tor of epithelial sodium channels (44). However its
physiological role in humans is not known. Prostasin
was significantly suppressed by PUFA in this study and
an SRE was located in its upstream region of the gene
(45), suggesting that prostasin plays an important role
in processing some proteins in response to cellular cho-
lesterol concentrations.

PUFA also affected the genes involved in cell prolifera-
tion and differentiation. Further analysis using the data
obtained by this study is needed in order to clarify the
mechanism. PUFA are thought to control gene tran-
scription through several steps. Together with their
metabolites, PUFA play important roles in signal trans-
duction cascades, and as ligands for transcription fac-
tors. Gene chip analysis might provide useful clues to
investigate not only continuous regulation, but also the
interaction between many transcription factors, such as
SREBP and LXR.
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Kano, Makoto, Kunihiro Nishimura, Shumpei Ish-
ikawa, Shuichi Tsutsumi, Koichi Hirota, Michitaka Hi-
rose, and Hiroyuki Aburatani. Expression imbalance
map: a new visualization methoed for detection of mRNA
expression imbalance regions. Physiol Genomics 13: 31-46, 2003,
First published January 7, 2003; 10.1152/physiolgenomics.
00116.2002.—We describe the development of a new visual-
ization method, called the expression imbalance map (EIM),
for detecting mRNA expression imbalance regions, reflecting
genomic losses and gains at a much higher resolution than
conventional technologies such as comparative genomic hy-
bridization (CGH). Simple spatial mapping of the microarray
expression profiles on chromosomal location provides little
information about genomic structure, because mRNA expres-
sion levels do not completely reflect genomic copy number
and some microarray probes would be of low quality. The
EIM, which does not employ arbitrary selection of thresholds
in conjunction with hypergeometric distribution-based algo-
rithm, has a high tolerance of these complex factors. The EIM
could detect regionally underexpressed or overexpressed
genes (called, here, an expression imbalance region) in lung
cancer specimens from their gene expression data of oligonu-
cleotide microarray. Many known as well as potential loci
with frequent genomic losses or gains were detected as ex-
pression imbalance regions by the EIM. Therefore, the EIM
should provide the user with further insight into genomic
structure through mRNA expression.

gene expression profiling; allelic imbalance; chromosome
mapping; hypergeometric distribution; computing methodol-
ogies

THE RECENT DEVELOPMENT of microarray technology has
enabled simultaneous measurement of genome-wide
expression profiles. Many research studies have re-
vealed strong correlations between the expression pro-
files and cancer classifications. The next era of gene
expression analysis would involve systematic integra-
tion of expression profiles and other types of gene
information, such as locus, gene function, and sequence
information. In particular, integration between expres-
sion profiles and locus information should be effective
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in detecting gene structural abnormalities such as
genomic gains and losses,

In general, cancer progression is not a single but a
multistep process and includes many genomlc struc-
tural abnormalities. Among them, genomic gains and
losses, particularly deletion of tumor suppressor genes
and amplification of oncogenes, are associated with
cancer progression and its malignant phenotype, al-
though the affected lesion varies among different types
of cancers. Comparative genomic hybridization (CGH)
for detecting genome-wide abnormalities such as copy
number changes, has been applied to various types of
cancers (5), but its low resolution (~20 Mb, correspond-
ing to about 200 genes) makes it difficult to identify the
causal genes, the structural alternation of which is
critical for cancer biological behavior.

Integration of gene expression profiles and gene lo-
cus information might allow detection of copy number
changes at a much higher resolution. Several studies
using oligonucleotide probe arrays suggested a strong
relationship between genomic structural abnormalities
and expression imbalances (underexpression or over-
expression). Mukasa et al. (7) reported that the expres-
sion levels of a significant number of genes in the 1p
region were reduced to about 50%, in oligodendroglio-
mas with 1pLOH. Furthermore, Virtaneva et al. (12)
reported that acute myeloid leukemia with trisomy 8
was associated with overexpression of genes on chro-
mosome 8. Recently, a genome-wide transcriptome
map of non-small cell lung carcinomas based on gene
expression profiles generated by serial analysis of gene
expression (SAGE) was conducted (3). However, the
simple spatial mapping of the expression profiles on
chromosomal location sometimes hardly provides in-
formation about genomic structure for the following
reasons: !) since some microarray probes are of low
quality, the microarray signal intensities do not always
reflect their target mRNA expression levels; and 2)
mRNA expression level does not completely reflect
genomic copy number. The aim of the present study
was to develop a new method with high tolerance of
such complex factors, designed to detect regionally
underexpressed or overexpressed genes in cancer spec-
imens compared with the corresponding normal tis-
sues. The expression imbalance region, constituted by
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these genes, likely reflects genomic structural changes
such as chromosomal gain and loss.

When developing the methodology that integrates
the expression profiles and locus information, two sig-
nificant problems have to be dealt with, First, a defi-
nition of what constitutes an expression imbalance
region is not yet clarified. How many base pairs on
chromosome should be considered as a genomic region
(referred to below as chromosomal proximity)? To con-
sider that a certain gene is differentially expressed in
cancer and normal tissue, how much difference in the
gene expression level is needed between the two (re-
ferred to below as cancer specificity)? It is generally
very difficult to determine adequate thresholds for
chromosomal proximity and cancer specificity. Arbi-
trary selection of thresholds would involve a risk of
overlocking significant genes (that is, “threshold prob-
lem”). In"addition, to detect expression imbalance re-
gions, it is necessary to search for genes with both
cancer specificity and chromosomal proximity. Because
determining these two thresholds synergistically in-
creases the risk of overlocking significant genes, the
“threshold problem” is more critical in this case.

When selecting thresholds, several statistical theo-
ries such as hypothesis testing are helpful. However,
commonly used statistical criteria are also arbitrarily
determined. If thresholds are automatically deter-
mined based on statistical theory, the user cannot
search more genes with potential significance, because
the information of genes overlooked is almost un-
known. Therefore, to detect as many significant genes
as possible, a comprehensive presentation of the dis-
tribution of the “false balance” (that is, the balance of
false negative and false positive) is quite significant
rather than an attempt to seek potentially optimal
statistical criterion.

Second, there are many candidate expression imbal-
ance regions. Some of them may be a family of genes
that are tandemly repeated and are under similar
transcriptional regulations. To confirm that a candi-
date locus is biologically significant, human curation is
necessary, uging a variety of biological information.
Therefore, it is important to present large genome-
wide data in a comprehensive manner, indicating
which genes are to be further examined. That is, a
broadband interface between humans and computers
is essential.

We focused on visualization technology as the key
technology to solve these two problems. Visualization
is effective in providing, genome-wide, the false-bal-
ance distribution and indication of the genes that are
worth examining. The visualization used in our report
would make it possible to present the images of all
genes that have both cancer specificity and chromo-
somal proximity.

In this study, we developed a novel visualization
method for detecting expression imbalance regions at
much higher resolution than conventional technologies
such as CGH, called the expression imbalance map
(EIM). The EIM was applied to gene expression data of
lung squamous cell carcinoma measured by oligonucle-

EXPRESSION IMBALANCE MAP

otide microarray and detected many known as well as
potential loci with frequent genomic lesses or gains as

'regional signal images on chromosomes {(expression

imbalance regions). In addition, the EIM could detect
not only the expression imbalance common to all can-
cer specimens, but also individual differences among
cancer specimens,

MATERIAL AND METHODS

Data Sets

In this article, the EIM is illustrated using the gene ex-
pression data of lung cancer from the study of Bhattacharjee
et al. (1). In this experiment, total mRNA was extracted from
histologically defined specimens of squamous cell lung carci-
nomas (abbreviated here as “SQ” n = 21) and normal lung
tissues (abbreviated here as “NL”; n = 17). The expression
profiles were obtained using human U95A oligonucleotide
probe arrays (GeneChip; Affymetrix, Santa Clara, CA). The
SQ-NL gene expression data set (SQ, n = 21; NL, n = 17} was
then analyzed using the EIM.

Feature Selection and Logarithmic Transformation

To compensate for distortion in the expression level,
changes in the expression level were limited from 1 to 8,000.
In addition, 4,083 probes with a8 mean expression above 50
and CV (CV = mean/standard deviation) above 0.2 were
selected to eliminate potential low-quality probes. The com-
mon logarithm of the gene expression data was used for the
following analysis.

Translation from Probe to UniGene

To associate gene locus information with gene expression
profiles, each “probelD” on the U95A array was translated to
UniGene, using information on the UniGene web site of the
National Center for Biotechnology Information (NCBI), by
referring to the corresponding original GenBank accession
number of each probe set. Then, 11,334 of 12,533 probes on
the U95A array were translated into 8,851 UniGenes.

Gene Locus Information

Gene locus information was obtained from the web sites for
Genes On Sequence Map (Homo sapiens build 27) of NCBI
and is defined as “LocusID.” Among the LocusIDs on chro-
mosome 1 to 22 of Genes On Sequence Map, the 12,063
LocusIDs, which had the corresponding UniGenes, were uti-
lized to identify the chromosome locations of genes. Since the
gene expression data utilized in this study were obtained
from both sexes, the X and Y chromosomes were excluded.
However, by using the data obtained from only males or
females, the EIM can be applied to the analysis of chromo-
some X and Y. Since the 12,063 LocusIDs had one-to-one
correspondence with UniGenes, they were translated into
12,063 UniGenes. However, only 6,652 of the 12,063 Uni-
Genes were in common with the 8,851 UniGenes translated
from the probes on the US5A array (Fig. 1). In this article,
these 6,652 UniGenes are called “Key-UniGenes.” The distri-
butions of the UniGenes and Key-UniGenes on each arm of
the chromosome are shown in Table 1. The number of total
Key-UniGenes was defined as U (=6,652).

Quantization of Each Chromosome Arm Region

For easier handling of the gene locus information, each
chromosome arm region was quantized by unit region called
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U95A(12533)

'

UniGene of Human (8851)

UniGene of Human (12063)

Genes On Sequence Map (LocusID)

Fig. 1. Correspondence between probelDs end LocusIDs. To associ-
ate gene locus information with gene expression profiles, probelDs
on the Affymetrix U95A oligonucleotide arrays and the LocusIDs on
Genes On Sequence Map (Homo sapiens build 27) of NCBI were
translated into UniGenes. We utilized the 12,063 LocusIDs, which
had the corresponding UniGenes, on chromosome 1 to 22 of Genes
On Sequence Map. The X and Y chromosomes were excluded, be-
cause the gene expression data utilized in this study were obtained
from both sexes, Since these 12,063 LocuslDs had one-to-one corre-
spondence with UniGenes, these were translated into 12,063 Uni-
Genes, Out of 12,633 probes on the U95A array, 11,334 were trans-
lated into unduplicated 8,851 UniGenes, by referring to the corre-
sponding original GenBank accession number of each probe set.
Although the 12,063 UniGenes were obtained from Genes On Se-
quence Map, only 6,652 of the 12,063 UniGenes were in common
with the 8,851 UniGenes translated from the probes on the U95A
array. In this article, these 6,652 UniGenes are called “Key-Uni-
Genes.”

“bucket” whose length was 100,000 base pairs (100 kbp), and
the Key-UniGenes were assigned the corresponding buckets
according to their reading position (Fig. 2, A and B). A
reading position indicates the start position for gene tran-
scription and was obtained from Genes On Sequence Map.
The number of buckets on chromosome arm arm was defined
as Lopm.

Formation of Locus Cluster

To evaluate the proximity of genes on chromosome arm
arm, the Key-UniGenes on the length neighbor buckets from
(begin)-th were defined as a cluster Curm_tength_tegin (Fig. 24).
Repeating the sufficiently minute changes of length and
begin formed the exhaustive uncertainty cluster sets of Key-
UniGenes with chromosomal proximity (Fig. 2C). The EIM
allows even clusters that overlap each other or include oth-
ers. Therefore, all neighbor buckets in any area of each
chromosome arm were defined as clusters. The number of
Key-UniGenes in the cluster Copm_tengeh_tegin Was defined as
Rarm_tength_begin: Carmﬁlengzh_bggin was defined for all

arm = 1p, 1q, 2p, 2q, . . ., 22p, 22q
length =2, 3,4, ... [buckets]
begin=1,2,...,(L,m— length + 1)
In addition, to avoid considering a region that contains large
gaps between genes as “one region,” the gaps between the
Key-UniGenes that lie next to each other in Corm_tength_segin

were calculated and the maximal gap was defined as
BQParm_tength_begin (Fig. 2B). The EIM allows the user to filter
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out the cluster(s) whose gap..n tength_begin 1S more than
£0PDmax, Which can be changed interactively. In other words,
the user can exclude regions containing large gaps by con-
trolling gopmax. When gapmax values were 500 kbp, 1 Mbp, 2
Mbp, and 3 Mbp, the percentages of the gaps that were less
than gapmax were 77.6, 89.4, 96.0, and 98.2%, among all gaps
between the Key-UniGenes that lie next to each other.

EIM for Detection of Expression Imbalance Specific To
Squamous Cell Carcinomas

Clusters consisting of genes with expression profiles specific
fo SQs. Probes with expression profiles specific to SQs were
extracted as a cluster from 4,083 probes of SQ-NL data sets.
Although the EIM does not depend on the type of statistical
method used for evaluating the difference between two
groups, nonparametric tests such as the Mann-Whitney test
have the advantage that no assumption is needed about the
distribution of data, compared with parametric tests such as
the ¢-test. Thus we explain the case of the Mann-Whitney test
as an example.

More specifically, the difference in the level of expression
of each gene between two groups (5@s and NLs) was defined
using the statistical probability, P, of rank sum. Assume that
there are two groups (G, n = N,; Gs, n = N) and the rank
sums in G. and G are Sum, and Sum,, respectively, when
all elements (N, + IN3) are sorted in order. For simplicity,
assume that Sum./N, is greater than or equal to Sumy/N,. P
is the probability of observing the tank sum of the N, ele-
ments, which are randomly selected from all elements, to be
more than Sum,,.

Table 1. Number of the UniGenes and Key-UniGenes
on Genes On Sequence Map

Chr.  UniGene Key-UniGene Chr.  UniGene Key-UniGene
Arm Number Number (Larm)  Arm Number Number (Layn)
1p 715 394 12p 21 107
1q €14 361 12q 488 289
2p 313 179 13p 0 0
2q 485 274 13gq 218 127
3p 315 191 l4p 0 0
3q 335 171 14q 411 228
4p 111 60 15p 0 0
4q 356 201 15q 379 197
5p 116 61 16p 254 130
5q 472 248 16q T 244 - 123
6p 434 251 17p 218 130
6q 291 158 17q 513 290
p 180 105 18p 52 34
1q 373 205 18q 135 . 76
8p 157 95 19p 391 199
8q 262 138 19q 481 249
9p 146 85 20p 122 53
9q 353 193 20q 245 124
10p 104 53 21p 0 0
10q 362 205 21q 137 83
11p 234 129 22p ] 0
11q 502 280 22q 334 176

Distributions of the UniGenes, which were obtained from Genes
On Sequence Map (Homo sapiens build 27) of NCBI, and Key-
UniGenes on each arm of the chromosome. Since the gene expression
data utilized in this study were obtained from both sexes, the X and
Y chromosomes were excluded. Key-UniGenes are the UniGenes that
can be translated into from both the probes on the U95A oligonucle-
otide arrays and the LocusIDs on chromosome 1 to 22 of the Genes
On Sequence Map. The total numbers of the UniGenes and Key-
UniGenes are 12,063 and 6,852, respectively. Chr., chromosome;
Larm, number of “buckets” on chromosome arm arm.
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A B

Chromosome N

N=1,2,..21,22) Key-UniGene
Telomere e /
11 bucket (begin)-th 4 begin
Unit number = frad ,2/ bucket on arm ® Clust
of base-pairs ...} Jiik - uster
(= 100k base-pairs) 13 / Carm__lenglh_begin
Short arm ' p
Np 1 ] 1
MaxGaq,
Centromere L 'Np le ng th P arm_[ength_begin
P 1 (aumber of buckets)
Chromoseme arm
Long arm : -
Nq

begi
cgtn Cluster
Carm_lengrh_begin (begin+length-l)—th‘

length bucket on arm

{number of buckets)

-

end(=begintlength-1)

end(=begin+length-1) C

Telomere

---------------------------------------

Cluster

{ Carm_Ienga‘h_begin}

Fig. 2. Formation of clusters of genes with chromosomal proximity. A: for easier handling of the gene locus
information, each chromosome arm region was quantized by unit region ealled “bucket” whose length was 100 kbp,
and the Key-UniGenes were assigned the corresponding buckets according to their reading positions, which were
obtained from Genes On Sequence Map (Homo sapiens build 27) of NCBL The number of buckets on chromosome
arm arm was defined a3 Lam. To evaluate the proximity of genes on chromosome arm arm, the Key-UniGenes on
the length neighbor buckets from (begin)-th were defined as a cluster Carm_tengen_segin. B: to avoid considering a
region containing large gaps between genes as “one region,” the gaps between Key-UniGenes which lie next to each
other in Carm _iength_begin Were calculated and the maximal gap was defined 8s gaparm_tength_tegin- The expression
imbalance map (EIM) allows the user to filter out the clusters whose gopurm_tength_begin 18 more than gapmas, which
can be changed interactively. In other words, the user can exclude regions containing large gaps by controlling
&0Pumax- C: repeating the sufficiently minute changes of iength and begin formed the exhaustive uncertainty cluster
set of locus information. The EIM allows even the clusters that overlap each other or include others. Therefore, all
neighbor buckets in any area of each chromoscine arm were defined as clusters.
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(307

H(U,nl,gz,k) =1- (U)
n,

i=0
When the H value is small, the overlap between C,ipn_aiyrand
Carm_tength_begin 19 considered statistically significant. That
is, if the H value is small, then the overlap did not occur
accidentally. Thus the evaluation value, E, is defined as
follows

2)

E(U:nhn2)k) = - loglGH(U’nlsnbk) (3)

For any combination of Cyign_asr and Coarm_tength_begin, if both
{begin)th and (begin + length — 1)-th buckets of Carm_tengts_begin
have the Key-UniGenes that are included in C.ign_aip, then
their E values were calculated. This calculation was prepro-
cessing for the EIM. Then, in real-time processing, if both
Coigr_dify 80 Copim_tengeh_begin Tet dmin and gepmax, Tespec-
tively, then the E value was represented in the intersection
area Ryign_oiff_arm_length_begin 85 8 gray scale. The user can
control dmin and gapmax interactively. The area where the
multiple Reign_diff arm_tength_begin Values overlapped is over-
written at the maximum E value (Fig. 4B). A flowchart that
details these steps is shown in Fig. 5. The EIM for detecting
expression imbalance specific to SQs is shown in Fig. 6. In

addition, Fig. 7 shows chromosome 3 of the EIM and the
influence of gopmax and dmn, on the detection of the expres-
sion imbalance regions specific to 5¢s.

EIM for Detection of Individual Differences
in Expression Imbalance Among SQs

It is effective to extract probes with expression profiles
specific to the group of cancers using statistical analyses,
such as the Mann-Whitney analysis. However, because this
type of analysis treats all specimens with the same patholog-
ical diagnosis as one group, the variation in a group is
unobservable. This is sometimes a significant problem be-
cause cancer specimens generally have a great number of
variations. Thus we also developed the EIM for detecting
individual differences in expression imbalance among SQs.

Clusters of probes with expression imbalance in each SQ.
The first step in the development of the EIM for detecting
individual differences in expression imbalance among SQ
specimens was to extract probes with under- or overexpres-
sion compared with NL specimens, in each SQ specimen
independently. Assuming that the expression levels of a
certain probe, g, in NL specimens have a lognormal distribu-
tion, if the expression level of a SQ specimen, S;, is included
in 100p% of sections on both sides of NL’s distributions, its
differential level D, was defined as follows

B

o Csign_diﬁ"
[y (Ayygn_aig?]

A
Underexpression Overexpression
Chromosome N
Fxd Chromosome Arm
arm
(begin)-th
bucket on arm
_l i
Carm__fengrh_begin :
["2 (="arm__length__begin)] {

(begin+length—1)-th R

bucket on arm

Intersection Arca

sign_diff-arm_length_begin

(4]

Fig. 4. Clusters of genes specific to the group of SQ@s vs. clusters of genes with proximity on chromosomes. A: to
detect expression imbalance regions, it is necessary to search for genes with both cancer specificity and chromo-
somal proximity. The fundamental algorithm of the EIM is to evaluate statistically the overlaps between clusters
of genes with cancer specificity and clusters of genes with chromesomal proximity. The clusters of probes with
expression specific to the group of 8Q, Caign_qi, are arranged on the abscissa, and those of Key-UniGenes with
proximity on chromosomes, Carm_tength_begin, on the ordinate. Among Cogn_aiy values, the clusters of probes with
underexpression and overexpression in SQs are arranged on the left and right side, respectively. The Raign_ayr and
Rarm_lergth_begin A¥e the numbers of Key-UniGenes in Caign_digr 80d Carm_tengen_begin, Tespectively; k is the number of
common Key-UniGenes both in Cuign_dir and Carm_tength_begin. The statistical significance of the overlap between
Coign_digg 800 Carm_tength_begin WaS visualized in the intersection area Raign_diff arm_tength_pegin 88 a gray scale, B: the
area where the multiple Raign_diff orm_tength_begin 0verlapped was overwritten at the maximum E value. Therefore,
when the E value of R, is higher than that of R, the area where R, and Rz overlapped is overwritten at that of Ry,
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Based on this P value, the differential level Dy(g) in which
g is the probe name was defined as follows

Dy{g) = —logy P (n

Probes whose differential level Iy was equal to or more than
diff were defined as a cluster of probes with expression
profiles specific to 8Qs, Cuign_air (Fig. 3). The suffix sign
indicates g differential direction (+, overexpression; —, un-
derexpression in 5Qs). Repeating the sufficiently minute
changes of diff formed the exhaustive uncertainty set of the
clusters specific to SQs. Csign_aiyr was defined for all

sign=—, +
diff=2,3,4,..

For example, C+s was a cluster of probes whose differential
level Dy(g) of overexpression was 3 or more. The EIM was
constructed by all the clusters Ciygn_qip with diff greater than
or equal to the minimum acceptable differential level diin
(Fig. 3). Since the default value of dmin is 2, all the clusters,

Coign_air; Would be utilized. The EIM allows the user to
control dmin mteractwely for narrowing down the probeg, if
needed.

The numbers of probes, Uanenes, and Key-UmGenes of
each cluster are shown in Table 2; n.gn_ais is the number of
Key-UniGenes translated from probes of Coign_air. When
multiple probes in a cluster could be mapped to a single
UniGene, only the probe with the highest D) value was
adopted. In addition, Fig. 3 shows probe permutations whose
differential Ie\(els are 2 or more, grranged in the order of the
differential level. Probes with upder- and overexpression are
arrangeqd on the left and the right of Fig. 3, respectively.

Construct;on of the EIM. To detet;t the expression imbal-
ance regions, it s necessary to’ ‘sparch for genes with both
cancer: specxﬁclty and chrpmosomal proximity. The funda-
mental algont;hm of the EIM is to statistically evaluate the
overlaps between clusters of genes with cancer specificity and
clusters of genes- w1th chromosomail proximity. The clusters
specnﬁc to the group of SQS, Coign _,;.ff, are arranged on the

Probes permutation lined up in order of D[(g)

Table 2. Clusters of probes with expression
profiles specific to the group of squamous
cell lung carcinomas

Cluster Name Probe Key-UniGene
Differential Direction {Coign_dip) Number Number (naign_daix)
Underexpression
{(SQ < NL) C-z 1,007 668
C-s 844 567
C-y4 642 429
C-s 448 301
C-s 283 188
C_q 83 61
Overexpression
(3Q > NL} Cyz 958 613
Csa 759 480
Cia 543 329
Cus 334 205
C+e 143 95
Cor 13 8

The probes {on the Affymetrix U95A arrays) whose expression
profiles show significant difference between squamous cell lung car-
cinomas (8Qs) and normal lung (NLs) were extracted as clusters,
Caign_air The suffix sign indicates the differential direction (“+" =
overexpression; “—” = underexpression in 8Qs), and diff indicates a
differential level D, in gene expression profiles between SQs and
NLe. For example C.g is a cluster of probes whose differential level
of overexpression is 3 or more. Repeating the sufficiently minute
changes of diff formed the exhaustive set of the clusters consisting of
genes with expression profiles specific to SQs. The humbers of probes
and Key-UniGenes for each cluster are shown.

abscissa, and the locus clusters, Corm_tength_segin, 8re on the
ordinate, as shown in Fig. 4. The variable k is the number of
common Key-UniGenes between Ciign_sigr a0d Carm_tength_tegin.
The variable & could be evaluated using the hypergeometric
probability, H, for observing at least £ common elements between
randomly selected n; and nz elements among all I elements as
follows, where n1 18 naign_aiyr and 2z 1S Rarm_tength_begin.

Under Over
-expression Diigy=4 Di{g)=3 Dig)=2 DigF2 Dig)3 Difgr4 -expression
4 808000000800 0000000000000008 [ -------------- 2000002080000 0 0000000800000
Allowed H 0
clusters E : .
C, i . Di(g)>4 ; Dilgy>4 3 . C,
g)>3 Di(g)>3
C, - dmm - C,
. Pi(g)>2 Dyg)>2 o
¢, = R

User can control

Fig. 3. Probe permutation arranged in order of the difference in gene expression level between squamous cell lung
carcinomas (8Qs) and normal lungs (NLs). Probes on the U95A arrays are lined up in order of the D1(g) level, which
represents the difference in the gene expression level between SQs and NLs. Only probes with differential levels
of 2 or more were arranged. Probes with underexpression and overexpression in SQ@s are arranged on the left and
right side, respectively. Probes whose differential level Di(g) is equal to or more than diff, are defined as a cluster
of probes with expression profiles specific to 8Qs, Ciign_ain The suffix sign indicates the differential direction (+,

overexpression;

—, underexpression in 5Qs). Repeating the sufficiently minute changes of diff formed the

exhaustive uncertainty set of the clusters specific to SQs. The EIM was constructed by all clusters Ciign_aigr with
diff that were greater than or equal to the minimum acceptable differential level dmn. Since the default value of
dmin 15 2, all the clusters, Caign_aig, would be utilized. The EIM allows the user to control dyn interactively for

narrowing down the probes, if needed.
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Dz(E-Si)_ = — logyp C))

Regarding each SQ specimen S (7 = 1, 2,.. ., 21), the probes
whose differential levels Da{g,S;) were equal to or more
than diff were defined as the individual-specimen cluster,
Coign_airr_si, Where sign is the differential direction (+,
overexpression; —, underexpressmn in each SQ specimen).
Coign_ difr i was deﬁned for all

o osign=—,+
. dtff—2 3,4,.
‘.‘s._'_1 2, ... 21

For example, C+z si and C—z -si were clusters of prnbes whose i
expression of §; were included in 1% of sectlons on both sides,.
of NL’s distributions. More spec1ﬁca!ly, C+2_si was a cluster.
of probes whose expressmn levels were équal to or. hlgher -
than (cweNL +'2.68 stddevm,) in a specimen'S;, where aveny, -
is the maan and stddeum, is the standard dev:at:on of expres-- .
sion level ih'NL specimens, In ;he same manner, Cilz siwas
a cluster of prohes_ whobse expressmp levels were equal to or

less than (gvens — 2.58 "tdde' L); Rsign_dijrsi i6 the niimbe
of Key-UmGenes in Caigh air si If multlple probes i in ‘a‘clus-
ter oould be mapped to single UmGene, then onIy the probe

-fi- S o o—
E inﬁwlevelnfexprmwn Lo
ofeachmbdwecnSQiundNLs

ar

Fotmamm of lhc exhlusnvc clusu:ts

<Deﬂnitlou of clulteu wlth clu'omosomal proxlmlty> '

with the highest D, value was adopted The average num-
bers, flyign_dis Of (Ruign_di s} = 1, 2,.. ., 21) are shown in
Table 3. .

Construction of the EIM In a manner similar to the EIM
for detecting expression imbalance of 8Q group, that for
detecting individual differences in expression . imbalance
among SQs was also constructed. The individual-specimen
clusters, C.ign_aiy si, Were arranged on the abscissa with
respect to each S;, and the locus clusters on the ordinate (Fig.
8). Underexpressmn clusters were atranged on the left side
and overexpression clusters on the right. Since the abscissa

" represented an array of S,, it was impossible to represent diff

on the abscissa like Fig.4. Therefore, the EIM for individual
specimen was wsuahzed by C,;g,, diff S with a deﬁned diff,
and allowed the user to change diff interactively.

The number of common Eey-UniGenes between C,,,g,I i Si
and Cu v, tength_beging &y could also be-evaluated . using E(U, n,,
nz; k) (Eq. 3), where 1y Was A, d.ﬁrand Tig WAS Marm_length_begin-

‘If the different specimens have the samé number of genes with

under‘ or. overexpression-on. the sae local reglon, then it is

* necessary. to evaluate them ‘a5 ‘similgr, Therefore, fagn_ayr in-
=" steéad of feign it i was, used for the évaluation of the overlap
between Coign aifr si and C.,m, langth, begine The E value for any
'combmatlon, of C,;gn _dzﬁ' - 5; A

Carm _;engm bcg:n was calculated

Quanumsonof . SRS B
eachchronmomurmregm & BT

Fon'naxlonofﬂnexhamuveclusm '
with chromosomal proximity

with cancer specificity Com X
arm_length_begin
{C'&f',;f’f.l . arm= 1p, 14 2 20 o B2, P29
M-z..u fergdh = 1,3, 4.
o St = 1,2, 34, e (L - demgtt + 1)
l ‘ |
<Construction of EIM>

For any combination of C,in_apand Cam_wgth_degin «
if the both begin-th and end-th buckets of Corm_tongrh_begin
have Key-UniGenes which are included in Cougn_aire
then calculate the E-value fof Ryjgw_diff arm_jengit_dexin

ammmsrnrarrrrrry SE4EPEEEERIIPES ISR NARE RS aqaanaana

<Visualization of EIM>

Preprocessing

....... ssssssssssssmssmsssssaraArLt b iv e T,

Realtime processing

l Control dus and gap s interactively

;i

For any Rugn_aif_arm_fength_begln

diff > dmin
£OParm_length_begin > B men

if Catgn_cir 8000 Corm_iemgth_begin micet the thresholds,

then the E-valuc was represented in Riign_dfarm_togih_begin 83 2 gray scale

{The arca where the multiple Ryign difforst_kngih_begin$ Overlapped
was gverwritten at the maximum E-value.)

Fig. 5. Flowchart for construction of the EIM for detecting expression imbalance regions specific to SQs. This
flowchart provides details of the steps of the EIM for detecting expression imbalance regions specific to SQs. For
the steps of “Definition of clusters with cancer specificity,” please refer to Fig. 3. For the steps of “Definition of
clusters with chromosomal proximity,” please refer to Fig. 2. For the steps of “Construction of the EIM” and
“Visualization of EIM,” please refer to Fig. 4. The user can interactively control the steps in real-time processing

by changing gapmax and dmin
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18

20 Mbp (CGH resolution)
]

Evaluation Value E [gapmax = IM (bé.se—pairs), dmin = 2]

0 4 8

Fig. 6. The EIM applied for detecting expression imbalance regions specific to SQs. The regions of under- and
overexpression in 5Qs were visualized on the left and right side, respectively, as gray regional signals. All
statistical evaluation values of any combinations between the exhaustive uncertainty cluster sets of cancer
specificity and chromosomal proximity are visualized on the EIM as the gradation of gray scale simultaneously,
Each exhaustive uncertainty cluster set was formed by repetition of the sufficiently minute changes of the
threshold of eancer specificity or chromosemal proximity. While the area with high luminance correspends to the
more probable expression imbalance region, the EIM enables the user to search as many genes as possible by
referring to more expanded area with lower luminanee. The EIM presented the most significant overexpression
regions on 3q {the evaluation value E = 7.2), which is a well-known locus with frequent genomic gains, as detected
by comparative genomic hybridization (CGH) (6, 8, 9). Note the high resolution of the EIM compared with CGH
resolutien (~20 Mbp).

Fig. 7. Expression imbalance regions specifie to SQs on chromoseme 3. A-I: chromosome 3 of the EIM and the
influence of gapmax and dmin on the detection of the expression tmbalance regions specific to SQs. The EIM
represents the E values whose Coign_digr And Carm_tengeh_pegin Meet dmin a0d £2Pmaz, respectively. The EIM allows the
user to control gapmax and diin interactively. The user can narrow down the possible expression imbalance regions
by changing gapmax and dmin. Especially, as is shown in A~I, changing gapmas, which allows exclusion of regions
containing large gaps between genes, markedly affected the detection of expression imbalance regions, J: the
macrograph of the encircled region A from panel A. Intersection area R.5_35 1804_6 shows the most significant
overexpression region, which is a well-known locus with frequent genomic gains as previously detected by CGH (8,
8, 9). That is, the overlap (k¢ = 6) between C.5 and Czq 1804 5 Was statistically the most significant (E = 7.2). C.s
was the cluster of probes with overexpression whose differential level Dy(g) was more than 5 and its number of
Key-UniGenes, n.s, was 205. Cgq 10045 Was the region from 189,400 to 189,900 kbp on chromoesome 3 and
contained 9 Key-UniGenes (nsq 1804 5 = 9). The maximum gap {gapaq 1s94_s) between Key-UniGenes in Caq 1854_8
was 146 kbp. In addition, all evaluation values of any combinations between the exhaustive uncertainty cluster
sets of cancer specificity and chromosomal proximity are visualized simultaneously on the EIM as gradation of the
gray scale. This gradation pattern could convey the distribution of the false balance to the user through visual
perception and enabled the detection of as many significant genes as possible. In addition, note the high resclution
of EIM compared with CGH resolution {~20 Mbp).
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gaPmax = 1M (base-pairs) 8apmax = 2M (base-pairs) £apmax = 3M (basc-pairs)
B C

Underexpression Overexpression
>

Lo

20 Mbp
{CGH resolution)

Amin=13

dmin =4

~ 20 Mbp
(CGH resolution)

* ey

- gapm =M (base-pairs)

dmin =2
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40 EXPRESSION IMBALANCE MAP

Table 3. Clusters of probes with under- or overexpression profiles in each squamous cell lung carcinoma

’ Avg. of
Cluster Name Avg. of Probe Key-UniGegne Number SD of
Differential Direction (Cluign_difr8) Number {Rsign_diff} Key-UniGene Number

NL(17) > each 8Q ‘ Coz si 669 447 . 103
. C_a s o497 331 . ) . 91

Coy m 387 - S 259 . 82

Cos_si T . o 211 : 76

L C-e_s: 268 . . 81 10

NL(17) < each 3Q o Cooosi - - : 321 S 208 7 67
N ¢ - R ©L188 o 120 : 48

Coa st - : 120 : : 2o Lo e 35

Ciglsi ™ - -, 8L . 60 . ' e 25

Coeose " I - S 08B e i 19

To detect individual differences in expression imbalance ameng 21 5Qs, probes (on the U95A array) with under- or overexpression profiles
in a 5Q specimen, §; ( = 1,2,. .,21), compared with NLs were extracted ss. clusters, Cuign_aiysi. This extraction was independently
performed, regarding each SQ specimen. The suffix sign indicates the differential direction {+, overexpression; —, underexpression in each
8Q specimen), diff indicates & differential level Dz in gene expression. Shown are the average niimber of probes and the average and standard
deviation (SI}) of Key-UniGenes in the 21 clusters with the same differential direction and differential level.

[”1 (= ﬁ;:gn_dfﬂ’)] :

” Un@xpmssion SR : o o S JGi_rgfékpi’gs'slion_ :
IR E S : Chromosome N | | |
- Chromosome Arm .
. arm Mp
s ) (begm)-th
- bucketon arm o
PR N
L Cnm_lenglhﬂbegz’n &
[”2 (=narm_leng'th_begin)] :_

Intersection area

Rsign_dxjﬂ[ Si_arm_length_begin

(4]

Fig. 8. Individual-specimen clusters vs. locus clusters. In a manner similar to the EIM for detecting expression
imbalance of 8Q specimen group, that for detecting individual differences in expression imbalance among SQ
specimens was alse constructed. In a SQ specimen S: {i = 1, 2,.. ., 21), probes with expression whose differential
level D2(g,S;) was equal to or higher than diff compared with NL specimens were extracted as an individual-
specimen cluster, Cugn_digr_si. This extraction was independently performed with respect to each SQ specimen. The
individual-specimen clusters, Caign_dirr_si values, were arranged on the abscissa with respect to each S;, and the
locus clusters, Caim tength_begin values, on the ordinate, Among Ceyn_aiy s: values, the clusters of under- and
overexpression were arranged on the left and right side, respectively. Since the abscissa represented an array of
S;, it was impossible to represent diff on the abscissa like Fig. 4. Therefore, the EIM for individual specimen was
visualized by Csign_airsi with a defined diff, and allowed the user to change diff interactively; fiyign_aifr is the
average number of Key-UniGenes in {Coign_airsil(f = 1, 2,. . ., 21); narm_tength_tegin i8 the number of Key-UniGenes
in Carm_tengeh_begin; k 18 the number of common Key-UniGenes between Cuign_difr 8i 814 Carm_tength_begin. The
significance of overlap between Cuign_dyrai 80d Carm_tengeh_tegin Was visualized in the intersection area
Roign_diff_si_arm_iength_begin 88 @ gray scale.

(begin+length-1)-th
bucket on arm
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when both (begin}th and (begin + length — 1)-th buckets of
Corm_tength_begin have the Key-UniGenes that are included in
Csign_ai s:- This calculation was preprocessing for the EIM.
Then, in real-time processing, after a certain diff was se-
lected, each E value was represented in the intersection area,

Raagn _diff Si_arm_length_ beglny as a gray Scalen ﬂcwm_kngth begin
met gaPmax. The user can control dtﬁ“ and gapmax interac-

tively. ..
A ﬂowchart that detalls these steps is shown in Flg 9. The

EIM for detectmg 1nd1v1dua1 difference of éxpression.imbal- -

ance among SQ specimens is shown in Fig. 10. Figure 11
shows chromosome 3 of the EIM and the influence of 8P mex
and diﬁ" on the detection of the individual dlﬁ"erences in
expression lmbalance among SQs

RESULTS AN'D DISCUSSION
Detection of Expresswn I mbalance Spec:ﬁc to SQs
The EIM showed the dlstnbutlon of éxpression im-

balance speclﬁc to SQs (Flg 6)7 It is h1gh1y comparable -

<Denniﬂon of ludivldual-specimen clmterp

41

to previous CGH data of lung cancer reported by other
investigators (6, 8, 9). There are significant differences
among these CGH data because of method variation
and sample preparation (especially tumeor fraction of
clinical samples). So it may be of little importance to
compare details with individual CGH experiments.
However the most frequent abnormal loci reported in
most of theseé studies were also detected’ ‘by the EIM as
regional signal images on chromosomes (expression
imbalance regions), such as loss of 3p; 4q, 5q, and 8p,
and gain of 1q, 3q, and 12p (6, 8, 9). The major differ-
-ence from the CGH image is that signals are detected
in a more conﬁned area, which reflects the high reso-
lution of EIM. Figures 6, 7, 10, and 11 clearly show the
high resolution of EIM compared with CGH image.
Especially, the intersection area R.s _3q_1894.5 showed
the most mgmﬁcant overexpression region on 3q (Fig.
7) which is reported to be the most frequent aberratlon

<Deﬂz|ltlon of clusters wllh chrommmal proxlmltP

Extraction ofgmes ' tlntmn of R ‘
.' h hromosomc
‘with significant under- or over- expreuion - c arm ns“m
.compure@ with NL specisnens, = . .
: ln each 8Q npcc{mcn indcpcndm!ly . L
N Cgn_dit.5 } 7 : Formation of the extiaustive c!ustem
Lt wimchmmosomalpm:umuly :
LoAF-A ..
gELaLLA {Cormi sengrh begin}
“ . am=ip. 14, 2. 26 .. 22p. 229
bength=2,3,4, .
begin=1,2,3, 4, ., (Larm - bength + 1}
]
<Construction of EIM>

For any combination of Coigw sy 5 80d Corm_fomgrh_begin »
" if the both hegin-th and ench-th Buckets of Corm tmgth begin
have Key-UniGenes which are included in Chign_agt 55
then calculate the E-velue for Rugm dir 5; o,

t_Vength_degin

<Visualization of EJM>

| Select a certain dlff l

I 3

¥

I Control gopme

interactivety

&

Y

if Corm_tengrh_begin meets the threshold,
(£aParm_tength_begin > EOPmaz)

For any Ryign_aff_si_arm_tongsh_begin (diff is Bixed),

then the E-value was represented in Rougw_ag 5 arm_femgih_bogi 85 8 gray scale

(The area where the multiple Ry gy 5 arm_fengeh_begins overlapped
was overwritten st the maximum E-value.)

Fig. 9. Flowchart for construction of the EIM for detecting individual differences in expression imbalance among

3Qs. This flowchart provides details of the steps of the EIM for detecting individual differences in expression
imbalance among SQs. For the step of “Definition of clusters with chromésomal proximity,” please refer to Fig. 2.
For the step of “Construction of the EIM” and “Visualization of EIM,” please refer to Fig. 8. In this type of EIM,
since the abscissa represented an array of S;, it was impossible to represent diff on the abscissa like Fig. 4.
Therefore, the EIM for individual specunen was visualized by Ceign_ oify_Si with a defined diff, and allowed the user
to change diff interactively. In addition, it is possible to exclude regions containing large gaps between genes by

changing gapmax interactively.
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Evaluation Value E
0 4 §

EXPRESSION IMBALANCE MAP

20 Mbp (CGH resolution)

[

[gapmax = IM (base-pairs), diff=2]

Fig. 10. The EIM for detecting individual difference of expression imbalance among 8Qs. The EIM was applied for
detecting individual differences of expression imbalance among the $Qs. Regions of underexpression and overex-
pression were visualized on the left and right side, respectively, as gray regional signals. The expression imbalance

regions in each $Q were evaluated independently. Note the high resolution of EIM compared with CGH resolution

(~20 Mbp).

in SQs by CGH (8, 8, 9). That is, the overlap (¢ = 6)
between C 45 (the cluster of probes with overexpression
whose differential level Di(g) is more than 5: n.s =
205) and Caq_1se4_5 (the region from 189,400 to 189,900
kbp on chromosome 3: naq 18915 = 9, £aPaq_1894 5 = 146
kbp) was statistically the most significant (E = 7.2).
Therefore, the overlap was evaluated using the hyper-
geometric probability for observing at least 6 (=)
common elements between randomly selected 205
(=n.5)and 9 (=n3q 1804 _5) elements among 6,652 (=1))

elements. The user can narrow down the possible ex-
pression imbalance regions by changing gapm.. and
dmin interactively. Especially, as is shown in Fig. 7,
A-I, changing gapmax, which allows exclusion of the
regions containing large gaps between genes, markedly
influenced the detection of expression imbalance re-
gions. In addition, all evaluation values of any combi-
nations between the exhaustive uncertainty cluster
sets of cancer specificity and chromosomal proximity
are visualized simultaneously on the EIM as gradation

Fig. 11. Individual difference of expression imbalance on chromosome 3. A-J: chromosome 3 of the EIM and the
influence of gapmex and diff on the detection of individual differences in expression imbalance among SQs. With
regard to each 5Q specimen, the under- and overexpression regions were visualized on the left and right side,
respectively. Since the expression imbalance regions in each 8Q were evaluated independently, this type of EIM
clarified the individual difference of the overexpression region on 3q, which was detected as the most significant
region in the group of 5Qs by another type of EIM. The user can narrow down the possible expression imbalance
regions by changing gapmax and diff. J: macrograph of the encircled region A from panel A. When gopmax was 1 Mbp
and diff was 2, the EIM showed that 17 of 21 SQs had overexpression regions on 3q, which is comparable to other
data sets by CGH (6, 8, 9). In addition, note the high reselution of the EIM compared with CGH resolution (~20

Mbp).
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gapmax = 1M (base-pairs) gapmax = 2M (base-pairs) £aPmax = 3M (base-pairs)
B C

Underexpression ~ Overexpression

diff =2

20 Mbp
(CGH resolution)

diff=3

diff=4

<Cluster of genes with overexpression specific to each SQ>

gapmax = 1M (base-pairs)
diff =2
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of gray scale, which is clearly shown in Fig. 7.J. This
gradation pattern could convey the distributicn of the
false balance to the user through visual perception and
enabled the detection of as many significant genes as
possible.

Table 4 shows the gene list of Csq 1804 5. Although
this overexpressmn region . strongly reflected the’
known genomic gain detected by CGH, several probes
without overexpression were also detected on this re-

gion. There may be several reasons for this. First, since

several probes with low quality were possibly included .
in this region, signal mtensuty does not always reflect
their target mRNA expression levels, Improvement of
the quality of probes wotlld make it possible to detect
the overexpression region more clearly. Second, mRNA
expression levels would not completely reflect genomlc
copy number changes caused by chromosomal gain or
loss, although there was strong correlation between
them because they are under various transeriptional -
control including feedback pathway of lost or gained

genes themselves. Mukasa et al. (7) also reported that-

several genes without reduction of expression were.
detected in 1pLOH region: of oligodendrogliomas, In
addition, it should be stated that cancer tissues used’”
here contamed significant. number of noncancerous
stromal or inflammatory cells, WhICh add noisy expres~
sion to cancer profiling. ©

Because of the complex factors dlscussed above, sim- . -
files described in this report, i.e:, the EIM, has several

ple spatial mapping of the microarray expression pro-.
files on chromosomal location gives little information
about genomic structure (Fig. 12, left). In addition, it is
very difficult to define adequate thresholds for cancer
specificity and chromosomal proximity, because the
distribution of “false balance” is unclear and the risk of
overlooking significant genes by arbitrary selection of :

thresholds is hlgh (i.e., the “threshold problem”). How- -

ever, the EIM, using a new methodology without arbi-.
trary selectlon of thresholds in conjunction with hyper-
geometric distribution-based algorithm, has a high tol-
erance of these complex factors and controls the risk of -

EXPRESSION IMBALANCE MAP

overlooking the expression imbalance regions. This ad-
vantage of the EIM over the simple spatial mapping is
clearly shown in Fig. 12. The EIM detected the under-
expression regions, A and B, and overexpression re-
gion, C, on chromosome 11, which are known loci with
frequent genomic gain or genomic. loss (6, 8, 9), al-

‘though it was difficult to detect it from the simple
‘spatial mapping of D1 value.

Detection of Individuo:l Difference in Expression
Imbalance Among SQ Specimens

The analysis for extraction of probes with expression
profiles specific to the group of cancer is very effective

-and popular. However, this type of analysis sometimes

".raises a critical problem because the individual differ-
ence among a group is uncbservable. In this context,
the function of the EIM to detect individual difference
- of expression imbalance in a group is very significant.
Figure 11, A-I, shows that the user can narrow down
‘the poss1b1e expression imbalance regions on chromeo-

‘some 3 by changing gap..x and diff interactively. Fur-

‘thermore, Fig. 11J shows the individual difference in
the most significant overexpression regions on 3q
(gapmax =*1 Mbp, dzﬁ' 2), where 17 of 21 SQs had

-overexpression regions, a, finding ‘comparable with

other data sets analyzed by CGH (6, 8, 9).
The mgh-resolutlon spatlal ‘map of expression pro-

significant advantages. Its vahd:ty is cIearly shown by
the fact that many known loci with high frequent
genomic losses or gains were detected by regional sig-
nals obtained with high resolution by this method.
Recently, several studies have been reported on mi-
croarray-based CGH for detecting. genome-w1de copy
number changes (10). However; to our knowledge, no
spatial mapping data obtained w1th such validity and

: genome-wide coverage have ever-been reported previ-

ously from this array-CGH method, Experimental dif-
ﬁculty of genome hybndlzatlon and hmlted number of

Table 4. Gene list of the overexpression region on 3q detected by the EIM

Cancer
Specificity UniGene  Location, base pairs - Description
* Hs.108660 189457995 ATP- bmdmg cassette, subfamlly C (CFTR/MRP), member_§
? Hs.343882 189554055  CaM-KII inhibitory protein
X Hs.129801 189604044 KIAA0GO4 gene product
X Ha.1166 189609401 thrombopoietin (myeloproliferative leukemia virus oncogene ligand, megakaryoeyte growth and
development factor)
* Hs.74619 189621219 proteasome (prosome, macropain) 268 subunit, non-ATPase, 2
x Hs.141660 189658124 chloride channel 2 *
* Hs.211568 189734699 eukaryotic translation initiation factor 4 gamma, 1
? Hs.146161 189735389 hypothetical protein MGC2408
* Hs.153591 189832147 Not56 (D. melanogaster)-like protein
* Hs.174044 189851048 dishevelled 3 (homologous to Drosophila dsh}
* Hs.152936 189862279 adaptor-related protein complex 2, mu 1 subunit

The expression imbalance map (EIM) detected the most significant overexpression regions, R .+s_zq 1304_5, 01 3q in the SQs. This region is
a known locus with frequent genomic gains (6, 8, 9). This table shows the gene list of intersection area R.s_sq 1s84_5. B +5_3q 1804_s ovaluated
the overlap between C.s {the cluster of probes on the U95A oligonucleotide arrays with overexpression whose differential level are more than
5) and Caq 1894 5 (the region from 189,400 to 189,900 kbp on chromosome 3: gapsq 1804 s = 146 kbp). Differential levels of the genes marked
with an asterisk (*) were more than 5, and those of the genes with “x” were less than 5. The genes with “?” were not the Key-UniGenes but

the UniGenes that were contained in Genes On Sequence Map.
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Simple spaﬂol mapping

probes on CGH array eould be major problems for it.
There may be several reasons for the successful result
of our alternative approach, calculation of genomic
structure from expression profile. The first reason is
the use of the Affymetrix-type GeneChip. The large
number of probes (12,533) available enables detection
of a relatively short abnormal region (chromosomal
loss can frequently affect areas as short as a few
hundred kbp), although this method can be easily ap-
plied to other types of microarrays. The second reason,
which is most important, is that the EIM is a visual-
ization method using a new methodology without arbi-

trary selection of thresholds in conjunction with hyper-'

geometric distribution-based algorithm. By processing
the complex factors and the threshold problems which
hinder user's visual perception of essential informa-
tion, the EIM presents to the user a comprehensive
visual image of whole genome-wide information,
clearly indicating where expression imbalance regions
are and which genes are to be examined. It has an
obvious advantage over simple spatial mapping of the
expression profiles. For further curation by the user,
simple clicking of a selected expression imbalance re-
gion on the EIM image leads to a direct link to a file
that contains the actual gene names of the region, their
expression scores, and other biological information. In
addition, if the user input the UniGene number of
genes of interest, the EIM indicates its position on the
chromosome. Therefore, the EIM can be a broadband

45

Fig. 12. Advantages of the EIM over
the simple spatial mapping of expres-
sion profiles. Left: a simple spatial map-
ping of Iy value, which was caleulated
from the expression profiles of 8Qs, on
chromosome 11. Right: the EIM of the
same region. The EIM allowed detec-
tion of the underexpression regions, A
and B, and overexpression region, C, on
chromosome 11, which are known loci
with genomic gain or genomie loss (6, 8,
9), although it is difficult to detsct it by
simple spatial mapping.

Expression Imbalance Map
(gapmax = IM (base-pairs), dmin=2)

interface that enables user’s visual perception of com-
plex data and further curation.

Using the EIM, we might be able to detect regional
under- or overexpressions independent of copy number
changes, such as gene methylation silencing and/or
imprinting abnermality (11). In addition, by using the -
Kruskal-Wallis test (4), which is_a rank sum test to
deal with three or more data groups.instead of Mann-
Whitney test, the EIM can easily extend to multiple
phenotypes.

In conjunction with the microdissection technique,'--‘:-

which can isolate only tumor-cell-specific RNA (2), our -
EIM can more precisely detect potential genomic struc-
tural changes, which offer more diagnostic and thera-
peutic impact.

Conclusion : -

In this report, we describe the development of the  _

expression imbalance map, or EIM, a visualization

method witheut arbitrary selection of thresholds, in — - -

conjunction with hypergeometric distribution-based al- -
gorithm, for detecting expression imbalance regions.
By using this method, many known as well as potent1a1
loci with high frequent genomic losses or gains were
detected as regional signals with much higher resolu-
tion than conventional methods, such as CGH. The
EIM can be a broadband interface which enables user's
visual perception of complex data and further curation,
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