The specific CAGE band was detected in lysates from 2 endometrial cancer cell lines, Hec-Ib and
Ishikawa, and one melanoma cell line 888mel, those are CAGE positive by RT-PCR analysis, but was
not shown in lysate from PCR negative cultured melanocytes. NTH-3T3 cells transfected with

pcDNA-CAGE was positive control and untransfected NIH-3T3 cells was negatine control.

Fig. 4. Presence of anti-CAGE IgG antibodies in sera from various cancer patients detected by

Western blot analysis with bacterial recombinant CAGE protein

By Western blot analysis, the recombinant His-tagged CAGE protein fragment containing N-terminal
211 amino acids of CAGE (M.W. = 31.1kDa) was recognized by IgG antibodies in sera from some of
the patients with various cancers. Lanel: Staining of CAGE with anti-His antibody. Lanes2-12:
staining with 1:100 diluted sera. Lanes 2-6 sera from endometrial cancer patients; Lanes 7and § sera
from melanoma patients; Lane 9 and 10 sera from colon cancer patients; Lane 11 and 1; sera from
healthy controls. Only positive cancer samples are shown in this representative experiment. No band
was shown in the lanes with sera from 2 healthy individuals. 1pg of recombinant CAGE protein was

loaded per lane.

Fig.5 Frequent detection of anti-CAGE antibodies in sera from patients with MSI-H endometrial

cancer evaluated by ELISA

ELISA was performed with the recombinant CAGE protein. The horizontal line indicates the cutoff
33



value for positivity (OD=0.058: the average absorbance of the healthy individuals plus 28D). Positive
sera were found in 12 of 45 (26.7%) endometrial, 4 of 33 (12.5%) colon cancer, 2 of 20 (10.0%)
melanoma patients, and 1 of 40 (2.5%) age matched healthy individuals, but not in 10 ovarian cancer
patients. Among 33 endometrial cancer patients whose MSI status was evaluated, 7 of 13 (53.8%)
patients with MSI-H had positive serum CAGE antibody, while none of 20 non-MSI-H patients

including one MSI-L and 19 MSS patients had anti-CAGE antibody.
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all existing patterns of expression that could be useful in classification. This is made possible by
introducing clustering analysis techniques, such as K-means clustering, to feature selection.

For the classification of tumors, many machine learning algorithms are available. Besides the simple
.methods like weighted voting scheme [1] and K nearest neighbor(KNN), support vector machine (SVM)
has been widely used by many researchers. Khan et al. demonstrated the application of artificial
neural networks for discriminating four subtypes of the small, round blue cell tumors (SRBCTs) of
childhood[5]. Nevertheless, some comparative studies seem to suggest that simple algorithms tend to
have a higher reliability than more complicated ones{11}. o

In the choice of classification algorithms, we find it important to ask the following questions. If
a classifier is trained to discriminate, for example, two subtypes of leukemia, what kind of prediction
will it produce for a sample of a newly discovered subtype it has never seen? What if the classifier is
presented with normal tissues, or even tissues of stomach cancer? Ideally, these samples should not
be classified as either of the two subtypes; otherwise, it would be counted as false positive. Therefore,
the above questions lead to the test of false positives. Validation of classifiers in previous studies
has been mainly focusing on the false negative cases as most samples for independent tests belong
to one of the training subtypes. Despite the importance of avoiding false positives, especially in the
process of defining new cancer subtypes and in the detection of metastatic cancers, extensive test of
false-positive error rates of various classification schemes have not been reported in the literature.

In this paper, we test the false positive rates of various classification schemes through a ‘null-
test’ in which a classifier is presented with a large number of samples that do not belong to any
of the tumor types in the training dataset. To achieve a relatively large dataset, data from 239
microarray experiments performed in several laboratories are pooled together to test the false positive
of one classifier. We compare both the false-positive and false-negative error rate of KNN, SVM, and
prototype matching (PM), which is perhaps the simplest pattern recognition technique.

2 Method

The whole process of our approach is summarized in Fig. 1A.

2.1 Statistical feature selection

Kruskal-Wallis H test. Kruskal-Wallis H test is the non-parametric counterpart of analysis of vari-
ance (ANOVA), which is a standard statistical tool for detecting differences in multi-group comparison.
We choose the non-parametric test because it avoids making the assumption that the expression levels
are normally distributed with equal variances within groups. It is believed that nonparametric statis-
tical tests are nearly as powerful in detecting differences among populations as parametric methods
when the data are normal. They are more powerful in situations where the data does not meet the
underlying assumptions of parametric methods. Some statisticians advocate the use of nonparametric
methods. '

For each gene, a statistic H is calculated according tzo the ranks of its expression levels between
multiple groups. The score is defined as: H = m}v?—_‘_lj > ’;;"- —3(N+1), where N is the number of tumor
types in question, r; is sum of ranks of tumor type ¢ which has n; samples. The higher H is, the higher
the degree of association. The score tells us to what extent the gene expresses differently between any
two groups. This score is directly related to P values because it follows a x? distribution with N —1
degrees of freedom. For N = 3 case, if a gene’s score is above the critical value of 9.21, we can tell
with P<0.01 that this gene correlates significantly with group distinctions. Genes that fail to reach
this level of significance are eliminated without further analysis. Note that the statistical significance
does not decay with the increase of N. The reason statisticians invent ANOVA and Kruskal-Wallis H
test is to avoid the accumulation of errors in multiple pairwise T-test or Mann-Whiteny U test. This
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Figure 1: A, Outline of cancer classification procedure. Based on non-parametric statistics, a cluster-
and-select strategy is employed in the selection of informative genes. False positive errors are tested by
null test and leave-one-class-out cross validation (LOCOCYV). B, Prototype matching. A new sample
(open circle) is compared with the existing prototypes.

could happen in one-vs-all and all-vs-all approaches, where the selection of informative genes is based
on O(N) and O(IN?) statistical tests, respectively. _

Redundancy reduction: classification of genes for the classification of samples. All
those genes that passed the I test convey information that could be useful in classification. But still
there are too many of them. We noted that many genes have very similar expression patterns. So it is
possible to reduce the size of feature set without incurring classification accuracy. This is the so-called
redundancy reduction problem in feature selection[12].

Another issue is that the H score does not tell us which pair-wise distinction a certain gene is
associated with. It is possible that there are more genes associated with A-B distinction than those
with B-C and C-A, when three subtypes A, B, and C are considered. To improve the overall accuracy
of classification, the choice of genes should be made in balance.

We tackle these two problems at the same time through a cluster-and-select strategy. The idea is
to select a relatively small number of representatives from each cluster of similarly expressed genes.
Methods for clustering analysis have been the subject of extensive research in bioinformatics, and
there exist many algorithms. Here we borrowed such techniques for another purpose: gene filtering.
We used the simple k-means clustering method, which divides a set of genes into a predefined number
of clusters by maximizing the between group variance. In the resultant grouping, some clusters may
contain more genes than others. But we select a given number (S) of genes from all clusters to increase
the signal-to-noise ratio in classification. Because the H score indicates the significance of association,
the genes with higher scores are selected from each group. This is what we call a local filter.

2.2 Prototype matching

Prototype matching is a simple method for pattern recognition. Basically, it stores prototypes and
compares a new sample with them. As depicted in Fig. 1B, each tumor type is characterized by an
expression prototype Gy and a radius of cluster Ry, where k = 1,2, 3. Prototypes are simply calculated
as the average of the expression pattern in training samples, while the radius of each cluster is the
average distance between samples and this prototype. Distances are calculated by: d;; = 1— P;j, where



P,; is the Pearson’s correlation coefficients between two expression patterns ¢ and j. As Fj; € [-1,1],
we have d;; € [0,2].

To demonstrate how PM algorithm works, we use the configuration in Fig. 1B as an example. For
a new sample shown in the top right, we calculate its distance to all prototypes and find that d;, the
distance to prototype G4, is the shortest. Therefore, it is temporarily assigned to type 1. The distance
to the second nearest prototype (G2 is also calculated (dz). The confidence of prediction is measured
by the following scores:

m = (da—di)/da, | (1)
d, = di/Ri, (2
C = mid. 0

The parameter m characterize the margin of the winner prototype. For an ideal match, where d) <« ds,
we have m =~ 1. By calculating the parameter d,, we compare the distance dy with the radius of the
prototype G;. Ideally d, should be about 1.0 or smaller, as R; is the average distance. Less typical
samples will have a larger dr. As a larger m and a smaller d, indicates a confident prediction, we
found it is convenient to define a confidence score as C = m/d,. To make confident prediction, we
require that the score is larger than a certain threshold (0.08-0.15).

In the example shown in Fig.1B, the new sample is confidently classified as type 1 if C is greater
than 0.08. If € fails to reach the threshold value, a ‘null’ prediction is made. This may be caused
by a small m, which indicates that the new sample is almost equally similar to the two best matches.
Or, this may also happen if d, is much larger than 1. In this case, even though the new sample are
more similar to the prototype G, it deviates from most samples of this kind in the training set so
~ significantly that the difference can no longer be explained in terms of random variance. In addition,
the raw Pearson’s correlation coefficient between the new sample and prototype G4 should be larger
than 0.2. All together, these criteria help the algorithm avoid false positives. The simplicity of the
PM algorithm makes it convenient to impose various common-sense based constraints for making
predictions without the significant influence on false negative error rates.

These measures of prediction confidence are chosen empirically. More rigorously, one could assume
that the distances to a prototype follow a Gaussian distribution. Thus the mean and standard deviation
could be used to evaluate the likeliness that a new sample with distance d; belongs to a group. Such
P values can be calculated for each of the prototypes and the new sample is assigned to the one with
the smallest P value. Again, both the absolute P value and the margin should be taken into account
to avoid false positives. However, since the number of biological replicates within each cancer type
is usually very limited, the mean and standard deviation may not be very reliable. Such approach is
not used in the present study. Rather, we used the empirical formulae that are believed to be more
robust for small sample size.

For comparison, we also used the closely related KNN and SVM. KNN has many variations in the
way that prototypes are chosen from training data and in the ways that votes are weighted[13]. Here
a new sample is compared with all the samples in the training dataset. (Unlike PM, KNN uses all the
samples in the training dataset as prototypes. ) Then the 810 nearest neighbors vote with a weight of
1/r, where r is the rank. The class that receives most votes wins. Confidence is simply characterized
by the margin in the percentage of vote. The threshold to make diagnosis prediction is set to as high
as 80%, which requires that most of the k neighbors should belong to one c¢lass. For SVM, we used
an implementation of SVM-FU (www.ai.mit.edu/projects/cbcl) developed by Ryan Rifkin.

2.3 Validation: sensitivity vs. reliability

There are three kinds of predictions errors. A false negative error refers to the case that a null
prediction is made for samples that actually belong to the tumor types in the training set. On the
contrary, a false positive error corresponds to the case that a positive prediction is made for those



samples that do not belong to any of the tumor types. Also, samples that belong to one of the tumor
types may be misclassified. Such cases are usually rare. The performance of classification system
should be evaluated with regard to both false negative and false positive. )

The false negative error rate is usually evaluated through two tests. In leave-one-sample-out cross
validation (LOSOCV), each sample in the training set is withheld and used to test the performance of
the classifier trained on the remaining samples. In the 'positive test’, independent samples that belong
to the training subtypes are presented to a classifier. These samples should be confidently assigned
into one of the classes.

To evaluate the false positive error rate, we introduce a ‘null test’. In this test, we present a
classifier samples that do not belong to any of the categories in the training dataset. Such samples can
be, for example, normal tissues or those from other organs. For these samples, a reliable algorithm
should produce a ‘null’ prediction because they should not be assigned to any of the subtypes known
to the classifier. Otherwise, a false positive error is registered.

Sometimes, however, null test is impossible due to the lack of samples. An alternative procedure
called leave-one-class-out cross validation (LOCOCV) is used. Withholding all the samples that belong
to one tumor subtype, we train a classifier with the remaining samples. Then the classifier is tested
against false positive error by presenting the samples that are left out. Basically it is a generalization
of LOSOCV. The difference is that one withholds a cancer subtype instead of a sample. Note that
LOCOQCYV is only applicable to larger datasets with more subtypes so that the elimination of one
cancer subtype does not influence significantly the performance of the classifier. In the next section
we apply this procedure to a dataset of 11 cancer types.

2.4 Outliers in the training dataset

The training dataset may contain a small number of outliers due to a variety of reasons such as
sample preparation, array experiment, clinical diagnosis, etc. A small number of outliers in the
training dataset could seriously degrade the performance of classifiers. As indicated in Fig. 1A, we
eliminate such samples from the training dataset according to LOSQCV. We reasoned that the training
dataset should be consistent with itself. In our calculation, a sample is considered an outlier if (a) it
is misclassified with a high C' value when it is not used for training and (b) this single sample exerts
un-proportionally large influence on the overall classifier. But one should be very careful with the
elimination of samples because the effect of eliminating different samples might be inter-dependent.
Additionally, the total number of samples to be eliminated should be kept small (less than 5%). For
the detection of outliers, it would be helpful to examine the dataset with some outside programs such
as hierarchical clustering and data visualization algorithms.

3 Datasets and Results

Leukemia dataset and the hidden false-positives. The main purpose of the first case of ap-
plication is to test the efficiency of our statistical feature selection scheme and the robustness of the
PM against false positives. For the training dataset, we used the leukemia dataset {1]. This dataset
contains expression patterns of samples for acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML). As ALL samples can be further divided into two groups: T-cell lineage and B-cell
lineage, we consider three subtypes in this dataset. There are 38 samples in the training dataset( 11
AML, 19 B-ALL and 8 T-ALL), and 34 independent samples for positive-test. Microarrays used in
the experiment are Affymetrix HuFL which contains probes for 6817 human genes. Expression level
of a gene is characterized by the average difference score of multiple match and mismatch probe pairs.

To test the false positive rates, we incorporated datasets from several laboratories as the HuFL
chip has been widely used and many datasets are available to the public. OQur null-test data includes
an ovary dataset [6], a dataset of stomach and liver tissue samples, and a variety of other samples from
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Figure 2: The change of false positive (left) and false negative (right) error rates with the number of
genes used for prediction. KNN has the highest false positive error rates and the lowest false negative
error rates. For SVM, although we raise the prediction threshold so high that its false negative error
rate increases to about 20%, its false positive error rates are still higher than that of PM. This suggests
that SVM is intrinsically vulnerable to false positives. The performance of PM are reasonable in both
kinds of errors.

our collaborators. These 239 samples are of various origins; they can be any types of human tissues
except AML and ALL. See supplementary information for more information about all those samples.
Expression scores on each array are normalized to have the same mean and standard deviation to
make the data from different laboratories compatible.

In pre-processing, we first eliminate those genes that do not change significantly by requiring that
the difference and ratio between the maximum and minimum expression level be larger than 300 and
2, respectively[l]. We also require that the standard deviation and its ratio to mean value be larger
than 100 and 0.1. Those genes with a Kruskal-Wallis H score smaller than 9.21 are eliminated as their
expression profiles do not correlate with tumor distinction with a statistical significance level P=0.01.
The expression levels of the remaining 736 genes are log-transformed. Normalization is done simply
by dividing the raw data by the length of a gene’s expression vector so that each gene is characterized
by a unitary vector. We found that the classification accuracy can be significantly degraded if we
follow the popular way of normalization that makes all genes have the same variance.

According to their similarities, these genes are divided into 20 groups by K-means clustering.
From each group we selected a small number of genes and construct a feature set. Based on these
selected genes, prototype matching is used to make predictions on new samples. The threshold for the
prediction confidence C is set to 0.15. By changing the number of genes selected from each cluster,
the changes of false negative and false positive error rates are plotted in Fig. 2.

Surprisingly, a large difference is observed in the false positive rates of different classification
methods. When less than 100 genes are used, KNN could have a false positive error rate as high as
50%. SVM also has a relatively high error rate of about 20%. On the contrary, PM has an error rate
smaller than 10%. -

Even with as few as 19 predictor genes, most samples in the positive-test can be correctly classified.
This could misleadingly suggest the use of small feature set. But null-test indicates that the false
positive rates could be as high as 92% for KNN, 83% for SVM and 38% for PM. Therefore, whatever
the classification algorithms, it is important to include several hundreds of genes in the feature set.
This shows the importance of null-test: those seemingly irrelevant datasets serve as a background
based on which we can tell whether a feature set enables the unique definition of expression prototype
for a certain cancer type.
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Figure 3: A set of 227 genes chosen for classification of B-cell acute lymphoblastic leukemia (B-ALL),
T-cell acute lymphoblastic leukemia (T-ALL), and acute myeloid leukemia (AML)[1]. Instead of
searching the whole gene list for predefined expression patterns, we try to find all existing patterns
that could be helpful in cancer classification. Black indicates high expression.

From Fig. 2, we also observed that the error rate of PM is not sensitive to the number of genes
used in prediction, as long as the number is not too small. Optimizing the balance between two kinds
of errors, we finally select 227 genes in our final feature set. In LOSOCYV, most of the samples in the
training set are correctly classified except 3 false negatives. In the positive and null test, PM has 4
false negatives {11.8%) and 8 false positives(3.3%).:

Figure 3 gives these informative genes. The feature set contains all 6 possible alternative expression
patterns in a 3-class problem. From top to bottom in the figure, there are genes of type {1,0,1},
{1,0,0}, {1,1,0}, {0,1,0}, {0,1,1}, {0,0,1}, with 1 representing high expression and 0 low expression.
Unsurprisingly, at the top region of the figure we find a large number of genes that are shared by
B-ALL and T-ALL. We include these genes because we believe they can help achieve a high signal-to-
noise ratio. Such genes are ignored in the one-vs-all gene selection method used by [7, 8, 8], as only
genes of type {1,0,0}, {0,1,0}, {0,0,1} are selected.

This is further justified by Fig. 1 in supplementary information, in which the false positive error
rates using two feature sets are given. With PM, the cluster-and-select method yields more reliable
predictions, especially when smaller feature sets are used. This might be attributed to the fact that the
new feature selection method includes some very informative genes that are ignored by the conventional
method. When more than 500 genes are included in the feature set, error rates tend to be very close.
When SVM is applied to these two feature sets, a similar tendency is observed. However, the difference
in false positive error rate between feature selection procedures is subtle in comparison with that due
to classification algorithms, especially when more genes are used for prediction.

Finally, Fig. 4 shows the distribution of all samples with regard to prediction parameters m and
dr. The z axis is the relative distance to the nearest prototype, while the y axis represents the margin
of this prototype over the second nearest one. These two parameters have intuitively simple meanings
that could be more easily understood by biclogists than parameters like vote percentage or the output
of artificial neurons. Because both z and y axes relate to the distances of samples, we refer to such
a plot as distance-distance (DD) plot. Most samples in the training and the positive test dataset are
located in regions with a large m and small d;. On the contrary, samples in the null-test dataset have
a small m and a large d,.. The decision line for confident prediction m = td, is also drawn. Here
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Figure 4: Distribution of samples plotted by two prediction parameters dr and m. Parameter d, is
the relative distance to the nearest prototype and m is the margin over the second nearest. Positive
predictions are made for the samples that lie above the dashed line.

t = 0.15 is the slop. In general, the choice of the t can be made according to a plot like Fig. 4, which
helps to balance false negative and false positive error.

Extensive testing on other datasets. We then tested the PM algorithm on several other
datasets including a lymphoma dataset[4], a SRBCT dataset [5], and the dataset of Su et alL[7].
Prediction results are summarized in table 1. More information is available in the Supplementary
Information. The classification scheme proposed in this paper has a relatively lower rate of both false
positive and false negative error in these datasets.

Table 1: Summery of four datasets and the performance of PM algorithm. Given in parentheses
are the number of misclassified cases observed in leave-one-sample-out-cross-validation (LOSOCV) or
independent test. Note that the false negative error rate is calculated according to both LOSOCV
and positive test. For the dataset of Su et al., which no independent data for null test is available, a
leave-one-class-out-cross-validation (LOCOCV) procedure is employed.

# Tumor Samples size False False | # Genes
Dataset types Traning Positive test Null test | negative positive used
Leukemia [1] 3 37°(3) 34 (4) 239 (8) 11.8% 3.3% 227
Lymphoma [4] 3 40 (7} 26 (6) 27 (2) 19.7% 7.4% 328
SRBCT [5] 4 63 (6) 20 (2) 6 (0) 9.6% 0% 390
Su et al. [7] 11 97 (13) 74 (14) —(12) 15.8% 124%* 400

4 Discussion

There are a wealth of statistical and machine learning tools that could be useful for the classification
of cancers. How to pick up the right tools and integrate them is an important issue. Such choice
should be made based on knowledge of underlying computational principles. Classification algorithms
like SVM and KNN define a hyperplane or hypersurface according to which a multidimensional space
of samples are divided into two or more regions (Fig.5). Implicitly, it is assumed that all samples
presented to the classifier belong to at least one of the predefined tumor types. This might be true
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Figure 5: Prototype matching (PM) and support vector machine(SVM) belong to two different
paradigms for pattern recognition. While SVM makes prediction for all samples that are far enough
from the hyper-plane, PM makes positive predictions only if a new sample is sufficiently similar to a
prototype. K-nearest neighbor method is very similar to SVM. As a result, classifiers like PM tend to
have more false negatives (e.g. the sample in the bottom right) while those like SVM and KNN may
suffer seriously from a high false positive rates{e.g. the sample marked by a triangle at the top).

in some classification tasks such as metastatic vs. non-metastatic tumor[9], or curable vs. incurable
DLBCL patients[10]. These are ‘true’ binary problems, in which SVM and KNN can make accurate
predictions. But ‘pseudo’ binary classification tasks are more freqent: there could exit a third class
missing in both training and test dataset. Clinically, the existence of new subtypes of cancers are
always possible and it is very difficult to obtain a ‘complete’ training dataset as required by SVM and
KNN. SVM and KNN may have high false positive rates when presented with samples of novel tumor
types. This is confirmed in this study (Fig.2).

Unlike SVM and KNN, PM defines a closely bounded region in the multidimensional space to
represent each tumor subtypes(Fig.5). There is a large rejection zone that a ‘null’ prediction will be
outputted. The uniqueness of each subtypes is recognized by an expression prototype. Although PM
can have a slightly higher false negative rate, false positive error is found to be much lower. Avoiding
false positives is essential in the process of discovering new cancer subtypes. Therefore, we believe
PM and methods alike might be more suitable for cancer classification.

QOur results also give some hints to the question of how many predictive genes should be used in
cancer classification. With the inclusion of more genes, we found that false positive errors decrease
accordingly. But the opposite tendency is often observed for false negative error. Therefore, the
optimal choice should be made by seeking a balance. This could be done by the minimization of the
total error rate.

The searching of differentially expressed genes in two or more groups is one of the fundamentally
important tasks in the bioinformatics of gene expression analysis. Besides cancer classification, the
cluster-and-select feature selection procedure proposed here might be useful in this context. The
procedure is able to detect different patterns of gene expression in multiple groups.

To select features from the highly redundant measurements in expression profiling, we employed
k-means clustering in addition to a statistics score. Unsupervised classification techniques themselves
are used in the process of feature selection for the purpose of supervised classification. This strategy
might be useful in other pattern recognition tasks where redundant measurements are involved.
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1 The parameters (M and S)in feature selection

K-means clustering is employed to increase the signal-to-noise ration in feature selection. One of the
difficult problems in clustering analysis is to decide how many clusters is appropriate for a certain dataset.
Although there are some complicated methods that can make approximate recommendations, in most of
the cases this problem is solved by trial-and-error. Similar to the detection of outliners, representation
produced by hierarchical clustering and multidimensional scaling (MDS) can be used as a as a guidance.
In our calculation, we divide all the genes that passed the H test into M clusters and select S genes
from each of them. We studied the effects of different M and § on classification error rates in the leukemia
dataset. The result of false positive and false negative error are showing in Table 1 and 2, respectively.
As indicated in the tables, false positive error rates can change from 3.35% to 10.04% under different
parameters, all lower than what we could expect using SVM. False negatives can change from 8.82% to
17.65%. Although error rates do vary in different conditions, but our classification schemes are relatively

stable.

2 Lymphoma dataset

We choose the dataset of Ref. [4] because it contains not only samples of three most prevalent adult
lymphoid malignancies but also samples of purified normal lymphocyte subpopulations that can be used in

Table 1: False positive error rates with different choices of parameters observed in the leukemia dataset.

Number of clusters(M)

genes (S) 15 20 30
5 10.04% 8.37% 9.62%
8 10.46% 5.86% 6.69%
10 837% 3.35% 6.69%
12 711% 3.35% 7.11%
15 7T11%  7.53% 7.53%
20 9.21% 7.11% 8.3™%
50 7.95% T7.95% 7.95%




Table 2: False negative error rates with different choices of parameters observed in the leukemia dataset.

Number of clusters(M)

genes (5) 15 20 30
5 14.71% 17.656% 17.65%
8 17.65% 17.65% 11.76%

10 14.71% 14.71% 14.711%
12 17.65% 14.71% 11.76%
15 14.71% 14.71% 14.711%
20 11.76% 8.82% 11.76%
50 11.76% 17.65% 14.71%

null test. The three types of malignancies are diffuse large B-cell lymphoma (DLBCL), follicular lymphoma
(FL), and chronic lymphocytic leukemia (CLL). The training dataset contains 23 DLBCL samples, 8 FLs
and 9 CLLs. We have 26 samples for the positive-test and 27 samples for null test. The dataset is obtained
by using the 'Lymphochip” a specialized DNA microarray that contains probes for the genes that are
preferentially expressed in lymphoid cells and for the genes with known or suspected roles in processes
important in immunology or cancer. _

Beginning with the 4026 array elements that passed the filter in the original study[4}], we eliminated
3239 genes through a preprocessing procedure (similar to the one used in the leukemia dataset) and a
Kruskal-Wallis H test with a minimum P value of 0.025 (H=7.38). The final feature set contains 328 genes
(Fig. 3). The threshold for prediction confidence is 0.15. All except two samples in the null test are
classified as 'null’, Six false negatives are observed in the 26 samples in the positive-test.

3 SRBCT dataset

The third dataset is from Khan et al. [5]. It contains four subtypes of SRBCT, namely neuroblastoma
(NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS).
The training set contains 12 samples for NB, 20 for RMS, 23 for EWS, and 8 for Burkitt lymphomas (BL,
a subset of NHL). There are 25 samples in the independent dataset, among which 6 are normal skeletal
muscle and other kinds of tissues that can be used in the null test. Microarray experiment is based on
NHGRI protocol. Different from the leukemia data, relative red intensity, which is the ratio of the mean
intensity of a spot to overall average intensity, is used as a measure for expression level.

Of the 2308 genes in the raw dataset, 841 passed the H test with P<0.05 (H>7.81). Using similar
preprocessing and cluster-and-select method, we choose a final feature set of 390 genes (M = 20, S = 6).
It is found this set of genes includes 75 of the 96 genes selected by Khan et al.[5]. Among those common
genes is the fibroblast growth factor receptor 4 (FGFRA4) that is activated in RMS samples. This gene has
an H score as high as 39.93. As indicated by Fig. 4, hierarchical clustering using these genes are consistent
with clinical diagnosis. The threshold for making confident prediction is set as C' = 0.08. All of the 6
control samples are correctly predicted as 'null’. There is one false-negative prediction in the independent

positive test.

4 Dataset of Su et al.

To demonstrate the efficiency of our algorithm on larger datasets, we consider the expression data of Su
et al. [7). This dataset contains 100 samples representing 11 tumor types, namely, prostate, breast, lung,



ovary, colorectum, kidney, liver, pancreas, bladder/ureter and gastroesophagus. In addition, there are 74
independent samples for positive test. The expression levels of a total of 12533 probes are obtained by
using Affymetrix Hu6800 and Hu35KsubA microarray. .

We eliminated 3 outlier samples in the training set. As many as 5935 genes passed the H test with
P<0.05 (H>18.31}). These genes are clustered into 50 groups. Selecting 8 genes from each group, we
obtained a feature set of 400 genes(Fig. 5). Thirteen false negatives are observed in LOSOCV with a
threshold confidence level of C > 0.15. Null predictions are produced for fourteen of the 74 independent
samples. Altogether, the false negative error rate is 15.8%, which is slightly higher than 13.5% reported in
the original study with SVM[7].

The LOCOCYV procedure described in section 2.3 is employed to evaluate the false positive error rate.
We withhold one of the 11 tumor types and train classifiers to distinguish the rest 10 types. Then the
unused samples are presented to the classifier to see if it misclassifies these samples as any of the trained
tumor types. The procedure is repeated for each of the 11 tumor types, accumulating false positive cases.
Totally, 12 such errors are observed, leading to a false positive error rate of 12.4%. With the same set
of predictor genes, SVM misclassified 14 samples (14.4%). With the one-vs-all feature set, PM and SVM
have a false positive error of 16.8% and 18.7%, respectively. Therefore, the LOCOCV makes it possible to
test classifiers against false positive errors even without independent control samples.

5 List of genes used for classification

The list of genes that are selected by our algorithm are given in our web page (http://www.race.u-
tokyo.ac.jp/~xge/cancer/). Information are availabe for following datasets:

¢ Leukemia dataset
s Lymphoma dataset
o SRBCT dataset

e Dataset of Su et al.
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