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4) a threshold for evaluating the relationship with other known gene information. The CODM reduces

the number of thresholds and allows users to interactively change the thresholds as follows.

1) Threshold for generating clusters for each condition

Since conventional hierarchical clustering does not focus on sub-clusters that are included in other
clusters, there is a risk that the important sub-clusters could be overlooked. In the CODM, overlaps of
genes between any two clusters of TOL and SHAM are statistically evaluated, even if they are included
in other clusters. In addition, the CODM allows users to interactively change the cut level, in order to
reduce the risk that a small overlap block may be hidden in a large block (Figure 6). Therefore, by
considering the homogeneity of clusters and the relationships with other known gene information, the
user should be able to find the important genes rdisplayed as blocks.

2) Threshold for evaluating the number of commion genes shared by two clusters.

In CODM, the statistical significance of the number of common genes between two different clusters is
represented as the height of a block, and statistical significance of the overlap of all combinations of
clusters are displayed as a 3D histogram at the same time. Therefore, without the selection of an
arbitrary threshold, the distribution of the statistical significance of the overlap is effectively displayed,
Although (to reduce the rendering load) Figure 4 shows only overlap blocks with 2.0 or higher
evaluation values of the overlap, users can interactively change this value,

3) Threshold for evaluating the differences in the expression patterns between two clusters

CODM represents the differences in the expression patterns between two clusters by the color of the
blocks ranging from red to blue. Therefore, the distribution of differences in the expression patterns of
all combinations of clusters is displayed at the same time, without any selection of an arbitrary
threshold.

4) Threshold for evaluating the relationships with other known gene information.
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Although only overlap blocks with 2.0 or higher evaluation values for the representation of genes with

putative transcription factor binding sites were color-coded in Figures 4e and 4f, users can interactively
change this value.
4. Conclusion

In this_ report we described the characteristics of the Cluster Overlap Distribution Map (CODM)
method, a visualization tool for comparing clustering results of gene expression profiles under two
different conditions. In CODM, the utilization of three-dimensional space and color allows us to
intuitively visualize changes in the composition of cluster sets, changes in the expression pattemns of
genes between the two conditions, and the relationships with a known gene classification such as
transcription factors. Comparison of dynamic changes of gene expression levels across time under
different conditions is required in a wide variety of fields of gene expression analysis, including
toxicogenomics and pharmacogenomics. Since CODM integrates and simultaneously visualizes various

types of information across clustering results, it can be applied to various analyses in these fields.
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Appendix Similarity f(T,S)

) 1 ®&& 2
FT.8)=1-—3%"%" (x, - ¥,)
75 k=1 i=1
| Mmoo , \ 2
= __'Z{ (xg" + yy )_szﬁyﬁ}
Ny o i=1
1 ¥m 12 12
_1PK§{1 gzxﬂyﬁ} (- Z(x,.2+y,.’)=1 )
1 N 12 '
-_“*]’\"7“_222’%)’11
TS k=1 i=l

(2) The similarity (T, 5) satisfies the following inequality:
-1 f(T,5)<1

Proof,

Since f(T,S5)<1 is obvious, we only need to prove—1< f(T,S). We begin by showing that

g =i2xiy:' z-1

i=]

where

12
E(xiz + y.'z) =1
We consider the Lagrangian function

L= ibﬁ’yi +4 {i('xi2 + yiz)"l} .
i=1 i '

where 1 is a Lagrange undetermined multiplier. By taking the derivative, we convert the constrained
optimization problem into an unconstrained problem as follows:

a_L_Zy'+2,2,xi=0 (i=1..12)

Ox,

é’f-:zxi +24y,=0 (i=1..12)

12
aL_Z(x +y=1=0



FINAL ACCEPTED VERSION

The solutions of this problem are
D x=y (=12..12), A=~1 ===> g has the maximum value 1
or

(i) x=-y (=12,..12), A=1 ===> g has the minimum value -1

Therefore,
1 Ny 12
f&,85)y= Z 2x, ¥,
NTS k=1 i=1
1 =
22— (1)
NTS k=1
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Table 1. Transcription factors linked to ischemia

transcription #of
factgr UniGenes thresholds
[VEAHRARNT_01 540 0.92
VSAHRARNT (2 4 0.91
V§HIF1_Q3 955 0.55
V$HIF1_Q5 507 0.87
V$EGR1_01 143 0.87
V$EGR2_01 92 0.89
V$EGR3_01 26 0.93
VENGFIC_01 143 0.88

In CODM, changes in the composition of the cluster sets and changes in the expression patterns between
different conditions were associated with 8 types of transcription factors (HIF, ARNT and EGR
families), which are all known to mediate response to ischemia. We extracted UniGenes which contain
putative binding sites for the transcription factors, and correspond to probes on RG-U34A (Affymetrix,
Santa Clara, CA). This table shows the names of the transcription factors, the number of UniGenes and

the thresholds for matching.
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Table 2, Information about 3 overlap blocks

Overlap !#of UniGenes in1# of UniGenes in Umg;i‘:;?\::ﬁ; tionl similarity | Binding-sites of Lransczl-iption factors :
block | cluster of TOL |cluster of SHAM value) RT.8) # of genes (evaluation value)
A 156 147 54 (E=46.9) 042 VSAHRARNT_01: 14 (E=2.10)
B 190 132 60(E=53.3) -0.28 VSEGRI_01: 6(E =201}
C 99 207 43(E=34.8) -0.23 VSHIF1_Q3:11(E=2.33)

Exploration with CODM allowed us to pick up 3 potentially important overiap blocks. This table shows
the information for these 3 overlap blocks. The “# of UniGenes in cluster of TOL(/SHAM)” is the
number of UniGenes which correspond to probes included in a cluster of TOL(/SHAM). The *“# of
common UniGenes (evaluation value)” is the number of common genes shared between the clusters of
TOL and SHAM and its statistical evaluation value, The “similarity f (T, S)” is the similarity of the
expression patterns between the clusters of TOL and SHAM. The range of similarity f (T » 5) is
-1(dissimilar) to 1(similar). The “Binding-sites of transcription factors” shows the name of putative
binding-sites of transcription factors, the number of common genes that share the same binding-sites,
and the statistical evaluation value of the number of common genes with the same binding-sites, if the

evaluation value is 2.0 or higher.
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Figures and Figure Legends

2y 1oL

Figure 1. Hierarchical clustering of TOL and SHAM

We obtained time series ({Oh, 1h, 3h, 12h, 24h, 48h} x 2) micrdarray data from rats with induced
ischemic tolerance (tolerant rats: TOL) and rats with sham operation (sham rats: SHAM). In the
analysis, we used these datasets as 12 time-points ({0a, Ob, 1a, 1b, 3a, 3b, ...., 48a, 48b} = (T3} (i =
1,2,...,12)) datasets on TOL and SHAM, respectively. After preprocessing and normalization,
hierarchical clustering analysis based on Euclidian distances was then performed for each dataset

independently.
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Figure 2. Overlap Block of Two Clusters

The dendrogram of TOL is mapped to the X-axis and that of SHAM is mapped to the Y-axis. Then, for
the area (Ry) determined by a cluster on the X-axis (X;} and a cluster on the Y-axis (Y7, a block whose
height represents E(g, ny, ny;, ky) (statistical evaluation values of the overlaps between X; and a Y;,) is
displayed, where (g) is the total number of genes, (n.,) is the number of genes in (X)), (n,)) is the number

of genes in (¥;), and (ky) is the number of overlap genes between (X)) and ().
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Figure 3. Relationships of Two Blocks

In CODM, all of the clusters ﬁe dealt with equally, regardless of their difference levels (i.e. their
homogeneity). Even if they are included in other clusters, all of the statistical significance of the number
of common genes between clusters is simultaneously visualized. Figure 3 shows that there is a risk that a
small overlap blocks may be hidden in a large block. Assume that the clusters X; and ¥, are included in
X; and Y, respectively. Then, if the evaluation value Ej, is less than E;,, the small block B;, will be

hidden within the large block B, (Figure 3a).
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Figure 4. Visualizations for Comparison of Clustering Results of TOL and SHAM
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This figure shows visualization results of the comparisons between TOL and SHAM in the mode of

redundant visualization (Figures 4a and 4b), siuﬂlaﬁly of the expression patterns (Figures 4c and 4d),
and the relationships with transcription factors (Figures de and 4f). In these figures, the cut level of the
distance for hierarchical clustering was 0.74, and all of the overlap blocks with 2.0 or higher evaluation
values are displayed as 3D histograms. As the figures show, the CODM provides not only a 3D mode
(Figures 4b, 4d, and 4f) but also a 2D mode (Figures 4a, 4c, and 4e) where users can see a projected
overhead view of the 3D mode.

In the mode showing the relationships with the transcription factors (Figures 4e and 4f), we considered
the relationships with 8 types of transcription factors (HIF, ARNT and EGR families), which are known
to mediate response to ischemia. In these figures, only overlap blocks with 2.0 or higher evaluation
values of the number of genes with putative transcription factor binding sites were color-coded. Where
an overlap block represents statistical significance for multiple transcription factors’ putative binding
sites, only the transcription factor with the highest evaluation value was visualized.

Exploration through changing the color-mode and the 2D&3D mode allowed us to pick up 3 potentially
important overlap blocks which represented high evaluation values of the number of genes with the

binding-sites (E > 2.0).
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Figure 5. Expression Patterns of genes in the 3 overlap blocks
These figures show the expression patterns of common genes for the 3 overlap blocks which were
picked up through exploration with CODM (Figure 4). The “Expression Patterns of Cluster T (S) (i =

a,b,c) are the expression pattemns of the common genes of the overlap block i in TOL({/SHAM).
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(a) Cut-level = 0.84 (b} Cut-level = 079

e T

Figure 6. Interactive Changes of Cut-levels

In CODM, there is a risk that a small overlap block may be hidden in a large block. To avoid this
problem, CODM allows the user to change the cut level interactively. If the user decreases the cut level,
some small blocks that are hidden in larger blocks will emerge. By considering the homogeneity of
clusters and the relationships with other gene information, the user can find important genes displayed as

blocks in the CODM.
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ABSTRACT

Motivation: Since ONA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with stafistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis (PCA) are used to
roughly visualize the distribution of high dimensional gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize class information
when choosing axes. Thus clearly separable data in the original
space may not be so in the reduced space used in PCA.
Results: For visualizaton and class prediction of gene
exprassion data, we have developed a new SVM-based
method called multidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space to exhibit properties of the data
clearly and to visualize a distribution of the data roughly.
Furthermora, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in our method: solutions of mathematical programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our method to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algorithm is
efficient and usefu! for visualization and class prediction,
Contact: komura@hal.rcast.u-tokyo.ac jp

1 INTRODUCTION

DNA microarray has been the key technology in modem
biology and helped us to decipher the biological system
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because of its ability to monitor the expression levels of
thousands of genes simultancously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyzed with statistical methods to
extract the meanings of experimental results.

A great number of supervised learning algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani ef al., 2002; Khan ef al.,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bioinformatics
including classification of gene expression data (Furey et al.,
2000). However, SVMs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function. As a result, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimensional space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data, Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlinear PCA (Diamantaras and
Kung, 1996) and Kernel PCA (Schélkopf ef al., 1998), are
most widely used for this purpose (Huang ef al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be 5o in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class variance. However, itis reported that SVMs
often outperform discriminant analysis (Brown ef al., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data, To this end, we have developed multidimensional
SVMs (MD-SVMs), anew SVM-based method that generates
multiple orthogonal axes based on margin between two

Published by Oxford Unliversiy Prass
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the discriminability
of two classes. This method fulfills the requirement of both
visualization and class prediction. The basic properties of
8VMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear classification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of SYMs. In Section 3, we describe
the algorithm of MD-SVMs. In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction.

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R*,i = 1,...,m will be denoted byx;,j =
1,...,n, Theinner productoftwo vectorsx € R®and y € R®
will be denoted by x - y. For a vector ¥ € R™ and a scalar
a€R,a<xisdefinedasa < x; foralli =1,...,n. For
an arbitrary variable x, x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly introduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to separate two classes of
data based on m training samples x; € R",i = 1,...,m with
corresponding class values y; € {£1},i = 1,..,,m. SVMs
map a data x € R" into a higher, probably infinite, dimen-
sional space R¥ than the original space with an appropriate
nonlinear mapping ¢ : R" — R¥ n < N. They generate
the linear decision function of the form f(x) = sign(w -
¢(x} + b) in the high dimensional space, where w € RY
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while # € R is
a bias which moves the hyperplane parallel to itself. The
optimal decision function given by SVMs is a solution of an
optimization problem

N D
mip >jwli +C§§i,

st.yi(w-o)+b)z21-&, i=1,....m§=0, (1)

with C > 0. Hers, £ € R™ is a vector whose elements
are slack variables and C € R is a regularization parameter
for penalizing training errors. When C — ©0, no training
errors are allowed, and thus this is called hard margin
classification. When 0 < C < 00, this is called soft margin

classification becanse it allows some training errors. Note that
a geometric margin y between two classes is defined as ".:" .
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors. The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier &« € R™ and replacing
$(xi) - $(x}) by kernel function K (x;,x;) = $(x;) - $(x;)
to be solved in an elegant way of dealing with a high
dimensional vector space. The dual problem is

i yiyiKx ) + )

max !
2L ¢
1 j=1 i=1

m
«

m
st.0<a<Cy ay=0. )

i=1

By virtue of the kernel function, the value of the inner
product ¢(x;) - ¢{x;) can be obtained without explicit
calculation of ¢{x;) and ¢(x;). Finally, the decision func-
tion becomes f(x) =sign{}y i—) o:y: K (xi,x)+b). by using
kernel functions between training samples x;,{ = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In order to overcome the drawback that SVMs cannot generate
more than one decision finction, we propose a SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensional SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set (w,b,£) which corresponds to
a decision function, while our MD-SVMs give the multiple
sets (wh, b%,£5),k = 1,2,...,0 with ] < n, so that all the
directions wy are orthogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensional space by means
of projection. Here the first set (w!,5',£') is equivalent to
that obtained by conventional SVMs. Now we only refer to
the steps ofobtaining(w",b",fk),k =273,...,1. Inpractice,
the k-th set (w¥, B, %)k = 2,3, ... 1 are found with iterative
computations of the optimization problem

A Lk
min =|jw*||* +C i
mig =’ gs
tak ) k koo
styi(w - ¢lx)+6)=1~-¢5i=1,....m,
0wt wi=0,j=1,... k-1 (3)
This preblem differs from that of conventional SVMs in the

last constraint w* - w/ = 0. The weight vector w/,j =
1,...,k — 1 should be computed in advance by solving
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other optimization problems (3). The optimlzation problem
is modified by introducing lagrange multipliers af, »* € R™,
B* € R*~! and kernel functions. The primal Lagrangian is

1 k2 “ k
=lef 1"+ C )

i=l

L{w*,b*, %)

+Zaf(1 — &y gl + 54D

+ Zﬁ"(w wl) - Zy,"s. )

i=]

Consequently, the optimization problem is

max ——ZZ&

ot.pt i=1 j=1

llz—l ) . m
+5 2B wh+ 3 o,
i=1 i=]

ofyiyi K (xis % 5)

m
st0<ot 2C,) ofy =0,

i=]
ety w)=0,j=1,.k~1 (5
i=1

Here ¢(xp) - w? and w? - w? are calculated recursively as
follows:

g-1

=) o nK(ep 0~ Y B @Gx,) - v,

i=1 i=
®

Plxp) - w?

m m
w? . wf = Zzaf’afy,-yjK(x,-,xj)

i=1 j=1
m p-1 p=1
=YY el vl - wy+ 3 BPE (w' - w)
i=1 j=t i=1
m p-1 :
=33 ot uBl(sx) - w), M

i=1

—

where ¢(xp) - w!' = iy a}y,'K(xp,x,') and wlw! =
¥, a,-ly,-(rﬁ(x.-),wl). As can be seen, there is no need to
calculate nonlinear map of data ¢(x) in problem (5) because
all nonlinear mappings can be replaced with kernel functions.
Note that this optimization problem is a nonconvex quad-
ratic problem when & is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2
or 3. We note the experimental results are still encouraging.

The corresponding Karush-Kuhn-Tucker conditions are

a1 —&F — k- iy + 5 =0, (®)
gt -0)y=0,i=1,...,m. 9

These are exactly the same as conventional SVMs., We
highlight the other properties conserved from conventional
SVMs:

» Projecting data into high dimensional space is implicit,
using kernel functions to replace inner products.
o The solutions ¥ of the optimization problem is sparse.

Then the corresponding decision function depends only
on few *Support Vectors'.

Since each decision function is nonnalized independently to
hold w* - ¢(x;) + B = y; fori = 1,...,m, data scales of the
axes should be aligned with first axis (¢ = 1) for visualization.
The margin y¥, the L2-distance between support vectors of
each class of k-th axis, is
;

k-1 -4

> afodyiyiKxi,x;) = > gEBF(w' - wh)

1 j=! i=1

Ma

1o
S0 a scaling factor §% = 3 /% is
Zzﬂf 13iyiK (xi,x5)
i=] j=1
k—1 -

||Ma

Z oo YLYJK(x:, J)‘_Zﬂfﬁ.k(wl 'wi)

=1

The dec:s1on function of k-th step has the form f*(x) =
sign(3°1%; afyiK (xi,x) + b*). Since the right hand side of
the equation has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R" in three dimensional space is

(184 (x), 52 8% (x), 54 b (x)), (12)

where g%(x) i afyiK (xi,x) + b*. The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS

4.1 Method

In order to confirm the effectiveness of our algorithm, we have
performed numerical experiments. MD-SVMs can generate
multiple axes, up to the number of features. Here we choose
three axes, k = 1,2, 3, to simplify the experiments. When k is
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2 or 3, we use local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are normalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than 0.35. Then we calculate a score F(x(f)) =
(e ()=~ (/o (j)+0 ()], for the remaining genes.
Here pe(j)(u™(j)) and ¢+ (j)(o~ (j)) denote the mean and
standard deviation of the j-th gene of the samples labeled
+1{-1), respectively. This score becomes the highest when
the corresponding expression levels of the gene differ most
in the two classes and have small deviations in each class.
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments.

The regularization parameter C in problem (5) is set to 1000,
This value is rather large but finite because we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kernel X (x;,x;) = x; - x; and RBF ker-
nel K{x;,x;) = exp—v| x; — x;[|* with ¥ = 0.001 in the
experiments of MD-SVMs. .

4.2 Materials

Leukemia dataset (Golubet al., 1999) This gene expression
dataset consists of 72 leukemia samples, including 25 acute

" myeloid leukemia (AML) samples and 47 acute lymphoblastic
leukemia (ALL) samples, They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are Jabeled +1 and ALL samples are
labeled —1.

Lung tissue dataset (Bhattacharjee et al,, 2001)  This dataset
consists 0f 203 samples from Jung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip containing probe sets for 12558 genes. Training set
includes 13 sarnples from normal tissue and 157 samples from
cancerous tissue. Test set includes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal tissue are labeled +1 and samples from cancerous
tissue are labeled —1.

5 RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables 1 and 2. The distributions obtained by MD-SVMs
on the leukemia dataset and the lung tissues dataset are given
in Figure 1-(1) and 1-{3), respectively. Those obtained by PCA
are given in Figure 1-(2) and 1-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2. In these tables, the class of the samples is
predicted based on decision functions f¥(x),k = 1,2,3,
corresponding to each of the three axes,

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions.
However, as shown in Figure 1-(2) and 1-{4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis. These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them. Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by amrows in
Figure 1-(3)). Though this sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significanly deviates in MD-SVMs. This may arise
from the fact that MD-SVMs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-SVMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f¥(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables 1 and 2. In such cases, the simplest method
for prediction is to use only the tst axis, which corresponds to
the decision function generated by conventional SVMs. The
idea is supported by the fact that the 1st decision function ¢las-
sifies the samples most correctly in almost all cases in Tables 1
and 2. The more advanced method is weighted voting. Scaling
factor or normalized objective values in problem (5) are the
candidate of the weight.

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column ‘3 axes’
of test sample of the lung tissues dataset with RBF kernel in
Table 2. This sample is misclassified by all decision funetions,
50 we can say that this data contains some experimental error.
The hierarchical clustering method alse supports our result.
These results indicate that MD-SVMSs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visualization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMs perform bet-
ter than the other classification algorithms, but they generate
only one axis for ¢lass prediction. (2) PCA chooses multiple
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